We address quantum state reconstruction for d-dimensional systems based on measuring, on the system of interest and a probe, of a single entangled observable defined on the bipartite system/probe Hilbert space. We show that the statistics of the measurement and the knowledge of the probe preparation suffice to reliably reconstruct the density matrix of the system, as well as the expectation value of any desired operator, including those not corresponding to observable quantities. The statistical robustness of the reconstruction is examined and a method is developed to minimize statistical errors by tuning the probe preparation. Numerical simulations of the whole reconstruction procedure are also presented for qubit systems.

Quantum state reconstruction by entangled measurements / J. Ghiglieri, M.G.A. Paris. - In: THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR AND OPTICAL PHYSICS. - ISSN 1434-6060. - 40:1(2006), pp. 139-146. [10.1140/epjd/e2006-00129-8]

Quantum state reconstruction by entangled measurements

M.G.A. Paris
Ultimo
2006

Abstract

We address quantum state reconstruction for d-dimensional systems based on measuring, on the system of interest and a probe, of a single entangled observable defined on the bipartite system/probe Hilbert space. We show that the statistics of the measurement and the knowledge of the probe preparation suffice to reliably reconstruct the density matrix of the system, as well as the expectation value of any desired operator, including those not corresponding to observable quantities. The statistical robustness of the reconstruction is examined and a method is developed to minimize statistical errors by tuning the probe preparation. Numerical simulations of the whole reconstruction procedure are also presented for qubit systems.
Hilbert spaces ; numerical analysis ; quantum computing ; quantum entanglement ; statistical analysis
Settore FIS/03 - Fisica della Materia
2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/23694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact