Modulation of the transition to flowering plays an important role in the adaptation to drought. The drought-escape (DE) response allows plants to adaptively shorten their life cycle to make seeds before severe stress leads to death. However, the molecular basis of the DE response is unknown. A screen of different Arabidopsis (Arabidopsis thaliana) flowering time mutants under DE-triggering conditions revealed the central role of the flower-promoting gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in the DE response. Further screens showed that the phytohormone abscisic acid is required for the DE response, positively regulating flowering under long-day conditions. Drought stress promotes the transcriptional up-regulation of the florigens in an abscisic acid- and photoperiod-dependent manner, so that early flowering only occurs under long days. Along with the florigens, the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 is also up-regulated in a similar fashion and contributes to the activation of TSF. The DE response was recovered under short days in the absence of the floral repressor SHORT VEGETATIVE PHASE or in GI-overexpressing plants. Our data reveal a key role for GI in connecting photoperiodic cues and environmental stress independently from the central FT/TSF activator CONSTANS. This mechanism explains how environmental cues may act upon the florigen genes in a photoperiodically controlled manner, thus enabling plastic flowering responses.

GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR of OVEREXPRESSION of CONSTANS1 1[c][w] / M. Riboni, M. Galbiati, C. Tonelli, L. Conti. - In: PLANT PHYSIOLOGY. - ISSN 0032-0889. - 162:3(2013), pp. 1706-1719.

GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR of OVEREXPRESSION of CONSTANS1 1[c][w]

M. Riboni
Primo
;
M. Galbiati
Secondo
;
C. Tonelli
Penultimo
;
L. Conti
2013

Abstract

Modulation of the transition to flowering plays an important role in the adaptation to drought. The drought-escape (DE) response allows plants to adaptively shorten their life cycle to make seeds before severe stress leads to death. However, the molecular basis of the DE response is unknown. A screen of different Arabidopsis (Arabidopsis thaliana) flowering time mutants under DE-triggering conditions revealed the central role of the flower-promoting gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in the DE response. Further screens showed that the phytohormone abscisic acid is required for the DE response, positively regulating flowering under long-day conditions. Drought stress promotes the transcriptional up-regulation of the florigens in an abscisic acid- and photoperiod-dependent manner, so that early flowering only occurs under long days. Along with the florigens, the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 is also up-regulated in a similar fashion and contributes to the activation of TSF. The DE response was recovered under short days in the absence of the floral repressor SHORT VEGETATIVE PHASE or in GI-overexpressing plants. Our data reveal a key role for GI in connecting photoperiodic cues and environmental stress independently from the central FT/TSF activator CONSTANS. This mechanism explains how environmental cues may act upon the florigen genes in a photoperiodically controlled manner, thus enabling plastic flowering responses.
floweing-locus-T; mads domain protein; arabidopsis-thaliana; pathway integrator; floral initiation; FT protein; reproductive development; transcription factors; circadian-rhytms; plant development
Settore BIO/18 - Genetica
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
Plant Physiol. 2013 Riboni.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.29 MB
Formato Adobe PDF
4.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/227996
Citazioni
  • ???jsp.display-item.citation.pmc??? 98
  • Scopus 215
  • ???jsp.display-item.citation.isi??? 203
social impact