Researchers in reliability engineering regularly encounter variables that are discrete in nature, such as the number of events (e.g., failures) occurring in a certain spatial or temporal interval. The methods for analyzing and interpreting such data are often based on asymptotic theory, so that when the sample size is not large, their accuracy is suspect. This paper discusses statistical inference for the reliability of stress-strength models when stress and strength are independent Poisson random variables. The maximum likelihood estimator and the uniformly minimum variance unbiased estimator are here presented and empirically compared in terms of their mean square error; recalling the delta method, confidence intervals based on these point estimators are proposed, and their reliance is investigated through a simulation study, which assesses their performance in terms of coverage rate and average length under several scenarios and for various sample sizes. The study indicates that the two estimators possess similar properties, and the accuracy of these estimators is still satisfactory even when the sample size is small. An application to an engineering experiment is also provided to elucidate the use of the proposed methods

Inference on reliability of stress-strength models for poisson data / A. Barbiero. - In: JOURNAL OF QUALITY AND RELIABILITY ENGINEERING. - ISSN 2314-8047. - 2013:(2013), pp. 530530.1-530530.8. [10.1155/2013/530530]

Inference on reliability of stress-strength models for poisson data

A. Barbiero
Primo
2013

Abstract

Researchers in reliability engineering regularly encounter variables that are discrete in nature, such as the number of events (e.g., failures) occurring in a certain spatial or temporal interval. The methods for analyzing and interpreting such data are often based on asymptotic theory, so that when the sample size is not large, their accuracy is suspect. This paper discusses statistical inference for the reliability of stress-strength models when stress and strength are independent Poisson random variables. The maximum likelihood estimator and the uniformly minimum variance unbiased estimator are here presented and empirically compared in terms of their mean square error; recalling the delta method, confidence intervals based on these point estimators are proposed, and their reliance is investigated through a simulation study, which assesses their performance in terms of coverage rate and average length under several scenarios and for various sample sizes. The study indicates that the two estimators possess similar properties, and the accuracy of these estimators is still satisfactory even when the sample size is small. An application to an engineering experiment is also provided to elucidate the use of the proposed methods
Settore SECS-S/01 - Statistica
2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
530530.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/225204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact