The antimicrobial activities of chloroquine (CQ) and several 4-aminoquinoline drugs were tested against Penicillium marneffei, an opportunistic fungus that invades and grows inside macrophages and causes disseminated infection in AIDS patients. Human THP1 and mouse J774 macrophages were infected in vitro with P. marneffei conidia and treated with different doses of drugs for 24 to 48 h followed by cell lysis and the counting of P. marneffei CFU. CQ and amodiaquine exerted a dose-dependent inhibition of fungal growth, whereas quinine and artemisinin were fungistatic and not fungicidal. The antifungal activity of CQ was not due to an impairment of fungal iron acquisition in that it was not reversed by the addition of iron nitrilotriacetate, FeCl3, or iron ammonium citrate. Perl's staining indicated that CQ did not alter the ability of J774 cells to acquire iron from the medium. Most likely, CQ's antifungal activity is due to an increase in the intravacuolar pH and a disruption of pH-dependent metabolic processes. Indeed, we demonstrate that (i) bafilomycin A1 and ammonium chloride, two agents known to alkalinize intracellular vesicles by different mechanisms, were inhibitory as well and (ii) a newly synthesized 4-amino-7-chloroquinoline molecule (compound 9), lacking the terminal amino side chain of CQ that assists in drug accumulation, did not inhibit P. marneffei growth. These results suggest that CQ has a potential for use in prophylaxis of P. marneffei infections in human immunodeficiency virus-infected patients in countries where P. marneffei is endemic.

Inhibition of intramacrophage growth of Penicillium marneffei by 4-aminoquinolines / D. Taramelli, C. Tognazioli, F. Ravagnani, O. Leopardi, G. Giannulis, J.R. Boelaert. - In: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. - ISSN 0066-4804. - 45:5(2001 May), pp. 1450-5-1455. [10.1128/AAC.45.5.1450-1455.2001]

Inhibition of intramacrophage growth of Penicillium marneffei by 4-aminoquinolines

D. Taramelli
Primo
;
C. Tognazioli
Secondo
;
2001

Abstract

The antimicrobial activities of chloroquine (CQ) and several 4-aminoquinoline drugs were tested against Penicillium marneffei, an opportunistic fungus that invades and grows inside macrophages and causes disseminated infection in AIDS patients. Human THP1 and mouse J774 macrophages were infected in vitro with P. marneffei conidia and treated with different doses of drugs for 24 to 48 h followed by cell lysis and the counting of P. marneffei CFU. CQ and amodiaquine exerted a dose-dependent inhibition of fungal growth, whereas quinine and artemisinin were fungistatic and not fungicidal. The antifungal activity of CQ was not due to an impairment of fungal iron acquisition in that it was not reversed by the addition of iron nitrilotriacetate, FeCl3, or iron ammonium citrate. Perl's staining indicated that CQ did not alter the ability of J774 cells to acquire iron from the medium. Most likely, CQ's antifungal activity is due to an increase in the intravacuolar pH and a disruption of pH-dependent metabolic processes. Indeed, we demonstrate that (i) bafilomycin A1 and ammonium chloride, two agents known to alkalinize intracellular vesicles by different mechanisms, were inhibitory as well and (ii) a newly synthesized 4-amino-7-chloroquinoline molecule (compound 9), lacking the terminal amino side chain of CQ that assists in drug accumulation, did not inhibit P. marneffei growth. These results suggest that CQ has a potential for use in prophylaxis of P. marneffei infections in human immunodeficiency virus-infected patients in countries where P. marneffei is endemic.
Macrophages; Animals; Drug Interactions; Penicillium; Humans; Hydrogen-Ion Concentration; Chloroquine; Mice; Aminoquinolines; Antimalarials; Antifungal Agents; Culture Media; Microbial Sensitivity Tests; Iron; Female
Settore MED/04 - Patologia Generale
mag-2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/182989
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact