The goal of the study was to characterize the changes in neurovegetative control of the circulation, attending the presumed physiological and psychological stress originated by the isolation and confinement typical of the living condition of space stations, as simulated in a ground based unit, using time and frequency domain analysis. As a secondary goal we sought to verify the implementation of real time data acquisition, for off line spectral analisys of R-R interval, systolic arterial pressure (by Finapres) and respiration (by PVF2 piezoelectric sensors). We addressed the cardiorespiratory and neurovegetative responses to standardized, simple Stressors (active standing, dynamic and static handgrip) on the EXEMSI 92 crew, before, during and after the isolation period. On average the appropriate excitatory responses (to stand, dynamic and static handgrip) were elicited also in isolation and confinement. Active standing and small masses muscular exercises are easy to be performed in a confined and isolated environment and provide a valuable tool for investigating the adaptational changes in neural control mechanisms. The possibility there exists of using this time and frequency domain approach to monitor the level of performance and well being of the space crew in (quasi) real time.

Adaptational changes in the neural control of cardiorespiratory function in a confined environment: the CNEC#3 experiment / M. Pagani, F. Iellamo, D. Lucini, P. Pizzinelli, F. Castrucci, G. Peruzzi, A. Malliani. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - 36:8-12(1995), pp. 449-461. [10.1016/0094-5765(95)00130-1]

Adaptational changes in the neural control of cardiorespiratory function in a confined environment: the CNEC#3 experiment

M. Pagani
Primo
;
D. Lucini;A. Malliani
Ultimo
1995

Abstract

The goal of the study was to characterize the changes in neurovegetative control of the circulation, attending the presumed physiological and psychological stress originated by the isolation and confinement typical of the living condition of space stations, as simulated in a ground based unit, using time and frequency domain analysis. As a secondary goal we sought to verify the implementation of real time data acquisition, for off line spectral analisys of R-R interval, systolic arterial pressure (by Finapres) and respiration (by PVF2 piezoelectric sensors). We addressed the cardiorespiratory and neurovegetative responses to standardized, simple Stressors (active standing, dynamic and static handgrip) on the EXEMSI 92 crew, before, during and after the isolation period. On average the appropriate excitatory responses (to stand, dynamic and static handgrip) were elicited also in isolation and confinement. Active standing and small masses muscular exercises are easy to be performed in a confined and isolated environment and provide a valuable tool for investigating the adaptational changes in neural control mechanisms. The possibility there exists of using this time and frequency domain approach to monitor the level of performance and well being of the space crew in (quasi) real time.
Settore MED/09 - Medicina Interna
1995
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/181754
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact