Aims. A complete description of the core collapse supernova mechanism requires an appropriate treatment of both the hydrodynamics and the microphysics. We study the influence of a nuclear physics input, namely the temperature dependence of the nucleon effective mass in nuclei induced by the in-medium effects, in the core collapse of a massive star. Methods. We present here the first implementation of this nuclear input in a hydrodynamical one-dimensional simulation. The simulations are performed with a spherically symmetric Newtonian model, with neutrino transport treated in the multi-group flux-limited diffusion approximation. Results. The inclusion of the temperature dependence of the in-medium nucleon mass has an impact on the equation of state of the system and reduces the deleptonisation during the collapse. This results in a non-negligible effect on the shock wave energetics. The shock wave is formed more outwards, and in the first few milliseconds after bounce the shock front has propagated further out.

Effects of the temperature dependence of the in-medium nucleon mass on core-collapse supernovae / A. Fantina, P. Blottiau, J. Margueron, P. Mellor, P. Pizzochero. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 541(2012), pp. A30.1-A30.10.

Effects of the temperature dependence of the in-medium nucleon mass on core-collapse supernovae

P. Pizzochero
2012

Abstract

Aims. A complete description of the core collapse supernova mechanism requires an appropriate treatment of both the hydrodynamics and the microphysics. We study the influence of a nuclear physics input, namely the temperature dependence of the nucleon effective mass in nuclei induced by the in-medium effects, in the core collapse of a massive star. Methods. We present here the first implementation of this nuclear input in a hydrodynamical one-dimensional simulation. The simulations are performed with a spherically symmetric Newtonian model, with neutrino transport treated in the multi-group flux-limited diffusion approximation. Results. The inclusion of the temperature dependence of the in-medium nucleon mass has an impact on the equation of state of the system and reduces the deleptonisation during the collapse. This results in a non-negligible effect on the shock wave energetics. The shock wave is formed more outwards, and in the first few milliseconds after bounce the shock front has propagated further out.
equation of state ; methods: numerical ; hydrodynamics ; supernovae: general
Settore FIS/04 - Fisica Nucleare e Subnucleare
Settore FIS/05 - Astronomia e Astrofisica
2012
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/229861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact