Background:Amino acid placental delivery is reduced in human intrauterine growth-restricted (IUGR) fetuses, and the activity of placental amino transporters has been consistently shown to be decreased in in vitro studies. We hypothesized lower placental expression and localization of sodium-coupled neutral amino acid transporter 2 (SNAT2 (also known as SLC38A2)), altered levels of intron-1 methylation, and altered distribution of single-nucleotide polymorphisms in human IUGR vs. normal pregnancies.Methods:We studied 88 IUGR and 84 control placentas from singleton pregnancies at elective caesarean section. SNAT2 expression was investigated by real-time PCR and immunohistochemistry. Intron-1 methylation levels were analyzed by pyrosequencing, and single-nucleotide polymorphism distribution was analyzed by allelic discrimination.Results:mRNA levels were significantly decreased in IUGR placentas with reduced umbilical blood flows. Syncytiotrophoblast immunostaining was lower in IUGR placentas than in control placentas. Methylation levels were steadily low in both IUGR and control placentas. SNP genotype and allele frequencies did not differ between the two groups.Conclusion:This is the first study investigating SNAT2 expression and regulation mechanisms in human IUGR placentas. We confirm previous results obtained in rats and cell cultures that support the fundamental role of SNAT2 in fetal growth and well-being, as well as a possible role of oxygen levels in regulating SNAT2 expression, indicating the relevance of hypoxia in IUGR.

SNAT2 expression and regulation in human growth restricted placentas / C. Mandò, S. Tabano, P. Pileri, P. Colapietro, M.A. Marino, L. Avagliano, P. Doi, G. Bulfamante, M. Miozzo, I. Cetin. - In: PEDIATRIC RESEARCH. - ISSN 0031-3998. - 74:2(2013 Aug), pp. 104-110. [10.1038/pr.2013.83]

SNAT2 expression and regulation in human growth restricted placentas

C. Mandò
Primo
;
S. Tabano
Secondo
;
P. Pileri;P. Colapietro;M.A. Marino;L. Avagliano;G. Bulfamante;M. Miozzo
Penultimo
;
I. Cetin
Ultimo
2013

Abstract

Background:Amino acid placental delivery is reduced in human intrauterine growth-restricted (IUGR) fetuses, and the activity of placental amino transporters has been consistently shown to be decreased in in vitro studies. We hypothesized lower placental expression and localization of sodium-coupled neutral amino acid transporter 2 (SNAT2 (also known as SLC38A2)), altered levels of intron-1 methylation, and altered distribution of single-nucleotide polymorphisms in human IUGR vs. normal pregnancies.Methods:We studied 88 IUGR and 84 control placentas from singleton pregnancies at elective caesarean section. SNAT2 expression was investigated by real-time PCR and immunohistochemistry. Intron-1 methylation levels were analyzed by pyrosequencing, and single-nucleotide polymorphism distribution was analyzed by allelic discrimination.Results:mRNA levels were significantly decreased in IUGR placentas with reduced umbilical blood flows. Syncytiotrophoblast immunostaining was lower in IUGR placentas than in control placentas. Methylation levels were steadily low in both IUGR and control placentas. SNP genotype and allele frequencies did not differ between the two groups.Conclusion:This is the first study investigating SNAT2 expression and regulation mechanisms in human IUGR placentas. We confirm previous results obtained in rats and cell cultures that support the fundamental role of SNAT2 in fetal growth and well-being, as well as a possible role of oxygen levels in regulating SNAT2 expression, indicating the relevance of hypoxia in IUGR.
Settore MED/08 - Anatomia Patologica
Settore MED/40 - Ginecologia e Ostetricia
Settore MED/03 - Genetica Medica
ago-2013
Article (author)
File in questo prodotto:
File Dimensione Formato  
pr201383a.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 502.4 kB
Formato Adobe PDF
502.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/223603
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact