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Abstract

As the adoption of Internet of Things (IoT) devices increases rapidly, industrial applications of IoT devices gain
further popularity. Some of these applications, such as smart grids, are considered high-risk applications. In the past
few years, smart grids became the target of many cyber attacks. In this paper, we present a two-stage system for
the detection and classification of cyber attacks based on machine learning. The first stage of the proposed system
focuses on detecting attacks efficiently and accurately. The second stage analyzes available data and predicts the
specific attack class. The proposed system was tested using the DNP3 intrusion detection dataset, and delivered an F1
score of 0.9976 at the detection stage, and 0.9883 at the attack type classification stage.
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1. Introduction

Over the last decade, the power-generation sector has
undergone a substantial change in the shift from con-
ventional electrical grids to so-called smart grids (SGs).
This disruptive innovation in the electricity industry is
largely due to emerging requirements, like swift popula-
tion growth and pressing demand for sustainable energy,
and to the availability of data-driven intelligence tech-
niques capable of satisfying such requirements. Tradi-
tional electric power systems are no longer a practical
solution for energy provision and distribution, mainly
because of their static operating mode characterized by
unidirectional power flows with slow response to out-
ages. In SG, widespread sensor networks supported by
communication and information technologies provide a
two-way flow of energy and information about the grid
status that allows the exchange of measurement data be-
tween grid entities [1]. SG allows operators to optimize
the power infrastructure in terms of energy consump-
tion, cost, reliability, interoperability, and environmen-
tal safeguard. Clearly, hoowever, the merits of SGs nec-
essarily come with an increase in operation complexity.

There is wide consensus that the problem of transi-
tioning traditional power grids into SGs can be tackled
using Internet-of-Things (IoT) technology [2]. IoT ser-
vices can collect, transmit, and process huge amounts of
data, with high throughput and low latency. Backed up
by Big Data analysis, IoT is a major enabler of SGs, as it

provides full control on power quality and dependabil-
ity [3, 4]. IoT-enabled SGs give power suppliers more
efficient and accurate ways to read meters and issue
bills. Users enjoy real-time knowledge of (and control
over) their energy consumption and even sell directly
their surplus to one another.

The National Institute of Standards and Technology
(NIST) has recently released the draft of SG framework
4.0 [5], which describes the overall composition of IoT-
aided SG systems. The NIST Smart Grid Conceptual
Model (SGCM), originally introduced in 2010 [6] and
subsequently revised in [7, 8], presents seven differ-
ent logical domains, namely customer, markets, service
provider, operations, generation including distributed
energy resources (DER), transmission, and distribution.
Each domain describes SG conceptual roles and ser-
vices, including the interactions among stakeholders
needed to perform tasks and achieve system goals. Fig.
1 shows the high-level concepts contained in the latest
NIST SGCM, which assist in understanding the various
physical and informational interfaces across the SG.

The deployment of advanced cyber-physical systems
like SGs is expected to rise significantly over the next
few years, especially for use in residential and commer-
cial facilities [3]. However, the connection of massive
numbers of devices to communication networks has a
huge impact on the security threats’ landscape [9]. In-
creasing wireless connectivity and virtualisation widens
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Figure 1: NIST Smart Grid Conceptual Model [7].

the attack surface, opening the doors to cyber-attacks of
unprecedented severity [10].

Smart energy systems are the target of a large num-
ber of attacks [11]. For instance, injection-type attacks
attempt to alter, delete, or insert manipulated data into
the network to disrupt the grid operation. Among the
cyber-attacks reported in the literature, the false data in-
jection attack (FDIA) is considered one of the most vi-
cious. In FDIAs, the adversary tampers with the meter
measurements to interfere with the result of state esti-
mation. Other popular attacks to SGs are jamming and
Denial-of-Service (DoS) [12]. In these attacks, the ad-
versary’s goal is to keep the channel busy by broad-
casting steady or random signals that inhibit transmis-
sion and reception by authorized devices. Several sur-
veys discussed the security of SGs and provided clas-
sification of prominent cyber-attacks along with their
impacts [13, 14]. The literature agrees that develop-
ing advanced techniques for fast attack detection is cru-
cial [15, 16]. Most of the available approaches rely
on ranging or localization-based techniques or predic-
tive models [17]. Machine Learning-based detection
techniques have received widespread attention in recent
years, and are considered the most promising ones in
terms of effectiveness and scalability [18, 19].

1.1. Research Contribution
This paper presents the following research contribu-

tions:

1. A novel technique that cleanly separates the attack
detection and attack classification processes to im-
prove detection speed and accuracy. Binary classi-
fication is performed first; then, once an attack has

been detected, data is passed to the second stage to
perform multi-class classification and identify the
specific attack type. This arrangement allows for
very fast first reaction.

2. A highly efficient and accurate Intrusion Detection
System (IDS) focused on detecting attacks to SGs.
Our IDS uses only a small number of network flow
features (12 features, down from the original 96).
The method we used (recursive feature elimina-
tion) does not only reduce the number of features
fed into the classifier, but also the number of fea-
tures captured at the data acquisition stage.

1.2. Paper Layout

The remainder of the paper is organized as follows.
Section 2 discusses previous relevant works on attack
detection in SGs. Section 3 describes the two main
stages of our detection and classification mechanism,
which quickly and reliably identifies that an attack is
ongoing and then determines the specific class of the at-
tack. In Section 4, we experimentally evaluate the effec-
tiveness of our proposed scheme on the DNP3 Intrusion
Detection Dataset benchmark, discussing the results in
Section 5. Finally, Section 6 provides some concluding
remarks and outlines our future research directions.

2. Related Works

In recent years, SG security has received increasing
attention due to a widening threat landscape and in-
creasingly frequent attacks. An attack on smart grid
systems, for example, could plunge an entire city into
darkness. Weak security in smart meters could result in
fraud or privacy breaches. Several research lines have
been proposed to devise attack detectors and mitigation
approaches for SGs. Early research has focused mainly
on FDIA identification [20, 21], though some work has
addressed different types of attacks that may be carried
out on a SG system, such as DoS, DDoS and GPS spoof-
ing attacks [17]. In the following, we present the most
relevant previous works, where each paragraph outlines
a different case.

According to [22], FDIA detection algorithms can be
classified into two categories: model-based and data-
driven methods. In model-based methods, after building
a system model, an estimate of the system state is com-
puted with the measurement of the same state in the real
system. While model-based methods do not necessarily
involve historical data, time factors, such as detection
latency, limit their applicability. Data-driven techniques
typically do not affect the system and its operation, but
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depend on historical data. Also, they require a train-
ing process to reduce detection time and increase scal-
ability. These algorithms may involve either learning
or conventional time-series mining. Below we present
some recent techniques, later summarized in Table 1.

In order to reduce detection latency while ensuring
high detection accuracy, many works rely on the Quick-
est Change Detection (QCD) [23] approach, which de-
tects abrupt changes in the system as quickly as pos-
sible. Cumulative sum (CUSUM)-type algorithms are
the most commonly used statistical methods for QCD.
For instance, Nath et al. [24] developed in 2022 a QCD
technique using a normalized Rao-CUSUM test capable
of detecting FDIAs while minimizing the worst case de-
tection delay. The algorithm can accurately distinguish
FDIAs from sudden system changes. Yet, it is not able
to differentiate system faults from FDIAs.

Kurt et al. [25] proposed an online detection algo-
rithm against combined FDIAs and jamming attacks,
as well as stealthy attacks against cumulative sum
(CUSUM)-based detectors. The authors modelled the
SG as a discrete-time linear dynamic system where pa-
rameters are initially established together with an attack
category. Following a classic approach [26], they used
a Kalman filter as the state estimation mechanism to up-
date the model’s state based on the measurements. At
each step, a state prediction is built based on the state of
the previous step. Then, a correction is made to the pre-
diction using the measurements collected in that step.

Wang et al. [27] focused on FDIA localization, treat-
ing the localization problem of FDIAs as a multi-
label classification task. The authors proposed a Deep-
Learning-based Locational Detection (DLLD) architec-
ture to detect the location of FDIAs in real time. Their
scheme concatenates a Convolutional Neural Network
(CNN) with a standard Bad Data Detector (BDD). The
CNN captures the inconsistency and co-occurrence de-
pendency introduced by FDIA, while the BDD esti-
mates real-time measurements’ quality and filters out
low-quality information.

Shen et al. [28] proposed in 2023 a data-driven lo-
calization method also based on a CNN. The authors
optimized the CNN using the sparrow search algorithm
[29] to select the hyper-parameters. They conducted
simulations on the IEEE14-bus and IEEE118-bus test
systems, with results exhibiting a localization accuracy
of 99.85% and 97.14% in the two systems, respectively,
and a false detection rate of only 0.03% in both systems.

In 2021, Siniosoglou et al. [30] presented MENSA, an
anomaly detection and classification system that com-
bines a classic autoencoder and a Generative Adversar-
ial Network (GAN), dealing respectively with the re-

construction difference and the adversarial error Their
model was validated using network traffic and opera-
tional data (e.g., time-series electricity measurements)
originating from different SG evaluation environments.
The authors showed that MENSA is capable of detect-
ing and recognising DNP3 and Modbus/TCP-related cy-
ber attacks and potential operational abnormalities.

Instead of using a standard GAN, Li et al. [31] intro-
duced a new cyber-physical model including an adap-
tive, window-based GAN. Their scheme integrates a
physical model designed to capture ideal measurements
with a GAN developed to capture deviations from those
measurements. Simulation results show that the pro-
posed technique can accurately recover the state data
manipulated by FDIAs.

Kwon et al. [32] presented a behavior-based IDS
for IEC 61850 protocol using both statistical analysis
of traditional network features and specification-based
metrics, while [33] proposed an ML-based IDS tar-
geted at automation networks of substations based on
the IEC 60780-5-104 protocol. Similarly, Radoglou
et al. [34] proposed anomaly-based IDS called ARIES
(smArt gRid Intrusion dEtection System), which com-
bines of three detection layers: (i) network flow-based
detection, (ii) packet-based detection, and (iii) opera-
tional data-based detection. For each layer, multiple
ML/DL methods were adopted, utilising real data origi-
nating from power plants.

The authors in [35] proposed a transformer-based in-
trusion detection model (Transformer-IDM) in which
the transformer and feature exaction layers are lever-
aged to process categorical and numerical features in
order to improve the detection performance. They also
introduced a hierarchical federated learning intrusion
detection system to collaboratively train Transformer-
IDM to protect user privacy in the core networks. The
obtained intrusion detection model is used by each user
to monitor the attacks locally and trigger the alarm in
time.

Dou et al. [36] presented in 2022 a hybrid FDIA de-
tection mechanism using temporal correlation to ensure
the security of power system operations and control.
The proposed mechanism combines ML and Variational
Mode Decomposition (VMD) technology. BY VMD,
the multiscale spectrum of the SG’s states time series
is computed and four statistical-based features are ex-
tracted from it. The scheme leverages the sequence
learning ability of an ensemble classification framework
(the OS-Extreme Learning Machine (OSELM)) to iden-
tify abnormal states from their prefixes.

Salehpour et al. [37] proposed an attack detection
mechanism that can detect cyber-attacks in the early
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stages of failure propagation in SG networks. In partic-
ular, they utilized a realistic failure propagation (RFP)
model [38], which is a graph-based model that uses
power and communication networks to study cascading
failures. The RFP model serves to generate data for the
SVM and NBN algorithms used for fault detection.

The work in [39] presented a supervised data min-
ing technique to detect simulated intrusions on a Mod-
bus network. Neural network and decision trees were
employed to classify the traffic generated from the sim-
ulated smart factory environment, and the latter were
shown to achieve better results.

Inspired by anomaly detection in temperature sensor
networks [40], Drayer and Routtenberg [41] proposed
a Graph Signal Processing (GSP) technique that calcu-
lates the Fourier transform of grid states and filters out
the high-frequency elements. Then, FDIAs are detected
by comparing the maximum norm of the filtered sig-
nal with a threshold. Simulations on the IEEE 14-bus
test case showed that the proposed technique facilitates
the detection of previously undetectable attacks based
on the high-frequency content, the detection precision
of which is affected by a proper choice of the threshold.
Thus, if the frequency band is too small, attacks might
pass undetected.

3. Proposed System

Our system is designed to cleanly separate “attack de-
tection”, and “attack type classification” into two sepa-
rate stages. The reason behind this split is to prioritize
the attack detection process over the identification of the
attack type, enabling the optimization of the detection
process to achieve minimal latency, while not compro-
mising the accuracy of the attack type identification.

Figure 2 shows an overview of the two operational
phases of our proposed system.

In the first phase, namely the development phase, the
raw dataset is analyzed and processed to produce two
datasets; a detection dataset, and a classification dataset.
The detection dataset is created by converting the at-
tack labels of the original dataset into a binary-labelled
dataset with one being the ‘attack’, covering all types of
attacks, and a zero label marking ‘benign’ samples. The
classification dataset is created by removing the ‘be-
nign’ samples, and keeping the attack-type labels for
all the ‘attack’ samples. Both datasets are then pre-
processed to ensure that the data is ready for training
and testing. This preprocessing includes steps such as
removing samples with missing data, and ensuring that
all classes are reasonably balanced within the datasets.

After pre-processing, the detection dataset is ran-
domly split to create training and testing subsets. The
training subset is used to train a pipeline of classifiers.
Then, the best performing classifier is used in select-
ing the lowest possible number of features while main-
taining high accuracy. This process is performed using
Recursive Feature Elimination (RFE). This iterative fea-
ture selection enables the system to select a small num-
ber of highly effective features to improve the detection
efficiency. Efficiency improves in two ways; reducing
the number of features fed into the classifier, and reduc-
ing the number of features that must be extracted at the
data acquisition stage during the deployment. The clas-
sification dataset is also randomly split to training and
testing subsets. The training subset is used to train and
test a pipeline of classifiers to select the best performing
one in classifying attack types. These best performing
classifiers will be pass on to the deployment phase.

In the deployment phase, network traffic is captured
by a packet-capturing unit. This unit utilizes lightweight
tools such as “tcpdump”, to keep the overhead to a min-
imum. The captured packets are then processed by a
feature extraction unit designed to extract network flow
features from raw network packets. This unit utilizes
two tools named “CICFlowMeter” and “DNP3 parser”,
as described in [42]. The extracted features include net-
work flow features such as source and destination port
numbers, number of packet in the network flow, data
rate per second, in addition to DNP3 specific features.
These features are carefully selected to help the classi-
fiers maintain high accuracy while minimizing the data
captured and processed. A list of all features can be
found in [43]. Once the features are extracted, they are
passed to the pre-trained attack detection classifier, that
resembles stage 1 in the system. This classifier pro-
duces a prediction whether this flow should be consid-
ered an attack or not. If the flow is detected as an at-
tack, the extracted features are passed over to the second
stage where the second pre-trained classifier identifies
the specific type of attack. Identifying the specific type
of attack supports decision making on countermeasures
and mitigation actions. In addition, identification of the
specific attack type can help in forensic analysis after
the detection.

4



Table 1: Summary of previous work reviewed
Reference Victim System Attack Type Dataset Generator Solution Method
[24] SCADA system, Phasor

measurement units, and
Intelligent electronic devices

FDI-Power grid state transi-
tions and worst case detec-
tion delays

13-bus system Quickest intrusion detection algo-
rithm and Dynamic state estimation
algorithm

[25] Smart grid FDI/Jamming-Power mea-
surements

IEEE 14-bus system Online CUSUM-based detection
and estimation algorithm

[27] Power system state estimator FDI-Power buses IEEE 14- and 118-bus
systems

Deep-learning-based locational de-
tection algorithm

[28] Smart grid FDI-Power buses and lines IEEE 14- and 118-bus
systems

Sparrow search algorithm and CNN
classification model

[30] Smart grid Modbus/TCP- and DNP3-
related attacks and anomalies

Modbus/TCP, DNP3 and
operational data

Autoencoder-GAN-based algo-
rithm

[31] Power system state estimator FDI-Power measurements
and sensors

IEEE 30- and 118-bus
systems

Online GAN-based cyber-physical
model

[32] Smart grid Digital substation LAN-
related attacks

IEC 61850 based net-
work traffic

Behavior-based intrusion detection
system

[33] Electrical substations Passive eavesdropping, Re-
programming, and DoS at-
tacks

IEC-60870-5-104-based
network traffic

ML-based anomaly detection algo-
rithm

[34] Smart grid Modbus/TCP-related and op-
erational data attacks

CSE-CIC-IDS2018 Anomaly-based intrusion detection
system

[35] Smart grid DoS, Probing scanning, Re-
mote to local, and User to
root attacks

NSL-KDD Transformer-based intrusion detec-
tion model

[36] Power system state estimator FDI-Power buses and sensors IEEE 14-bus system Online sequential extreme learning
machine and Variational mode de-
composition

[37] Smart grid DoS attacks and FDI-Power
measurements

IEEE 118-bus system Supervised early attack detection
algorithm based on RFP model

[39] Modbus network Modbus-related attacks Malicious traffic injec-
tion

Data mining-based intrusion detec-
tion

[41] AC Power system FDI-Power measurements IEEE 14-bus system Graph signal processing-based de-
tection algorithm

Proposed
work

Smart grid DNP3-related attacks DNP3 A two-stage attack detection and
classification using RF and XGB
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4. Experiments and Results

In this section, we discuss our experiment’s design,
implementation, and results.

4.1. Experiment Design

1. The first step in our experiment is to create two
copies of the original DNP3 intrusion detection
dataset; the first one is used for attack detection,
and the second is used for identifying the attack’s
class. The attack detection dataset was created by
relabelling all attack types into an ‘attack’ label,
and labeling all normal traffic samples to ‘benign’.
The second dataset was created by removing all
normal traffic and keeping only traffic labeled with
one of the attack labels.

2. Preprocessing both datasets to ensure that they do
not suffer from significant imbalance or missing
data.

3. Creating the pipeline for selecting binary ML clas-
sifiers using the attack detection dataset, and test-
ing it to select the best performing classifier to be
used in the following feature selection step.

4. Selecting the lowest possible number of features
while maintaining high accuracy. We use RFE
method to iteratively eliminate the feature with the
lowest feature importance according to Algorithm
1, producing a dataset with a reduced number of
features.

5. Creating a second pipeline of classifiers to test the
outcome of the feature selection process and en-
sure that it does not cause significant performance
degradation. At the end of this step, the first stage
(the attack detection classifier) is complete.

6. For the attack classification stage, a new pipeline of
multi-class classifiers is created, trained, and tested
using the second dataset.

7. The best performing classifier undergoes hyper-
parameter optimization to improve its perfor-
mance.

8. Both of the selected classifiers undergo 10-fold
cross-validation to ensure that they are capable of
generalizing well beyond their training datasets.

4.2. Experimentation Environment

All experiements were conducted on a computer with
the following specifications:

• Processor: AMD Ryzen 5 3600 4.2GHz

• RAM: 128GB

Algorithm 1: Recursive Feature-Elimination
Using Feature Importance

Input: Dataset with m features
Output: Dataset with n features

Array← Dataset
model = MLClassi f ier
TargetFeatures = n
while Features(Dataset) > TargetFeatures do

train model with Array
importance = FeatureImportance(model)
i = index of feature with lowest importance
Array.DeleteFeature(i)

end
Store Array→ Dataset

• OS: Windows 10 Professional

• Python v3.10

• SciKit Learn v1.1.3

• XGBoost v1.5.0

• Numpy v1.23.4

• Pandas v1.5.2

4.3. DNP3 Intrusion Detection Dataset
In this paper, we rely on the DNP3 Intrusion

Detection Dataset [43] to evaluate the performance
of our two-stage attack detection and classification
mechanism. This dataset was curated by Radoglou-
Grammatikis et al. [44], following the methodological
frameworks proposed by Gharib et al. [45] and Dadkhah
et al. [46].

To generate the DNP3 dataset, a network topology
consisting of (i) eight industrial entities, (ii) one Hu-
man Machine Interfaces (HMI), and (iii) three cyber-
attackers was employed to capture and represent attacks
conducted in TCP/IP flows and DNP3-specific flows,
as shown in Fig. 3. In the testbed utilized for the im-
plementation, the industrial entities play the role of the
DNP3 outstations/slaves (Remote Terminal Units and
Intelligent Electron Devices), while the further work-
station played the role of the master (Master Terminal
Unit).

The following nine DNP3 cyber-attacks, involving
DNP3 unauthorized commands and Denial of Service
(DoS), were implemented using popular penetration
testing tools like Nmap and Scapy:

• DNP3 Disable Unsolicited Messages Attack

7



Figure 3: Testbed for the DNP3 Intrusion Detection Dataset generation [43]

• DNP3 Cold Restart Message Attack

• DNP3 Warm Restart Message Attack

• DNP3 Enumerate Attack

• DNP3 Info Attack

• DNP3 Initialisation Attack

• Man In The Middle (MITM)-DoS Attack

• DNP3 Replay Attack

• DNP3 Stop Application Attack

The DNP3 and TCP/IP network flows generated by each
node during the attack execution were produced by us-
ing a custom DNP3 Python Parser and the CICFlowMe-
ter, respectively [42]. The resulting dataset, consisting
of the above flows and related statistics, was labelled
based on the previously listed DNP3 attack types. We
decided to remove the MITM-DoS attack from the ex-
tracted files, as it does not contain the same features
extracted from the other attacks, apparently due to an
extraction error. The dataset extracted from the remain-
ing captured network packets included 40,420 samples.
Each sample, carries 101 features extracted from the
network flows, labelled into 8 different attacks.

4.4. Preprocessing and Sub-Datasets Creation

Upon examining the dataset, we made the following
observations:

• The dataset contains multiple host-specific features
such as source IP address, and destination IP ad-
dress.

• The dataset includes features with string values
such as firstPacketDIR that show whether the
flow started at the master node or the slave node.

Host-related data are a major cause of overfitting [47].
We removed all host-specific features from the dataset
to to help our trained classifiers to generalize beyond
this dataset. In addition, we removed other irrelevant
features such as the flow number, flow ID, and date of
the flow. The next step in pre-processing was to numer-
ically encode all string-based features. This created a
dataset with 96 features, and 40,420 samples.

As our proposed design utilizes two classifiers in two
separate stages, we created two datasets from the pre-
processed one:

1. The first dataset includes two labels only; mali-
cious, and benign. This dataset is used in stage
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1 for the detection process. To create it, we re-
moved all attack-specific labels and replaced them
with “malicious”. As this step was done, we no-
ticed that the normal class contained 14,380 sam-
ples, while the malicious class contained 26,040
samples. To address this imbalance, we performed
random oversampling of the minority class to get
to a stage 1 dataset with 96 features, and 52,80
samples (26,040 normal, and 26,040 malicious).
This moderate rate of random oversampling only
marginally increases the likelihood of overfitting,
which is already taken care of by the feature pre-
processing discussed above.

2. The second dataset includes eight attack labels
to be used in identifying the specific attack type.
Based on that, we removed the “benign” samples
from the second dataset. Upon the removal of the
normal samples, we noticed a limited imbalance
between the different attack types. Hence, we per-
formed again random over sampling for the classes
with lower number of samples. This resulted in a
second dataset of 46,080 samples (5,760 samples
in each class).

4.5. Stage-One: Attack Detection

As stated in Section 4.1, in the first step in stage 1, we
created a pipeline of binary classifiers for the attack de-
tection stage. This pipeline includes the following clas-
sifiers:

• Random Forest (RF)

• Logistic Regression (LR)

• Decision Tree (DT)

• Gaussian Naive-Bayes (GNB)

• Extreme Gradient Boosting (XGB)

The purpose of this stage is to find the best perform-
ing classifier to use it later in the feature selection pro-
cess. We performed a stratified random split to the stage
1 dataset to select 75% of the samples for training, and
25% of the samples for testing. This technique consists
of forcing data distribution to be the same across dif-
ferent dataset splits. This way, classifiers are trained on
the same population where they are evaluated, achiev-
ing better predictions. Table 2 shows the testing results
of the initial stage-1 classifiers pipeline.

As shown in the table, the RF classifier outperformed
the others in terms of accuracy and F1 score. Based on

Table 2: Initial testing results for attack detection using 96 features
Metric Accuracy Precision Recall F1 Score

RF 0.997696 0.997698 0.997696 0.997696
LR 0.946390 0.946803 0.946390 0.946378
DT 0.977158 0.977163 0.977158 0.977158

GNB 0.629339 0.760120 0.629339 0.576052
XGB 0.988464 0.988464 0.988464 0.988464

Figure 4: Change in F1 score with feature reduction

these results, we selected RF classifier for the feature se-
lection process (RFE) shown in Algorithm 1. RFE iden-
tifies the feature with the lowest importance and elimi-
nates it from the dataset, and then repeats the training
and testing. Then, the algorithm keeps repeating the
above-mentioned steps until a the number of features
is reached beyond which the performance of the classi-
fier drops significantly. Figure 4 shows the change in F1
score of the classifier with the process of feature elimi-
nation.

As shown in the figure, reducing the number of fea-
tures below 12 results in significant drop in the F1 value.
Hence, the number of features we selected based on
RFE algorithm was 12.

In the next step, the reduced stage 1 dataset was used
to train and test the classifiers pipeline to ensure that this
significant reduction in features did not impact the clas-
sifier’s performance. Table 3 shows the testing results
obtained using the 12-feature stage 1 dataset.

As shown in the table, RF, DT, GNB, and XGB do
not show any significant drop in performance metrics.
However, LR witnessed a significant drop in accuracy
and F1 score. Nvertheless, the feature selection stage
was successful in reducing the number of features from
96 to 12 without a significant impact on the best per-
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Table 3: Detection results after feature selection
Metric Accuracy Precision Recall F1 Score

RF 0.995008 0.995009 0.995008 0.995008
LR 0.625499 0.751297 0.625499 0.571926
DT 0.973779 0.973785 0.973779 0.973779

GNB 0.628034 0.767301 0.628034 0.572328
XGB 0.985238 0.985240 0.985238 0.985238

Figure 5: Attack detection stage confusion matrix plot with 12 fea-
tures

forming classifier, namely RF. Figure 5 shows the con-
fusion matrix plot for the RF classifier using 12 features.

Our system produced a superior false-positive detec-
tion rate of 0.57%, and a false-negative rate of 0.43%
only.

Also, the testing time per instance dropped from
13.67µs using 96 features to 6.12µs using 12 features.
It is notable that the F1 score of the system had a minor
drop from 0.9976 to 0.9950 (merely 0.2%), while the
instance processing time dropped by 55%.

4.6. Stage-Two: Attack Classification
As described in Section 4.1, the second stage starts by

creating a new multi-class classifiers pipeline to find the
best performing one. The stage 2 dataset was randomly
split into 75% training subset and 25% testing subset,
with stratification. Table 4 shows the attack classifica-
tion testing results for the trained pipeline.

As shown in the table, the best performing multi-class
classifier is XGB with F1 score of 0.9855. As per our
experiment design, the next stage is to perform hyper-
parameter optimization to improve the performance of
the classifier.

The optimization step resulted in selecting the follow-
ing hyperparameters:

Table 4: Attack classification testing results
Metric Accuracy Precision Recall F1 Score

RF 0.975955 0.975965 0.975955 0.975955
LR 0.538889 0.551916 0.538889 0.517928
DT 0.977240 0.977273 0.977240 0.977239

GNB 0.568663 0.550899 0.568663 0.505081
XGB 0.985503 0.985523 0.985503 0.985503

Table 5: Attack classification results after hyperparameter optimiza-
tion of XGB classifier

Metric Value
Accuracy 0.988281
Precision 0.988281

Recall 0.988281
F1 Score 0.988281

• max depth = 15

• learning rate = 0.2

• subsample = 0.799999

• colsample bytree = 0.799999

• solsample bylevel = 0.5

• n estimators = 100

The results obtained by using the selected hyper-
parameters are shown in Table 5. As shown in the table,
the F1 score slightly improved from 0.9855 to 0.9882.

Figure 6 shows the confusion matrix plot of the op-
timized XGB classifier used in the second stage of our
system.

As shown in the figure, the trained classifier per-
forms perfectly in identifying six out of the eight attack
classes. The two classes in which the performance is
less than perfect are warm restart, and info attacks. The
classifier mis-classified about 5% of the samples from
the warm restart to the info attack class, and vice-versa.

4.7. Cross-Validation

To verify the reliability of the experiment results,
both of our classifiers (stage 1 and stage 2) were passed
through a 10-fold validation step. Within this step, the
dataset of the classifier is split into 10 folds. Each fold
is used for testing once, while the other nine are used for
training. The classifier undergoes this cycle ten times.
If the average of the resulting performance metrics is
close to the results obtained previously, the results are
considered reliable and the classifier can generalize well
beyond its training dataset.

10



Figure 6: Attack classification stage confusion matrix plot
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Table 6 shows the mean and standard deviation of the
performance metrics for the RF classifier of stage 1, and
for the XGB classifier of stage 2.

As shown the table, the results obtained in the 10-
fold cross-validation for both stage 1 and stage 2 are
consistent with the results obtained earlier. In addition,
the low standard deviation confirms that our system can
generalize well beyond its training dataset.

5. Discussions

Poor generalization has been called the Achilles heel
of supervised systems [48], whose performance can be-
come disappointing in production when features’ dis-
tributions change [49]. As explained in Section 4, our
testing results show that the results we obtained are ro-
bust, and that our system is capable of generalizing well
beyond its training dataset. Table 7 shows a comparison
of the performance metrics of our system with that of
relevant related works.

As shown in the table, the detection metrics of our
proposed system exceed those of [33], significantly.
While our metrics are comparable to [39], the dataset
utilized in that paper suffers from significant imbalance.
The normal traffic samples captured was 92% of the to-
tal accuracy. This imbalance causes a wildly inaccurate
measure of its accuracy, where it achieves a nominal
0.92 accuracy just by classifying all traffic as normal,
and not detecting any attack.

When compared to [32], our system slightly outper-
forms it. However, the number of samples used in test-
ing in that paper is 288 only, because the system pro-
posed in that paper is not a full ML-based IDS. This
low number impacts the reliability of the results shown
in [32].

As we compare our proposed system with [34], we
notice that the dataset used in that paper is a general
IDS dataset, and does not include IoT, IIoT, nor smart
grid traffic. While the approach seems promising, its
validation does not take into account SG-specific traffic
data such as low- asymmetric flows, with large amount
of data going from sensors to control systems, and small
amount of data in the reverse direction. We argue that
IDS systems trained with non-SG traffic only may not
be capable of thwarting threats that are unique to the
smart grid.

We remark that could not compare the detection time
with related works because we could not find this pa-
rameter in the previous research we reviewed.

6. Conclusions and Future Work

Threats against SGs are becoming increasingly com-
mon, especially with the adoption of IoT technology.
Despite IoT success in monitoring and controlling the
operation of energy system, its complexity widens the
attack surface and makes smart devices vulnerable to a
multitude of cyber-attacks. Designing effective detec-
tion techniques is of paramount importance to ensure
the security and resiliency of SGs.

In this paper, we designed a ML-based attack de-
tection and classification system based on a two-step
procedure that creates two distinct pipelines of binary
and multi-class classifiers. We performed extensive ex-
perimental evaluation on the DNP3 intrusion detection
dataset. Results have shown that our proposed scheme
can quickly spot attacks and accurately identify their
type. Also the system generalizes well and promises
to be robust with respect to in-production variations of
traffic. In our future work, we plan to explore the fol-
lowing areas:

• Using deep packet analysis to detect packet-based
attack, such as reconnaissance attacks.

• Using deep neural networks and compare their re-
sults to classical ML.

• Explore incorporating attacks on other protocols to
generalize our solution to multi-protocol environ-
ments.
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