The possibility of observing phenomena peculiar to long-range interactions, and more specifically in the so-called quasi-stationary state (QSS) regime, is investigated within the framework of two devices, namely the free-electron laser (FEL) and the collective atomic recoil laser (CARL). The QSS dynamics has been mostly studied using the Hamiltonian mean-field (HMF) toy model, demonstrating in particular the presence of first-order and second-order out-of-equilibrium phase transitions from magnetized to unmagnetized regimes. Here, we give evidence of the strong connections between the HMF model and the dynamics of the two aforementioned devices, and we discuss the perspectives for observing some specific QSS features experimentally. In particular, a dynamical analog of the phase transition is present in the FEL and in the CARL in its conservative regime. As regards the dissipative CARL, a formal link is established with the HMF model. For both FEL and CARL, calculations are performed with reference to existing experimental devices, namely the FERMI@Elettra FEL under construction at Sincrotrone Trieste (Italy) and the CARL system at LENS in Florence (Italy).

Experimental perspectives for systems based on long-range interactions / R. Bachelard, T. Manos, P. De Buyl, F. Staniscia, F. S. Cataliotti, G. De Ninno, Duccio Fanelli, N. Piovella. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2010:6(2010), pp. P06009.P06009.1-P06009.P06009.15.

Experimental perspectives for systems based on long-range interactions

N. Piovella
Ultimo
2010

Abstract

The possibility of observing phenomena peculiar to long-range interactions, and more specifically in the so-called quasi-stationary state (QSS) regime, is investigated within the framework of two devices, namely the free-electron laser (FEL) and the collective atomic recoil laser (CARL). The QSS dynamics has been mostly studied using the Hamiltonian mean-field (HMF) toy model, demonstrating in particular the presence of first-order and second-order out-of-equilibrium phase transitions from magnetized to unmagnetized regimes. Here, we give evidence of the strong connections between the HMF model and the dynamics of the two aforementioned devices, and we discuss the perspectives for observing some specific QSS features experimentally. In particular, a dynamical analog of the phase transition is present in the FEL and in the CARL in its conservative regime. As regards the dissipative CARL, a formal link is established with the HMF model. For both FEL and CARL, calculations are performed with reference to existing experimental devices, namely the FERMI@Elettra FEL under construction at Sincrotrone Trieste (Italy) and the CARL system at LENS in Florence (Italy).
Classical phase transitions (experiment); Classical phase transitions (theory); Phase diagrams (experiment); Phase diagrams (theory)
Settore FIS/03 - Fisica della Materia
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/148923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 15
social impact