The role of the dopamine transporter (DAT) in mediating the neurotoxic effects of methamphetamine (METH) was tested in mice lacking DAT. Dopamine (DA) and serotonin (5-HT) content, glial fibrillary acidic protein (GFAP) expression, and free radical formation were assessed as markers of METH neurotoxicity in the striatum and/or hippocampus of wild-type, heterozygote, and homozygote (DAT -/-) mice. Four injections of METH (15 mg/kg, s.c.), each given 2 hr apart, produced 80 and 30% decreases in striatal DA and 5-HT levels, respectively, in wildtype animals 2 d after administration. In addition, GFAP mRNA and protein expression levels, extracellular DA levels, and free radical formation were increased markedly. Hippocampal 5-HT content was decreased significantly as well (43%). Conversely, no significant changes were observed in total DA content, GFAP expression, extracellular DA levels, or free radical formation in the striatum of DAT -/- mice after METH administration. However, modest decreases were observed in striatal and hippocampal 5-HT levels (10 and 17%, respectively). These observations demonstrate that DAT is required for, and DA is an essential mediator of, METH-induced striatal dopaminergic neurotoxicity, whereas serotonergic deficits are only partially dependent on DAT.

Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter / F. Fumagalli, R. Gainetdinov, K. Valenzano, M. Caron. - In: THE JOURNAL OF NEUROSCIENCE. - ISSN 0270-6474. - 18:13(1998), pp. 4861-4869.

Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter

F. Fumagalli
Primo
;
1998

Abstract

The role of the dopamine transporter (DAT) in mediating the neurotoxic effects of methamphetamine (METH) was tested in mice lacking DAT. Dopamine (DA) and serotonin (5-HT) content, glial fibrillary acidic protein (GFAP) expression, and free radical formation were assessed as markers of METH neurotoxicity in the striatum and/or hippocampus of wild-type, heterozygote, and homozygote (DAT -/-) mice. Four injections of METH (15 mg/kg, s.c.), each given 2 hr apart, produced 80 and 30% decreases in striatal DA and 5-HT levels, respectively, in wildtype animals 2 d after administration. In addition, GFAP mRNA and protein expression levels, extracellular DA levels, and free radical formation were increased markedly. Hippocampal 5-HT content was decreased significantly as well (43%). Conversely, no significant changes were observed in total DA content, GFAP expression, extracellular DA levels, or free radical formation in the striatum of DAT -/- mice after METH administration. However, modest decreases were observed in striatal and hippocampal 5-HT levels (10 and 17%, respectively). These observations demonstrate that DAT is required for, and DA is an essential mediator of, METH-induced striatal dopaminergic neurotoxicity, whereas serotonergic deficits are only partially dependent on DAT.
Settore BIO/14 - Farmacologia
1998
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/181944
Citazioni
  • ???jsp.display-item.citation.pmc??? 77
  • Scopus 228
  • ???jsp.display-item.citation.isi??? 205
social impact