Proteasome inhibition has emerged as an important therapeutic strategy for the treatment of multiple myeloma (MM) and some forms of lymphoma, with potential application in other types of cancers. 20S proteasome consists of three different catalytic activities known as chymotrypsin-like (ChT-L), trypsin-like (T-L), and, post-glutamyl peptide hydrolyzing (PGPH) or caspase-like (C-L), which are located respectively on the β5, β2, and β1 subunits of each heptameric β rings. Currently a wide number of covalent proteasome inhibitors are reported in literature; however, the less widely investigated non-covalent inhibitors might be a promising alternative to employ in therapy, because of the lack of all drawbacks and side-effects related to irreversible inhibition. In the present work we identified a series of amides, two of which (1b and 1f) are good candidates to non-covalent inhibition of the chymotrypsin-like activity of the β5 proteasome subunit. The non-covalent binding mode was corroborated by docking simulations of the most active inhibitors 1b, 1f and 2h into the yeast 20S proteasome crystal structure.

Identification of a new series of amides as non-covalent proteasome inhibitors / K. Scarbaci, V. Troiano, N. Micale, R. Ettari, L. Tamborini, C. Di Giovanni, C. Cerchia, S. Grasso, E. Novellino, T. Schirmeister, A. Lavecchia, M. Zappalà. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - 76:(2014 Jan 25), pp. 1-9. [10.1016/j.ejmech.2014.01.022]

Identification of a new series of amides as non-covalent proteasome inhibitors

R. Ettari;L. Tamborini;
2014

Abstract

Proteasome inhibition has emerged as an important therapeutic strategy for the treatment of multiple myeloma (MM) and some forms of lymphoma, with potential application in other types of cancers. 20S proteasome consists of three different catalytic activities known as chymotrypsin-like (ChT-L), trypsin-like (T-L), and, post-glutamyl peptide hydrolyzing (PGPH) or caspase-like (C-L), which are located respectively on the β5, β2, and β1 subunits of each heptameric β rings. Currently a wide number of covalent proteasome inhibitors are reported in literature; however, the less widely investigated non-covalent inhibitors might be a promising alternative to employ in therapy, because of the lack of all drawbacks and side-effects related to irreversible inhibition. In the present work we identified a series of amides, two of which (1b and 1f) are good candidates to non-covalent inhibition of the chymotrypsin-like activity of the β5 proteasome subunit. The non-covalent binding mode was corroborated by docking simulations of the most active inhibitors 1b, 1f and 2h into the yeast 20S proteasome crystal structure.
Amides ; Docking studies ; Non-covalent inhibitors ; Proteasome inhibitors
Settore CHIM/08 - Chimica Farmaceutica
25-gen-2014
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/235610
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact