The destruction and hollowing of entire tissue segments represent an insurmountable barrier to axonal regeneration and therapeutics in chronic spinal cord injury. To circumvent this problem we engineered neural prosthetics, by assembling electrospun nanofibers and self assembling peptides into composite guidance channels and transplanted them into the cysts of a postcontusive, chronic spinal cad injury rat model, also. providing delivery of proregenerative cytokines. Six months later conspicuous cord reconstruction was observed. The cyst was replaced by newly formed tissue comprising neural and stromal cells. Nerve fibers were interspersed. between and inside the guidance channels,spanning the lesion, amidst a well-developed vascular network, basal lamina and myelin. This was accompanied by a significant improvement in the activity of ascending and. descending motor pathways and the global locomotion score. Thus by engineering nanostructured matrices into., neuroprosthetics; It is possible to recreate an anatomical, structural, and histological framework, which lead to the replacement of large, hollow tissue gaps in the chronically injured spinal cord, fostering axonal regeneration and neurological recovery.

Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords / F. Gelain, S. Panseri, S. Antonini, C. Cunha, M. Donega, J. Lowery, F. Taraballi, G. Cerri, M. Montagna, F. Baldissera, A. Vescovi. - In: ACS NANO. - ISSN 1936-0851. - 5:1(2011), pp. 227-236. [10.1021/nn102461w]

Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords

G. Cerri;M. Montagna;F. Baldissera;
2011

Abstract

The destruction and hollowing of entire tissue segments represent an insurmountable barrier to axonal regeneration and therapeutics in chronic spinal cord injury. To circumvent this problem we engineered neural prosthetics, by assembling electrospun nanofibers and self assembling peptides into composite guidance channels and transplanted them into the cysts of a postcontusive, chronic spinal cad injury rat model, also. providing delivery of proregenerative cytokines. Six months later conspicuous cord reconstruction was observed. The cyst was replaced by newly formed tissue comprising neural and stromal cells. Nerve fibers were interspersed. between and inside the guidance channels,spanning the lesion, amidst a well-developed vascular network, basal lamina and myelin. This was accompanied by a significant improvement in the activity of ascending and. descending motor pathways and the global locomotion score. Thus by engineering nanostructured matrices into., neuroprosthetics; It is possible to recreate an anatomical, structural, and histological framework, which lead to the replacement of large, hollow tissue gaps in the chronically injured spinal cord, fostering axonal regeneration and neurological recovery.
Electrospinning; Evoked potentials; Self-assembling peptide; Spinal cord injury; Tissue engineering
Settore BIO/09 - Fisiologia
Settore BIO/13 - Biologia Applicata
2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/221644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 167
  • ???jsp.display-item.citation.isi??? 152
social impact