This paper characterizes the effective beams,the effective beam window functions and the associated errors for the Planck HFI detectors. The effective beam is the angular response including the effect of the optics,detectors,data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the CMB angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: (a) the optical response of the telescope and feeds;(b)the processing of the time-ordered data and deconvolution of the bolometric and electronic time response; and (c) the merging of several surveys to produce maps. The time response functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5deg) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects.The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100GHz up to ell~1500$,and below 0.5% at 143 and 217GHz up to ~2000.

Planck 2013 results. VII. HFI time response and beams / P. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Banday, R. Barreiro, E. Battaner, K. Benabed, A. Benoît, A. Benoit-Lévy, J. Bernard, M. Bersanelli, P. Bielewicz, J. Bobin, J. Bock, J. Bond, J. Borrill, F. Bouchet, J. Bowyer, M. Bridges, M. Bucher, C. Burigana, J. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R. Chary, H. Chiang, L. Chiang, P. Christensen, S. Church, D. Clements, S. Colombi, L. Colombo, F. Couchot, A. Coulais, B. Crill, A. Curto, F. Cuttaia, L. Danese, R. Davies, P. Bernardis, A. Rosa, G. Zotti, J. Delabrouille, J. Delouis, F. Désert, J. Diego, H. Dole, S. Donzelli, O. Doré, M. Douspis, J. Dunkley, X. Dupac, G. Efstathiou, T. Enßlin, H. Eriksen, F. Finelli, O. Forni, M. Frailis, A. Fraisse, E. Franceschi, S. Galeotta, K. Ganga, M. Giard, Y. Giraud-Héraud, J. González-Nuevo, K. Górski, S. Gratton, A. Gregorio, A. Gruppuso, J. Gudmundsson, J. Haissinski, F. Hansen, D. Hanson, D. Harrison, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. Hildebrandt, E. Hivon, M. Hobson, W. Holmes, A. Hornstrup, Z. Hou, W. Hovest, K. Huffenberger, A. Jaffe, T. Jaffe, W. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T. Kisner, R. Kneissl, J. Knoche, L. Knox, M. Kunz, H. Kurki-Suonio, G. Lagache, J. Lamarre, A. Lasenby, R. Laureijs, C. Lawrence, R. Leonardi, C. Leroy, J. Lesgourgues, M. Liguori, P. Lilje, M. Linden-Vørnle, M. López-Caniego, P. Lubin, J. Macías-Pérez, C. MacTavish, B. Maffei, N. Mandolesi, M. Maris, D. Marshall, P. Martin, E. Martínez-González, S. Masi, M. Massardi, S. Matarrese, T. Matsumura, F. Matthai, P. Mazzotta, P. McGehee, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M. Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, D. Munshi, J. Murphy, P. Naselsky, F. Nati, P. Natoli, C. Netterfield, H. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, S. Osborne, C. Oxborrow, F. Paci, L. Pagano, F. Pajot, D. Paoletti, F. Pasian, G. Patanchon, O. Perdereau, L. Perotto, F. Perrotta, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, A. Polegre, G. Polenta, N. Ponthieu, L. Popa, T. Poutanen, G. Pratt, G. Prézeau, S. Prunet, J. Puget, J. Rachen, M. Reinecke, M. Remazeilles, C. Renault, S. Ricciardi, T. Riller, I. Ristorcelli, G. Rocha, C. Rosset, G. Roudier, M. Rowan-Robinson, B. Rusholme, M. Sandri, D. Santos, A. Sauvé, G. Savini, D. Scott, E. Shellard, L. Spencer, J. Starck, V. Stolyarov, R. Stompor, R. Sudiwala, F. Sureau, D. Sutton, A. Suur-Uski, J. Sygnet, J. Tauber, D. Tavagnacco, L. Terenzi, M. Tomasi, M. Tristram, M. Tucci, G. Umana, L. Valenziano, J. Valiviita, B. Tent, P. Vielva, F. Villa, N. Vittorio, L. Wade, B. Wandelt, D. Yvon, A. Zacchei, A. Zonca. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 571(2014 Oct 29), pp. A7.1-A7.31.

Planck 2013 results. VII. HFI time response and beams

M. Bersanelli;L. Colombo;S. Donzelli;A. Mennella;M. Tomasi;A. Zonca
2014

Abstract

This paper characterizes the effective beams,the effective beam window functions and the associated errors for the Planck HFI detectors. The effective beam is the angular response including the effect of the optics,detectors,data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the CMB angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: (a) the optical response of the telescope and feeds;(b)the processing of the time-ordered data and deconvolution of the bolometric and electronic time response; and (c) the merging of several surveys to produce maps. The time response functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5deg) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects.The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100GHz up to ell~1500$,and below 0.5% at 143 and 217GHz up to ~2000.
astrophysics: cosmology and extragalactic astrophysics; astrophysics: instrumentation and methods for astrophysics
Settore FIS/05 - Astronomia e Astrofisica
29-ott-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
Planck Collaboration et al. - 2014 - Planck 2013 results. VII. HFI time response and beams.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 5.58 MB
Formato Adobe PDF
5.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/230793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 84
social impact