Gonadotropin-releasing hormone (GnRH) receptor agonists have wide clinical applications including the treatment of prostate cancer and endocrine disorders. However, such agonists are characterized by poor pharmacokinetic properties, often requiring repeated administration or special formulations. Therefore, the development of novel peptide analogs with enhanced in vivo stability could potentially provide therapeutic alternatives. The pharmacological evaluation of a bioactive peptide [Des-Gly10,Tyr5(OMe),D-Leu 6,Aze-NHEt9]GnRH, analog 1, is presented herein and compared with leuprolide. Peptide stability was evaluated using mouse kidney membrane preparations, followed by a liquid chromatography-tandem mass spectrometry-based approach that afforded identification and quantification of its major metabolites. The analog was significantly more stable in vitro in comparison with leuprolide. In vitro and in vivo stability results correlated well, encouraging us to develop a clinically relevant pharmacokinetic mouse model, which facilitated efficacy measurements using testosterone as a biomarker. Analog 1, an agonist of the GnRH receptor with a binding affinity in the nanomolar range, caused testosterone release in mice that was acutely dose-dependent, an effect blocked by the GnRH receptor antagonist cetrorelix. Repeated dosing studies in mice demonstrated that analog 1 was well tolerated and had potency similar to that of leuprolide, based on plasma and testis testosterone reduction and histopathological findings. Analog 1 also shared with leuprolide similar significant antiproliferative activity on androgen-dependent prostate cancer (LNCaP) cells. On the basis of pharmacokinetic advantages, we expect that analog 1 or analogs based on this new design will be therapeutically advantageous for the treatment of cancer and endocrine disorders. Copyright

Evaluation of a stable Gonadotropin-Releasing Hormone analog in mice for the treatment of endocrine disorders and prostate cancer / T. Katsila, E. Balafas, G. Liapakis, P. Limonta, M. Montagnani Marelli, K. Gkountelias, T. Tselios, N. Kostomitsopoulos, J. Matsoukas, C. tavamkopoulos. - In: JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS. - ISSN 0022-3565. - 336:3(2011), pp. 613-623. [10.1124/jpet.110.174375]

Evaluation of a stable Gonadotropin-Releasing Hormone analog in mice for the treatment of endocrine disorders and prostate cancer

P. Limonta;M. Montagnani Marelli;
2011

Abstract

Gonadotropin-releasing hormone (GnRH) receptor agonists have wide clinical applications including the treatment of prostate cancer and endocrine disorders. However, such agonists are characterized by poor pharmacokinetic properties, often requiring repeated administration or special formulations. Therefore, the development of novel peptide analogs with enhanced in vivo stability could potentially provide therapeutic alternatives. The pharmacological evaluation of a bioactive peptide [Des-Gly10,Tyr5(OMe),D-Leu 6,Aze-NHEt9]GnRH, analog 1, is presented herein and compared with leuprolide. Peptide stability was evaluated using mouse kidney membrane preparations, followed by a liquid chromatography-tandem mass spectrometry-based approach that afforded identification and quantification of its major metabolites. The analog was significantly more stable in vitro in comparison with leuprolide. In vitro and in vivo stability results correlated well, encouraging us to develop a clinically relevant pharmacokinetic mouse model, which facilitated efficacy measurements using testosterone as a biomarker. Analog 1, an agonist of the GnRH receptor with a binding affinity in the nanomolar range, caused testosterone release in mice that was acutely dose-dependent, an effect blocked by the GnRH receptor antagonist cetrorelix. Repeated dosing studies in mice demonstrated that analog 1 was well tolerated and had potency similar to that of leuprolide, based on plasma and testis testosterone reduction and histopathological findings. Analog 1 also shared with leuprolide similar significant antiproliferative activity on androgen-dependent prostate cancer (LNCaP) cells. On the basis of pharmacokinetic advantages, we expect that analog 1 or analogs based on this new design will be therapeutically advantageous for the treatment of cancer and endocrine disorders. Copyright
GnRH analogs ; pharmacology ; endocrine disorders
Settore BIO/13 - Biologia Applicata
Settore BIO/14 - Farmacologia
Settore BIO/09 - Fisiologia
2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
JPET2011.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri
JPET.abstract.docx

accesso aperto

Tipologia: Altro
Dimensione 52.88 kB
Formato Microsoft Word XML
52.88 kB Microsoft Word XML Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/155034
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
social impact