Oxidative stress (OS) and production of NO, by endothelium nitric oxide synthetase (eNOS), are involved in the pathophysiology of erectile dysfunction (ED). Moreover, OS induces modifications of the physicochemical properties of erythrocyte (RBC) plasma membranes and of the enzyme content of the same membranes. Due to their role in signalling early membrane alterations in OS-related pathologies, several plasma membrane and cytosolic glycohydrolases of human RBC have been proposed as new markers of cellular OS. In RBC, NOS can be activated and deactivated by phosphorylation/glycosylation. In this regulatory mechanism O-β-N-AcetylGlucosaminidase is a key enzyme. Cellular levels of O-GlcNAcylated proteins are related to OS; consequently dysfunctional eNOS O-GlcNAcylation seems to have a crucial role in ED. To elucidate the possible association between RBC glycohydrolases and OS, plasma hydroperoxides and antioxidant total defenses (Lag-time), cytosolic O-β-N-AcetylGlucosaminidase, cytosolic and membrane Hexosaminidase, membrane β-D-Glucuronidase, and α-D-Glucosidase have been studied in 39 ED patients and 30 controls. In ED subjects hydroperoxides and plasma membrane glycohydrolases activities are significantly increased whereas Lag-time values and cytosolic glycohydrolases activities are significantly decreased. These data confirm the strong OS status in ED patients, the role of the studied glycohydrolases as early OS biomarker and suggest their possible use as specific marker of ED patients, particularly in those undergoing nutritional/pharmacological antioxidant therapy.

Levels of Human Erythrocyte Membrane-Bound and Cytosolic Glycohydrolases Are Associated with Oxidative Stress in Erectile Dysfunction Patients / L. Massaccesi, G.V. Melzi d’Eril, G. Colpi, G. Tettamanti, G. Goi, A. Barassi. - In: DISEASE MARKERS. - ISSN 0278-0240. - 2014(2014 Aug 05), pp. 485917.1-485917.8. [10.1155/2014/485917]

Levels of Human Erythrocyte Membrane-Bound and Cytosolic Glycohydrolases Are Associated with Oxidative Stress in Erectile Dysfunction Patients

L. Massaccesi
Primo
;
G.V. Melzi d’Eril
Secondo
;
G. Goi
Penultimo
;
A. Barassi
Ultimo
2014

Abstract

Oxidative stress (OS) and production of NO, by endothelium nitric oxide synthetase (eNOS), are involved in the pathophysiology of erectile dysfunction (ED). Moreover, OS induces modifications of the physicochemical properties of erythrocyte (RBC) plasma membranes and of the enzyme content of the same membranes. Due to their role in signalling early membrane alterations in OS-related pathologies, several plasma membrane and cytosolic glycohydrolases of human RBC have been proposed as new markers of cellular OS. In RBC, NOS can be activated and deactivated by phosphorylation/glycosylation. In this regulatory mechanism O-β-N-AcetylGlucosaminidase is a key enzyme. Cellular levels of O-GlcNAcylated proteins are related to OS; consequently dysfunctional eNOS O-GlcNAcylation seems to have a crucial role in ED. To elucidate the possible association between RBC glycohydrolases and OS, plasma hydroperoxides and antioxidant total defenses (Lag-time), cytosolic O-β-N-AcetylGlucosaminidase, cytosolic and membrane Hexosaminidase, membrane β-D-Glucuronidase, and α-D-Glucosidase have been studied in 39 ED patients and 30 controls. In ED subjects hydroperoxides and plasma membrane glycohydrolases activities are significantly increased whereas Lag-time values and cytosolic glycohydrolases activities are significantly decreased. These data confirm the strong OS status in ED patients, the role of the studied glycohydrolases as early OS biomarker and suggest their possible use as specific marker of ED patients, particularly in those undergoing nutritional/pharmacological antioxidant therapy.
Settore MED/46 - Scienze Tecniche di Medicina di Laboratorio
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
5-ago-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
485917.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/237961
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact