Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.

Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity / E. Menna, S. Zambetti, R. Morini, A. Donzelli, A. Disanza, D. Calvigioni, D. Braida, C. Nicolini, M. Orlando, G. Fossati, M. Cristina Regondi, L. Pattini, C. Frassoni, M. Francolini, G. Scita, M. Sala, M. Fahnestock, M. Matteoli. - In: EMBO JOURNAL. - ISSN 0261-4189. - 32:12(2013 Jun 12), pp. 1730-1744. [10.1038/emboj.2013.107]

Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity

S. Zambetti
Secondo
;
R. Morini;A. Donzelli;D. Braida;G. Fossati;M. Francolini;G. Scita;M. Sala;M. Matteoli
Ultimo
2013

Abstract

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.
actin-capping activity; activity-dependent plasticity; Eps8; learning and memory defects; spine morphogenesis
Settore MED/04 - Patologia Generale
Settore BIO/14 - Farmacologia
12-giu-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
emboj2013107a.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/223957
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact