Purpose The purpose of this study was to assess the modifications in body center of mass (CoM), total mechanical work and walking characteristics during low-heeled and high-heeled gait performed in ecological conditions. Methods The 3D coordinates of 19 body landmarks were recorded by an optoelectronic motion analyzer in 13 women while walking overground at self-selected speed with either low-heeled or high-heeled shoes (minimum height, 70 mm). Using mean anthropometric data, the CoM was estimated, and its position evaluated during normalized gait cycles. Shoulders, pelvic and knee orientations were also assessed together with estimates of total mechanical work. Results High-heeled walking was performed with significantly lower horizontal speed (p < 0.05) but with the same cadence than low-heeled walking. During the whole gait cycle, the CoM (calculated from the malleolus landmarks) was 3 % lower during high-heeled walking (p < 0.05), had higher vertical displacements and vertical velocity modifications (p < 0.001), and it was significantly more anterior (p < 0.01). On average, walking with high heels at self-selected speed required a 16 % higher total mechanical work, but the difference was not significant. At heel strike with high heels, the shoulders were more inclined (p < 0.05), the support limb knee was significantly more flexed (p < 0.05), with a 12 % reduced total range of motion (p < 0.001), while the back limb knee was less flexed (p < 0.05). Conclusions Wearing high-heeled shoes significantly alters the normal displacement of human CoM; high-heeled gait exaggerated female walking characteristics with a more anterior CoM position, a wider vertical movement and a slower velocity.

The effect of high-heeled shoes on overground gait kinematics in young healthy women / I. Annoni, A. Mapelli, F.V. Sidequersky, M. Zago, C. Sforza. - In: SPORT SCIENCES FOR HEALTH. - ISSN 1824-7490. - 10:2(2014 Aug), pp. 149-157. [10.1007/s11332-014-0191-z]

The effect of high-heeled shoes on overground gait kinematics in young healthy women

I. Annoni
Primo
;
A. Mapelli
Secondo
;
F.V. Sidequersky;M. Zago
Penultimo
;
C. Sforza
Ultimo
2014

Abstract

Purpose The purpose of this study was to assess the modifications in body center of mass (CoM), total mechanical work and walking characteristics during low-heeled and high-heeled gait performed in ecological conditions. Methods The 3D coordinates of 19 body landmarks were recorded by an optoelectronic motion analyzer in 13 women while walking overground at self-selected speed with either low-heeled or high-heeled shoes (minimum height, 70 mm). Using mean anthropometric data, the CoM was estimated, and its position evaluated during normalized gait cycles. Shoulders, pelvic and knee orientations were also assessed together with estimates of total mechanical work. Results High-heeled walking was performed with significantly lower horizontal speed (p < 0.05) but with the same cadence than low-heeled walking. During the whole gait cycle, the CoM (calculated from the malleolus landmarks) was 3 % lower during high-heeled walking (p < 0.05), had higher vertical displacements and vertical velocity modifications (p < 0.001), and it was significantly more anterior (p < 0.01). On average, walking with high heels at self-selected speed required a 16 % higher total mechanical work, but the difference was not significant. At heel strike with high heels, the shoulders were more inclined (p < 0.05), the support limb knee was significantly more flexed (p < 0.05), with a 12 % reduced total range of motion (p < 0.001), while the back limb knee was less flexed (p < 0.05). Conclusions Wearing high-heeled shoes significantly alters the normal displacement of human CoM; high-heeled gait exaggerated female walking characteristics with a more anterior CoM position, a wider vertical movement and a slower velocity.
Center of mass; Footwear; Gait analysis; Mechanical work
Settore BIO/16 - Anatomia Umana
Settore M-EDF/02 - Metodi e Didattiche delle Attivita' Sportive
Settore MED/33 - Malattie Apparato Locomotore
ago-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2Fs11332-014-0191-z.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 572.99 kB
Formato Adobe PDF
572.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/237384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact