Several lines of evidence indicate that neuromuscular junction (NMJ) destruction and disassembly is an early phenomenon in amyotrophic lateral sclerosis (ALS). Here we analyzed by confocal and electron microscopy the NMJ structure in the diaphragm of SOD1G93A mice at symptom onset. In these mice, which provide a model for familial ALS, diaphragm denervation (~50%) as well as gastrocnemius denervation (~40%) was found. In addition, the size of the synaptic vesicle pool was reduced and alterations of mitochondria were observed in approximately 40% of the remaining presynaptic terminals. Chronic treatment of SOD1G93A mice with the anabolic steroid nandrolone during the presymptomatic stage preserved the diaphragm muscle mass and features indicative of synaptic activity. These features were represented by the number of vesicles docked within 200 nm from the presynaptic membrane and area of acetylcholine receptor clusters. Structural preservation of mitochondria was documented in presynaptic terminals. However, innervation of diaphragm muscle fibers was only slightly increased in nandrolone-treated SOD1-mutant mice. Altogether the results point out and define fine structural alterations of diaphragm NMJs in the murine model of familial ALS at symptom onset, and indicate that nandrolone may prevent or delay structural alterations in NMJ mitochondria and stimulate presynaptic activity but does not prevent muscle denervation during the disease.

Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS / V. Cappello, E. Vezzoli, M. Righi, M. Fossati, R. Mariotti, A. Crespi, M. Patruno, M. Bentivoglio, G. Pietrini, M. Francolini. - In: MOLECULAR AND CELLULAR NEUROSCIENCES. - ISSN 1044-7431. - 51:1-2(2012), pp. 12-21.

Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS

V. Cappello;E. Vezzoli;M. Fossati;A. Crespi;G. Pietrini;M. Francolini
2012

Abstract

Several lines of evidence indicate that neuromuscular junction (NMJ) destruction and disassembly is an early phenomenon in amyotrophic lateral sclerosis (ALS). Here we analyzed by confocal and electron microscopy the NMJ structure in the diaphragm of SOD1G93A mice at symptom onset. In these mice, which provide a model for familial ALS, diaphragm denervation (~50%) as well as gastrocnemius denervation (~40%) was found. In addition, the size of the synaptic vesicle pool was reduced and alterations of mitochondria were observed in approximately 40% of the remaining presynaptic terminals. Chronic treatment of SOD1G93A mice with the anabolic steroid nandrolone during the presymptomatic stage preserved the diaphragm muscle mass and features indicative of synaptic activity. These features were represented by the number of vesicles docked within 200 nm from the presynaptic membrane and area of acetylcholine receptor clusters. Structural preservation of mitochondria was documented in presynaptic terminals. However, innervation of diaphragm muscle fibers was only slightly increased in nandrolone-treated SOD1-mutant mice. Altogether the results point out and define fine structural alterations of diaphragm NMJs in the murine model of familial ALS at symptom onset, and indicate that nandrolone may prevent or delay structural alterations in NMJ mitochondria and stimulate presynaptic activity but does not prevent muscle denervation during the disease.
ALS; Diaphragm; Nandrolone; Neuromuscular junction; SOD1G93A mice; Ultrastructure
Settore BIO/14 - Farmacologia
2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S104474311200111X-main.pdf

accesso riservato

Descrizione: articolo sperimentale
Tipologia: Publisher's version/PDF
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/207454
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact