Methylhippuric acid isomers (MHAs), urinary metabolites of xylenes, were determined, after clean-up by C18-SPE and esterification with hexafluoroisopropanol and diisopropylcarbodiimide, by GC with ECD detection, on an SPB-35 capillary column (30 m, 0.32 mm I.D., 0.25 microm film thickness, beta = 320). S-benzyl-mercapturic acid was used for internal standardization. Chromatographic conditions were: oven temperature 162 degrees C, for 14.2 min; ramp by 30 degrees C/min to 190 degrees C, for 3.5 min; ramp by 30 degrees C/min to 250 degrees C, for 4 min; helium flow rate: 1.7 ml/min; detector and injector temperature: 300 degrees C. The sample (1 microl) was injected with a split injection technique (split ratio 5:1). MHA recovery was >95% in the 0.5-20 micromol/l range; the limit of detection was <0.25 micromol/l; day-to-day precision, at 2 micromol/l, was Cv<10%. Urinary MHAs were determined in subjects exposed to different low-level sources of xylenes: (a) tobacco smoking habit and (b) BTX urban air pollution (airborne xylene ranging from 0.1 to 3.7 micromol/m3). Study (a) showed a significant difference between urinary MHA median excretion values of nonsmokers and smokers (4.6 micromol/l vs. 8.1 micromol/l, p<0.001). Study (b) revealed a significant difference between indoor workers and outdoor workers (4.3 micromol/l vs. 6.9 micromol/l, p<0.001), and evidenced a relationship between MHAs (y, micromol/mmol creatinine) and airborne xylene (x, micromol/m3) (y = 0.085+0.34x; r = 0.82, p<0.001, n = 56). Proposed biomarkers could represent reliable tools to study very low-level exposure to aromatic hydrocarbons such as those observed in the urban pollution due to vehicular traffic or in indoor air quality evaluation.

Gas chromatography-electron-capture detection of urinary methylhippuric acid isomers as biomarkers of environmental exposure to xylene / M. Buratti, O. Pellegrino, C. Valla, S. Fustinoni, G. Brambilla, A.L.P. Colombi. - In: JOURNAL OF CHROMATOGRAPHY B. BIOMEDICAL SCIENCES AND APPLICATIONS. - ISSN 1387-2273. - 723:1-2(1999 Feb 19), pp. 95-104. [10.1016/S0378-4347(98)00482-4]

Gas chromatography-electron-capture detection of urinary methylhippuric acid isomers as biomarkers of environmental exposure to xylene

S. Fustinoni;G. Brambilla;A.L.P. Colombi
1999

Abstract

Methylhippuric acid isomers (MHAs), urinary metabolites of xylenes, were determined, after clean-up by C18-SPE and esterification with hexafluoroisopropanol and diisopropylcarbodiimide, by GC with ECD detection, on an SPB-35 capillary column (30 m, 0.32 mm I.D., 0.25 microm film thickness, beta = 320). S-benzyl-mercapturic acid was used for internal standardization. Chromatographic conditions were: oven temperature 162 degrees C, for 14.2 min; ramp by 30 degrees C/min to 190 degrees C, for 3.5 min; ramp by 30 degrees C/min to 250 degrees C, for 4 min; helium flow rate: 1.7 ml/min; detector and injector temperature: 300 degrees C. The sample (1 microl) was injected with a split injection technique (split ratio 5:1). MHA recovery was >95% in the 0.5-20 micromol/l range; the limit of detection was <0.25 micromol/l; day-to-day precision, at 2 micromol/l, was Cv<10%. Urinary MHAs were determined in subjects exposed to different low-level sources of xylenes: (a) tobacco smoking habit and (b) BTX urban air pollution (airborne xylene ranging from 0.1 to 3.7 micromol/m3). Study (a) showed a significant difference between urinary MHA median excretion values of nonsmokers and smokers (4.6 micromol/l vs. 8.1 micromol/l, p<0.001). Study (b) revealed a significant difference between indoor workers and outdoor workers (4.3 micromol/l vs. 6.9 micromol/l, p<0.001), and evidenced a relationship between MHAs (y, micromol/mmol creatinine) and airborne xylene (x, micromol/m3) (y = 0.085+0.34x; r = 0.82, p<0.001, n = 56). Proposed biomarkers could represent reliable tools to study very low-level exposure to aromatic hydrocarbons such as those observed in the urban pollution due to vehicular traffic or in indoor air quality evaluation.
Sensitivity and Specificity ; Air Pollution ; Smoking; Hippurates ; Reproducibility of Results ; Chromatography, Gas ; Humans ; Isomerism ; Environmental Exposure ; Calibration ; Male
Settore MED/44 - Medicina del Lavoro
19-feb-1999
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/210722
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact