We evaluated the role of endothelin-1 (ET-1) and the involvement of nitric oxide in cardiovascular and respiratory dysfunction, during endotoxic shock, in 18 anaesthetised, mechanically ventilated pigs, divided into three groups. Group 1 was i.v. infused with LPS (20 microg/Kg/h for 240 min). Group 2 was pre-treated with bosentan, a dual inhibitor of ET-1 receptors, and at 180 min of endotoxic shock, L-NAME (N(G)-nitro-L-arginine methyl ester, 10 mg/Kg), a non-selective inhibitor of NO synthases, was i.v. administered. Group 3 was infused with LPS and L-NAME was administered similarly to group 2. Results show that LPS caused systemic hypotension, pulmonary biphasic hypertension, decrease in compliance (C(rs)) and increase in resistance (R(max,rs)) of respiratory system. Bosentan completely abolished the pulmonary hypertension and the changes in C(rs)and R(max,rs). L-NAME does not affect the LPS-dependent changes in respiratory mechanics, but it worsens the cardiovascular effects, causing death of pigs. Pre-treatment with bosentan prevents this deleterious effect. Our study demonstrates that the LPS-dependent respiratory effects are mediated by ET-1, which, probably causing pulmonary oedema, is responsible for the decrease in C(rs)and the increase of R(max,rs).

Improvement of respiratory function by bosentan during endotoxic shock in the pig / M. Albertini, B. Ciminaghi, S. Mazzola, M.G. Clement. - In: PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS. - ISSN 0952-3278. - 65:2(2001), pp. 103-108.

Improvement of respiratory function by bosentan during endotoxic shock in the pig

M. Albertini
Primo
;
S. Mazzola
Penultimo
;
M.G. Clement
Ultimo
2001

Abstract

We evaluated the role of endothelin-1 (ET-1) and the involvement of nitric oxide in cardiovascular and respiratory dysfunction, during endotoxic shock, in 18 anaesthetised, mechanically ventilated pigs, divided into three groups. Group 1 was i.v. infused with LPS (20 microg/Kg/h for 240 min). Group 2 was pre-treated with bosentan, a dual inhibitor of ET-1 receptors, and at 180 min of endotoxic shock, L-NAME (N(G)-nitro-L-arginine methyl ester, 10 mg/Kg), a non-selective inhibitor of NO synthases, was i.v. administered. Group 3 was infused with LPS and L-NAME was administered similarly to group 2. Results show that LPS caused systemic hypotension, pulmonary biphasic hypertension, decrease in compliance (C(rs)) and increase in resistance (R(max,rs)) of respiratory system. Bosentan completely abolished the pulmonary hypertension and the changes in C(rs)and R(max,rs). L-NAME does not affect the LPS-dependent changes in respiratory mechanics, but it worsens the cardiovascular effects, causing death of pigs. Pre-treatment with bosentan prevents this deleterious effect. Our study demonstrates that the LPS-dependent respiratory effects are mediated by ET-1, which, probably causing pulmonary oedema, is responsible for the decrease in C(rs)and the increase of R(max,rs).
Settore VET/02 - Fisiologia Veterinaria
2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/187852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact