We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.

The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells / G. Vitale, S. Zappavigna, M. Marra, A. Dicitore, S. Meschini, M. Condello, G. Arancia, S. Castiglioni, P. Maroni, P. Bendinelli, R. Piccoletti, P. M. Van Koetsveld, F. Cavagnini, A. Budillon, A. Abbruzzese, L.J. Hofland, M. Caraglia. - In: BIOTECHNOLOGY ADVANCES. - ISSN 0734-9750. - 30:1(2012 Jan), pp. 169-184. [10.1016/j.biotechadv.2011.08.001]

The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells

G. Vitale
Primo
;
S. Castiglioni;P. Bendinelli;
2012

Abstract

We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.
AKT; Autophagy; Cell cycle; MAPK; MTOR; PPAR gamma; Recombinant interferon beta; STATs; Troglitazone; Type I interferons
Settore MED/13 - Endocrinologia
Settore MED/06 - Oncologia Medica
gen-2012
Article (author)
File in questo prodotto:
File Dimensione Formato  
77.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/178311
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 71
social impact