To investigate the mechanism of allosteric switching in human hemoglobin, we have studied the dissociation of the ligand (CO) from several intermediate ligation states by a stopped-flow kinetic technique that utilizes competitive binding of CO by microperoxidase. The hemoglobin species investigated include Hb(CO)4, the diliganded symmetrical species (α β-CO)2 and (α-CO β)2 and the di- and monoliganded asymmetrical species (α-CO β-CO)(α β), (α-CO β)(α β-CO), (α β-CO)(α β), and (α-CO β)(α β). They were obtained by rapid reduction with dithionite of the corresponding valence intermediates that in turn were obtained by chromatography or by hybridization. The nature and concentration of the intermediates were determined by isoelectric focusing at -25°C. The study was performed at varying hemoglobin concentrations (0.1, 0.02, and 0.001 mM [heme]), pH (6.0, 7.0, 8.0), with and without inositol hexaphosphate. The results indicate that: (a) hemoglobin concentration in the 0.1-0.02 mM range does not significantly affect the kinetic rates; (b) the α chains dissociate CO faster than the β chains; (c) the symmetrical diliganded intermediates show cooperativity with respect to ligand dissociation that disappears in the presence of inositol hexaphosphate; (d) the monoliganded intermediates dissociate CO faster than the diliganded intermediates; (e) the asymmetrical diliganded intermediates are functionally different from the symmetrical species.

The dissociation of carbon monoxide from hemoglobin intermediates / M. Samaja, E. Rovida, M. Niggeler, M. Perrella, L. Rossi Bernardi. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 262:10(1987), pp. 4528-4533.

The dissociation of carbon monoxide from hemoglobin intermediates

M. Samaja
Primo
;
1987

Abstract

To investigate the mechanism of allosteric switching in human hemoglobin, we have studied the dissociation of the ligand (CO) from several intermediate ligation states by a stopped-flow kinetic technique that utilizes competitive binding of CO by microperoxidase. The hemoglobin species investigated include Hb(CO)4, the diliganded symmetrical species (α β-CO)2 and (α-CO β)2 and the di- and monoliganded asymmetrical species (α-CO β-CO)(α β), (α-CO β)(α β-CO), (α β-CO)(α β), and (α-CO β)(α β). They were obtained by rapid reduction with dithionite of the corresponding valence intermediates that in turn were obtained by chromatography or by hybridization. The nature and concentration of the intermediates were determined by isoelectric focusing at -25°C. The study was performed at varying hemoglobin concentrations (0.1, 0.02, and 0.001 mM [heme]), pH (6.0, 7.0, 8.0), with and without inositol hexaphosphate. The results indicate that: (a) hemoglobin concentration in the 0.1-0.02 mM range does not significantly affect the kinetic rates; (b) the α chains dissociate CO faster than the β chains; (c) the symmetrical diliganded intermediates show cooperativity with respect to ligand dissociation that disappears in the presence of inositol hexaphosphate; (d) the monoliganded intermediates dissociate CO faster than the diliganded intermediates; (e) the asymmetrical diliganded intermediates are functionally different from the symmetrical species.
Settore BIO/10 - Biochimica
1987
Article (author)
File in questo prodotto:
File Dimensione Formato  
38_87JBC_CO_dissociation_first.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/181326
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact