Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a radiological tool for the detection and discrimination of breast lesions. The aim of this study is to evaluate a computer-aided diagnosis (CAD) system for discriminating malignant from benign breast lesions at DCE-MRI by the combined use of morphological, kinetic, and spatiotemporal lesion features. Methods: Fifty-four malignant and 19 benign breast lesions in 51 patients were retrospectively evaluated. Images were acquired at two centers at 1.5 T. Mass-like lesions were automatically segmented after image normalization and elastic coregistration of contrast-enhanced frames. For each lesion, a set of 28 3D features were extracted: ten morphological (related to shape, margins, and internal enhancement distribution); nine kinetic (computed from signal-to-time curves); and nine spatiotemporal (related to the variation of the signal between adjacent frames). A support vector machine (SVM) was trained with feature subsets selected by a genetic search. Best subsets were composed of the most frequent features selected by majority rule. The performance was measured by receiver operator characteristics analysis with a stratified tenfold cross-validation and bootstrap method for confidence intervals. Results: SVM training by the three separated classes of features resulted in an area under the curve (AUC) of 0.90 ± 0.04 (mean ± standard deviation), 0.87 ± 0.06, and 0.86 ± 0.06 for morphological, kinetic, and spatiotemporal feature, respectively. Combined training with all 28 features resulted in AUC of 0.96 ± 0.02 obtained with a selected feature subset composed by two morphological, one kinetic, and two spatiotemporal features. Conclusions: Quantitative combination of morphological, kinetic, and spatiotemporal features is feasible and provides a higher discriminating power than using the three different classes of features separately.

Computer-aided diagnosis for dynamic contrast-enhanced breast MRI of mass-like lesions using a multiparametric model combining a selection of morphological, kinetic, and spatiotemporal features / S. Agliozzo, M. De Luca, C. Bracco, A. Vignati, V. Giannini, L. Martincich, L.A. Carbonaro, A. Bert, F. Sardanelli, D. Regge. - In: MEDICAL PHYSICS. - ISSN 0094-2405. - 39:4(2012), pp. 1704-1715. [10.1118/1.3691178]

Computer-aided diagnosis for dynamic contrast-enhanced breast MRI of mass-like lesions using a multiparametric model combining a selection of morphological, kinetic, and spatiotemporal features

L.A. Carbonaro;F. Sardanelli
Penultimo
;
2012

Abstract

Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a radiological tool for the detection and discrimination of breast lesions. The aim of this study is to evaluate a computer-aided diagnosis (CAD) system for discriminating malignant from benign breast lesions at DCE-MRI by the combined use of morphological, kinetic, and spatiotemporal lesion features. Methods: Fifty-four malignant and 19 benign breast lesions in 51 patients were retrospectively evaluated. Images were acquired at two centers at 1.5 T. Mass-like lesions were automatically segmented after image normalization and elastic coregistration of contrast-enhanced frames. For each lesion, a set of 28 3D features were extracted: ten morphological (related to shape, margins, and internal enhancement distribution); nine kinetic (computed from signal-to-time curves); and nine spatiotemporal (related to the variation of the signal between adjacent frames). A support vector machine (SVM) was trained with feature subsets selected by a genetic search. Best subsets were composed of the most frequent features selected by majority rule. The performance was measured by receiver operator characteristics analysis with a stratified tenfold cross-validation and bootstrap method for confidence intervals. Results: SVM training by the three separated classes of features resulted in an area under the curve (AUC) of 0.90 ± 0.04 (mean ± standard deviation), 0.87 ± 0.06, and 0.86 ± 0.06 for morphological, kinetic, and spatiotemporal feature, respectively. Combined training with all 28 features resulted in AUC of 0.96 ± 0.02 obtained with a selected feature subset composed by two morphological, one kinetic, and two spatiotemporal features. Conclusions: Quantitative combination of morphological, kinetic, and spatiotemporal features is feasible and provides a higher discriminating power than using the three different classes of features separately.
Settore MED/36 - Diagnostica per Immagini e Radioterapia
2012
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/173686
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact