Transcription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1. Checkpoint mutants fail to detach transcribed genes from nuclear pores, thus generating topological impediments for incoming forks. Releasing this topological complexity by introducing a double-strand break between a fork and a transcribed unit prevents fork collapse. Mlp1 mutants mimicking constitutive checkpoint-dependent phosphorylation also alleviate checkpoint defects. We propose that the checkpoint assists fork progression and stability at transcribed genes by phosphorylating key nucleoporins and counteracting gene gating, thus neutralizing the topological tension generated at nuclear pore gated genes.

The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores / R. Bermejo, T. Capra, R. Jossen, A. Colosio, C. Frattini, W. Carotenuto, A. Cocito, Y. Doksani, H. Klein, B. Gómez González, A. Aguilera, Y. Katou, K. Shirahige, M. Foiani. - In: CELL. - ISSN 0092-8674. - 146:2(2011), pp. 233-246. [10.1016/j.cell.2011.06.033]

The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores

M. Foiani
Ultimo
2011

Abstract

Transcription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1. Checkpoint mutants fail to detach transcribed genes from nuclear pores, thus generating topological impediments for incoming forks. Releasing this topological complexity by introducing a double-strand break between a fork and a transcribed unit prevents fork collapse. Mlp1 mutants mimicking constitutive checkpoint-dependent phosphorylation also alleviate checkpoint defects. We propose that the checkpoint assists fork progression and stability at transcribed genes by phosphorylating key nucleoporins and counteracting gene gating, thus neutralizing the topological tension generated at nuclear pore gated genes.
Cell Cycle Proteins ; Hydroxyurea ; Saccharomyces cerevisiae Proteins ; Transcription, Genetic ; DNA Breaks, Double-Stranded ; Cell Nucleus ; Protein-Serine-Threonine Kinases; Mutation ; DNA Replication ; Saccharomyces cerevisiae ; Nuclear Pore
Settore BIO/11 - Biologia Molecolare
2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/171153
Citazioni
  • ???jsp.display-item.citation.pmc??? 108
  • Scopus 185
  • ???jsp.display-item.citation.isi??? 175
social impact