We review the state of the art of the determination of the parton substructure of the nucleon, as expressed in terms of parton distribution functions (PDFs) and probed in high-energy lepton–hadron and hadron–hadron collisions. We also assess their implications for current precision collider phenomenology, in particular at the Large Hadron Collider (LHC). We review the theoretical foundations of PDF determination: how cross sections are expressed in terms of PDFs by use of perturbative QCD factorization and evolution, the methodology used to extract PDFs from experimental data, and how different physical processes can be used to constrain different PDFs. We summarize current knowledge of PDFs and the limitations in accuracy that this knowledge currently entails for the computation of hadron collider processes, in particular at the LHC. We discuss the current main sources of theoretical and phenomenological uncertainties and the direction of progress toward their reduction in the future.

Progress in the determination of the partonic structure of the proton / S. Forte, G. Watt. - In: ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE. - ISSN 0163-8998. - 63:(2013), pp. 291-328. [10.1146/annurev-nucl-102212-170607]

Progress in the determination of the partonic structure of the proton

S. Forte;
2013

Abstract

We review the state of the art of the determination of the parton substructure of the nucleon, as expressed in terms of parton distribution functions (PDFs) and probed in high-energy lepton–hadron and hadron–hadron collisions. We also assess their implications for current precision collider phenomenology, in particular at the Large Hadron Collider (LHC). We review the theoretical foundations of PDF determination: how cross sections are expressed in terms of PDFs by use of perturbative QCD factorization and evolution, the methodology used to extract PDFs from experimental data, and how different physical processes can be used to constrain different PDFs. We summarize current knowledge of PDFs and the limitations in accuracy that this knowledge currently entails for the computation of hadron collider processes, in particular at the LHC. We discuss the current main sources of theoretical and phenomenological uncertainties and the direction of progress toward their reduction in the future.
parton distributions ; QCD ; LHC ; collider physics
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/04 - Fisica Nucleare e Subnucleare
2013
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/227582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 90
social impact