The distinctive foliar trichome of Bromeliacene has promoted the evolution of an epiphytic habit in certain taxa by allowing the shoot to assume a significant role in the uptake of water and mineral nutrients. Despite the profound ecophysiological and taxonomic importance of this epidermal structure, the functions of nonabsorbent trichomes in remaining Bromeliaceae are not fully understood. The hypothesis that light reflection from these trichome layers provides photoprotection was not supported by spectroradiometry and fluorimetry in the present study; the mean reflectance of visible light from trichome layers did not exceed 6.4% on the adaxial surfaces of species representing a range of ecophysiological types nor was significant photoprotection provided by their presence. Several reports suggesting water repellency in some terrestrial Bromeliaceae were investigated. Scanning electron microscopy (SEM) and a new technique - fluorographic dimensional imaging (FDI) - were used to assess the interaction between aqueous droplets and the leaf surfaces of 86 species from 25 genera. In the majority of cases a dense layer of overlapping, stellate or peltate trichomes held water off the leaf epidermis proper. In the case of hydrophobic tank-forming tillandsioideae, a powdery epicuticular wax layer provided water repellency. The irregular architecture of these indumenta resulted in relatively little contact with water droplets. Most mesic terrestrial Pitcairnioideae examined either possessed glabrous leaf blades or hydrophobic layers of confluent trichomes on the abaxial surface. Thus, the present study indicates that an important ancestral function of the foliar trichome in Bromeliaceae was water repellency. The ecophysiological consequences of hydrophobia are discussed.

HYDROPHOBIC TRICHOME LAYERS AND EPICUTICULAR WAX POWDERS IN BROMELIACEAE / S. PIERCE, K. MAXWELL, H. GRIFFITHS, K. WINTER. - In: AMERICAN JOURNAL OF BOTANY. - ISSN 0002-9122. - 88:8(2001), pp. 1371-1389.

HYDROPHOBIC TRICHOME LAYERS AND EPICUTICULAR WAX POWDERS IN BROMELIACEAE

S. PIERCE
Primo
;
2001

Abstract

The distinctive foliar trichome of Bromeliacene has promoted the evolution of an epiphytic habit in certain taxa by allowing the shoot to assume a significant role in the uptake of water and mineral nutrients. Despite the profound ecophysiological and taxonomic importance of this epidermal structure, the functions of nonabsorbent trichomes in remaining Bromeliaceae are not fully understood. The hypothesis that light reflection from these trichome layers provides photoprotection was not supported by spectroradiometry and fluorimetry in the present study; the mean reflectance of visible light from trichome layers did not exceed 6.4% on the adaxial surfaces of species representing a range of ecophysiological types nor was significant photoprotection provided by their presence. Several reports suggesting water repellency in some terrestrial Bromeliaceae were investigated. Scanning electron microscopy (SEM) and a new technique - fluorographic dimensional imaging (FDI) - were used to assess the interaction between aqueous droplets and the leaf surfaces of 86 species from 25 genera. In the majority of cases a dense layer of overlapping, stellate or peltate trichomes held water off the leaf epidermis proper. In the case of hydrophobic tank-forming tillandsioideae, a powdery epicuticular wax layer provided water repellency. The irregular architecture of these indumenta resulted in relatively little contact with water droplets. Most mesic terrestrial Pitcairnioideae examined either possessed glabrous leaf blades or hydrophobic layers of confluent trichomes on the abaxial surface. Thus, the present study indicates that an important ancestral function of the foliar trichome in Bromeliaceae was water repellency. The ecophysiological consequences of hydrophobia are discussed.
Settore BIO/03 - Botanica Ambientale e Applicata
2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/223823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? ND
social impact