A model of pleural fluid turnover, based on mass conservation law, was developed from experimental evidence that 1) pleural fluid filters through the parietal pleura and is drained by parietal lymphatics and 2) lymph flow increases after an increase in pleural liquid volume, attaining a maximum value 10 times greater than control. From the differential equation describing the time evolution of pleural liquid pressure, we obtained the equation for the steady-state condition ("set point") of pleural liquid pressure: Pss = (KfPi*+KlPzf)/Kf+Kl), where Kf is parietal pleura filtration coefficient, Kl is initial lymphatic conductance, Pzf is lymphatic potential absorption pressure, and Pi* is a factor accounting for the protein reflection coefficient of parietal mesothelium and hydraulic and colloid osmotic pressure of parietal interstitium and pleural liquid. Lymphatics act as a passive negative-feedback control tending to offset increases in pleural liquid volume. Some features of this control are summarized here: 1) lymphatics exert a tight control on pleural liquid volume or pressure so that the set point is maintained close to the potential absorption pressure of lymphatics; 2) a 10-fold increase in Kf would cause only a 2- and 5-fold increase in pleural liquid volume with normal (1.8 g/dl) and increased (3.4 g/dl) protein concentration of the pleural fluid, respectively; and 3) the reduction in maximum lymph flow greatly reduces the range of operation of the control with increased filtration and/or protein concentration of pleural fluid.

Model of pleural fluid turnover / G. Miserocchi, D. Venturoli, D. Negrini, M. Del Fabbro. - In: JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 8750-7587. - 75:4(1993 Oct), pp. 1798-1806.

Model of pleural fluid turnover

M. Del Fabbro
Ultimo
1993

Abstract

A model of pleural fluid turnover, based on mass conservation law, was developed from experimental evidence that 1) pleural fluid filters through the parietal pleura and is drained by parietal lymphatics and 2) lymph flow increases after an increase in pleural liquid volume, attaining a maximum value 10 times greater than control. From the differential equation describing the time evolution of pleural liquid pressure, we obtained the equation for the steady-state condition ("set point") of pleural liquid pressure: Pss = (KfPi*+KlPzf)/Kf+Kl), where Kf is parietal pleura filtration coefficient, Kl is initial lymphatic conductance, Pzf is lymphatic potential absorption pressure, and Pi* is a factor accounting for the protein reflection coefficient of parietal mesothelium and hydraulic and colloid osmotic pressure of parietal interstitium and pleural liquid. Lymphatics act as a passive negative-feedback control tending to offset increases in pleural liquid volume. Some features of this control are summarized here: 1) lymphatics exert a tight control on pleural liquid volume or pressure so that the set point is maintained close to the potential absorption pressure of lymphatics; 2) a 10-fold increase in Kf would cause only a 2- and 5-fold increase in pleural liquid volume with normal (1.8 g/dl) and increased (3.4 g/dl) protein concentration of the pleural fluid, respectively; and 3) the reduction in maximum lymph flow greatly reduces the range of operation of the control with increased filtration and/or protein concentration of pleural fluid.
Body Fluids; Pleura; Animals; Filtration; Compliance; Rabbits; Lymph; Pressure; Models, Biological
Settore BIO/09 - Fisiologia
ott-1993
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/193304
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact