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Abstract

Modeling and verification of dynamic systems op-
erating over a relational representation of states are
increasingly investigated problems in Al, Business
Process Management and Database Theory. To
make these systems amenable to verification, the
amount of information stored in each state needs
to be bounded, or restrictions are imposed on the
preconditions and effects of actions. We lift these
restrictions by introducing the framework of rela-
tional action bases (RABs), which generalizes ex-
isting frameworks and in which unbounded rela-
tional states are evolved through actions that can
(1) quantify both existentially and universally over
the data, and (2) use arithmetic constraints.We then
study parameterized safety of RABs via (approxi-
mated) SMT-based backward search, singling out
essential meta-properties of the resulting proce-
dure, and showing how it can be realized by an off-
the-shelf combination of existing verification mod-
ules of the state-of-the-art MCMT model checker.
We demonstrate the effectiveness of this approach
on a benchmark of data-aware business processes.
Finally, we show how universal invariants can be
exploited to make this procedure fully correct.

1 Introduction

Reasoning about actions and processes has witnessed an im-
portant shift in the representation of states and the way ac-
tions query and progress them. Relational representations
and query/update languages are often used in these systems
as a convenient syntactic sugar to compactly represent and
evolve propositional states - see, e.g., STRIPS planning.
More recently, instead, several works have put emphasis on
states captured by full-fledged relational structures, equip-
ping dynamic systems with actions that can create and de-
stroy objects and relations. This data-awareness is essen-
tial to capture relevant systems in Al [Baral and De Gia-
como, 2015] and business process management [Vianu, 2009;
Calvanese et al., 2013]. Notable examples are: (i) Situation
Calculus [De Giacomo et al., 2016] and knowledge-based
[Bagheri Hariri e al., 2013b] action theories, (ii) relational
MDPs [Yang er al., 20221, (iii) data-/artifact-centric business
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processes [Bagheri Hariri ef al., 2013a; Deutsch er al., 2016;
Calvanese et al., 20191, and (iv) Petri nets with identifiers
[Polyvyanyy et al., 2019; Ghilardi et al., 2022a] or with ad-
vanced interaction mechanisms [Fahland, 2019]. The sub-
tle interplay between, data and processes calls for dedicated
techniques for verifying at design-time whether such rela-
tional dynamic systems behave as expected [Baral and De Gi-
acomo, 2015; Calvanese et al., 2013]. However, verifica-
tion is extremely difficult, as relational dynamic systems in-
duce infinite state-spaces. This poses two challenges: foun-
dationally, the identification of interesting classes of sys-
tems for which suitable verification procedures enjoy key
(meta-)properties like correctness and termination; practi-
cally, the development of corresponding efficient verification
tools. Typically, this leads to data-aware dynamic systems
severely controlling the expressiveness of the data component
and/or of the way actions operate over data, resulting in de-
cidable/tractable fragments that are however too restrictive in
capturing real-life processes.

In this work, we follow a different route. Modeling-wise,
we start from one of the most expressive data-aware process
modeling frameworks existing in the literature [Calvanese et
al., 2020], and we further enrich it with two essential fea-
tures toward practical applicability. Such feature have never
been combined in a unique formalism so far, and are arith-
metics, to express conditions over and manipulate the content
of numerical data values, and universally-quantified guards,
to capture advanced forms of synchronization in concurrent
and multi-agent systems and rich conditional updates in com-
plex relational dynamic systems (see Section 2 for more de-
tails). While decidability does not hold in general for the re-
sulting framework, we provide an algorithmic approach for
verification that enjoys interesting meta-properties such (par-
tial) soundness and completeness, and also demonstrate the
benefit of injecting universal safety invariants to avoid spuri-
ous results. Computation-wise, we show that practical verifi-
cation can be conducted through a careful combination of ex-
isting verification modules implemented in the MCTM model
checker [Ghilardi and Ranise, 2010b]. We then demonstrate
feasibility through an extensive experimental evaluation con-
ducted on a suitably extended version of the only existing for-
mal modeling and verification benchmark for data-aware pro-
cesses [Gianola, 2022]. This extended version is of indepen-
dent interest, as the research community lacks a comprehen-
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sive, shared collection of realistic data-aware process models.
Notably, all examples in the benchmark specify the control-
flow component of the process through the BPMN language,
which is the de-facto standard for the representation of busi-
ness processes.

Technical contributions. To attack the verification of re-
lational dynamic systems, we start from RASs [Calvanese et
al., 20201, one of the most expressive models in the literature.
A RAS comes with (i) a read-only database with primary and
foreign keys, (ii) a working memory consisting of read-write
unbounded relations, and (ii) actions for constrained updates,
whose preconditions query the working and read-only mem-
ory with existential queries, and whose effects consist in up-
date formulae that can express addition, deletion, or bulk up-
date of tuples in the read-write relations.

Our first contribution is to further push the boundaries of
expressiveness of RASs, extending them with two genuinely
novel essential features: universal guards and arithmetics. In
the resulting framework of relational action bases (RABs),
unbounded relational states are evolved through actions that
quantify existentially and universally over the data, and that
use numerical datatypes with arithmetic predicates (including
linear arithmetics for integers and reals). As surveyed later,
these features match needs in different application domains.

On top of this framework, we provide a threefold techni-
cal contribution. The first concerns algorithmic techniques
for verification of RABs. Specifically, we build on the
last version of the MCMT model checker [Ghilardi and
Ranise, 2010b], a natural choice for two reasons. On the
one hand, MCMT comes with an effective backward reach-
ability procedure that handles the automated verification of
safety properties over RASs, ascertained parametrically to
the content of the read-only database [Calvanese et al., 2020;
Calvanese et al., 2021]. On the other hand, MCMT includes
two separate modules to respectively handle universal quanti-
fiers via dynamic forms of instantiation [Alberti et al., 2012;
Feldman et al., 2019], and deal with the elimination of data
variables via cover computation [Calvanese et al., 2021],
combined with quantifier elimination for arithmetics [Cal-
vanese et al., 2022al. While such modules were so far em-
ployed in isolation, we here show for the first time that they
can be gracefully combined, both theoretically and practi-
cally, inside the backward search of MCMT, enabling verifi-
cation of (parameterized) safety in the novel setting of RABs.
This is surprising since these two techniques may appear to
interfere with each other, while we show that they interact
harmlessly. The integration of these two techniques results
in two (over-)approximation steps in the symbolic computa-
tion of unsafe states, which could cause the resulting pro-
cedure to detect unsafety spuriously. We thus investigate
meta-properties of the procedure; decidable cases for which
termination is guaranteed are inherited from the RAS frag-
ments from [Calvanese et al., 2020]. This shows that MCMT
can handle RABs off-the-shelf, without destroying the meta-
properties of the combined procedure.

As a second technical contribution, we put MCMT at work:
we show that it terminates producing a correct answer with
very good performance, on a set of 34 RABs that we derive

from a benchmark of data-aware processes [Li et al., 2017].

Last, we study the injection on invariants in the safety anal-
ysis of RABs. We obtain the key result that under the ex-
istence of universal invariants, spurious results for unsafety
are never produced. This requires to prove, using model the-
ory, that the two approximation techniques do not interfere
with each other, but again combine well. Notably, our in-
variance result is analogous, in spirit, to that in [Karbyshev et
al., 20171, but substantially differs from the technical point of
view: it holds for a different verification procedure and covers
the whole expressiveness of RABs, out of reach so far.

The paper is organized as follows. In Section 2, we dis-
cuss the related work and the motivations for the need of new
features of RABs. After the preliminaries, in Section 4 we in-
troduce the general model of RABs and we describe an infor-
mative RAB example inspired by a process for evaluating visa
applications, where we concretely present the novel modeling
features. In Section 5, we introduce the SMT-based verifica-
tion procedure for checking safety of RABs and we show its
meta-properties. In Section 6, we prove how universal invari-
ants can be exploited to avoid spurious unsafety outcomes,
and in Section 7 we experimentally test our approach against
the only existing verification benchmark for data-aware pro-
cesses. We conclude in Section 8. Full proofs and details
are provided in the online extended version [Ghilardi er al.,
2022b].

2 Motivation and Related Work

We discuss related work with two goals: (i) motivate the need
of arithmetics and universal quantification when modeling re-
lational dynamic systems in different application domains;
(ii) discuss how RABs relate to the state-of-the-art. As the
importance of arithmetics is well-known (see, e.g., [Gerevini
et al., 2008; Belardinelli, 2014; Deutsch et al., 2016; Felli et
al., 2022]), we concentrate on universal quantification, dis-
cussing that it is essential to model the injection of fresh ob-
jects, capture conditional updates, deal with constraint check-
ing, and capture synchronization in concurrent systems.

Injection of fresh objects. Relational dynamic systems need
to create new, fresh objects during the execution. Classi-
cal examples are the creation of a new primary key within
a database [Bagheri Hariri er al., 2013a; Belardinelli et al.,
2014], or of a new identifier in a (high-level) Petri net
[Polyvyanyy er al., 2019; Ghilardi er al., 2022a]. Without
universal quantification, freshness cannot be guaranteed: it
is possible to nondeterministically pick an object, but not to
enforce that it is not contained in the working memory.

Conditional updates and constraint checking. Univer-
sal quantification is need to express rich conditional up-
dates operating at once over the entire extension of a relation
[Bagheri Hariri ef al., 2013a; Belardinelli ef al., 2014]. Con-
ditional updates can also be used to enforce constraints on
the working memory of the system, using the following mod-
elling pattern. Considering the forms of actions supported by
RABESs, the constraint of interest can be formulated as a uni-
versally quantified sentence. The system alternates an action
mode and a check mode. In the check mode, the system veri-
fies whether the constraint holds. If so, the system goes back
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to the action mode. If not (i.e., the negation of the constraint
holds), the system enters into an error state. Universally quan-
tified sentences can express, key and disjointness constraints.

Universal synchronization. Dynamic systems with multi-
ple concurrent entities call for synchronization mechanisms.
Two key scenarios are (parameterized) multiagent systems,
where all agents synchronously perform a joint action [Kou-
varos and Lomuscio, 2016; Felli et al., 2020], and equality
synchronization in proclets [Fahland, 2019], where a transi-
tion can be performed by a parent entity only if @/l its children
are in a certain state (e.g., all same-order items have been val-
idated). With universally quantified variables, RABs support
such mechanisms, allowing for verification of proclets that
has been out of reach [Fahland, 2019; Ghilardi et al., 2022a].

Related work. Verification of relational dynamic systems
has been addressed along two main lines. In the first, a
bound is imposed on the number of objects that can be stored
in a single state. This makes verification for first-order u-
calculus [Bagheri Hariri et al., 2014; Calvanese er al., 2018]
and a fragment of first-order LTL [Calvanese et al., 2022b]
reducible to finite-state model checking, for systems with a
fixed initial state and objects only equipped with equality
comparison. This carries over relational multiagent systems
verified against epistemic first-order CTL [Belardinelli e al.,
2014]. These techniques do not correspond to concrete verifi-
cation tools, and only preliminary results exist on implemen-
tations [Yang er al., 2022].

The second line of research studies relational dynamic sys-
tems operating over a working memory that can contain un-
boundedly many objects per state, and accessing read-only
data. Verification is studied parametrically to the read-only
storage, ensuring that desired properties hold irrespectively of
its content. This setting, surveyed in [Vianu, 2009], is more
delicate than the one of state-bounded systems: the identifi-
cation of verifiable fragments calls for a very careful analysis
of modelling features supported in action specifications. At
the same time, perhaps surprisingly, there are practical ver-
ifiers working with unbounded data, based on explicit-state
model checking and vector addition systems [Li et al., 20171,
or on symbolic model checking via SMT [Calvanese er al.,
2019] implemented in a dedicated module of the MCMT
model checker [Ghilardi and Ranise, 2010b]. Other SMT-
based approaches dealing with universal quantification and
parameterized verification, such as [Gurfinkel et al., 2016;
Cimatti et al., 2021], cannot instead be readily applied, as
they do not natively handle relational dynamic systems.

3 Preliminaries

We adopt the usual first-order syntactic notions of signature,
term, formula, and the like. Signatures are multi-sorted. Ev-
ery sort comes with equality. For simplicity, most definitions
are given for single-sorted languages - the adaptation to multi-
sorted is straightforward. Notation t(x) (resp., ¢(z)) means
that term ¢ (resp., formula ¢) has free variables included in
x, where z represents a tuple (z1,...,z,) of variables. We
assume that terms and formulae are well-typed. A formula is
universal (resp., existential) if it has the form Vz(¢(z)) (resp.,
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Jz(¢(z))), where ¢ is a quantifier-free formula. A sentence
is a formula without free variables.

For semantics, we use the standard notions of Y-structure
M and of truth of a formula in a X-structure under a free
variables assignment. A X-theory T is a set of X-sentences;
a model of T' is a X-structure M where all sentences in 7'
are true. T' |= ¢ expresses that ¢ is true in all models of T'
for every assignment to the variables occurring free in ¢. ¢
is T-satisfiable iff there exists a model M of T and an as-
signment to the free variables of ¢ that makes ¢ true in M:
if ¢ is quantifier-free, the problem of establishing for ¢ the
existence of such a model and an assignment is called SMT
problem for T'. Examples of theories from the SMT literature
are EUF, the theory of equality with uninterpreted symbols,
and LZA/LRA, the theory of linear integer/real arithmetics.
A T-cover of a formula 3z¢(z,y) is a formula ¢ (y) that is
implied by Jz¢(x, y) and implies all the other implied formu-
lae ¢'(z,y) modulo T'. A theory T has covers iff all formu-
lae Jz¢(z, y) have a T-cover, and an effective procedure for
computing them is available. Computing T-covers is strictly
related to the problem of eliminating quantifiers in suitable
theory extensions of T' [Calvanese et al., 2021].

We introduce case-defined functions. Fix a X-theory T';
a T-partition is a finite set £1(z), ..., kn(x) of quantifier-
free formulae s. t T E Vz\/i_ ki(z) and T |
Nizj Ve (ki(z) A kj(z)). Given such a T-partition to-
gether with ¥-terms ¢1(x),...,t,(z) (all of the same tar-
get sort), a case-definable extension is the Y'-theory T
where ¥ = Y U {F}, with F ¢ ¥, and T/ = T U
Ui {Vz (ki(z) = F(z) = t;(z))}. Intuitively, F' repre-
sents a case-defined function using nested if-then-else expres-
sions as: F(z) := caseof {k1(z) : t1; - ;kn(Z) : tn}.
We identify T with any of its case-definable extensions 7”. In
fact, given a Y'-formula ¢’, one can easily find a X-formula
¢ that is equivalent to ¢’ in all models of 7’. We also use spe-
cific A\-abstractions and abbreviate FO formulae of the form
Vy. b(y) = F(y,z) (where, typically, F is a symbol intro-
duced in a case-defined extension) into b = Ay.F'(y, z).

4 Relational Action Bases

Now we introduce the formalism of relational action bases
(RABsS), following the widely adopted framework of artifact
systems [Hull, 2008], in their most general form structured
in three components [Deutsch et al., 2016]: (i) a read-only
relational database (DB) with primary and foreign keys, to
store background, static information; (ii) a mutable work-
ing memory consisting of a set of evolving relations; (iii) a
set of guarded transitions that inspects the DB and the work-
ing memory, and updates the latter. RABs actually take the
RAS model of [Calvanese et al., 2020] (which supports the
most expressive forms of guarded transitions), with two es-
sential extensions: full-fledged arithmetic theories, and uni-
versal quantification in the guards and effects of transitions.

4.1 Static DB Schemas

Static DB schemas define read-only relations with primary
and foreign key constraints, which host pure identifiers sub-
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ject to EUF, or integer/real data attributes subject to arith-
metic constraints expressed in LZA/LRA.

Definition 1. A static DB schema (SDB schema for short) is
a pair DB := (XPB uxer TPB T, where:

o ©PB_ called SDB signature, is a finite multi-sorted sig-
nature (where sorts are partitioned into id and value
sorts YDB = Eﬁf LﬂZfa]f ), whose symbols are equality,
unary functions, n-ary relations and constants;

» TPB, called SDB theory, is EUF(LPB) U {Vz (z =
undef <+ f(x) = undef)}, for every function f in XPB;

e X% called arithmetic signature, is the signature of
LRA or of LIA, and its sorts are ¥,

e T, called arithmetic theory, is LR.A or LT A.

« 0By xar, can only be the codomain sort of a symbol
from XPB other than an equality predicate;

We respectively call ¥. := XPB U X and T := TPB T

the full signature and the full theory of DB.

The definition employs an unusual functional approach for
modeling DB schemas (needed for the technical machinery
of safety checking procedures), and captures the most so-
phisticated read-only DB schemas considered in the litera-
ture [Deutsch er al., 2019; Calvanese et al., 2019]. Unary
functions capture relations with primary and foreign keys.
Specifically, the domain of a unary function is an id sort, rep-
resenting object identifiers for that sort. Functions sharing the
same id sort as domain model the attributes of such objects,
which either point to other id sorts (implicitly representing
foreign keys), or to so-called value sorts that denote primitive
datatypes. While in previous works only uninterpreted value
sorts could be employed, here we also support real/integer
datatypes, subject to arithmetic theories that considerably in-
creases the modeling power of the language.

We use a special undef constant to model NULL-like ob-
jects/values in the working memory, and an axiom Vz (z =
undef < f(z) = undef) to indicate that application of a
function to undef returns an undefined value/object and that
this is the only case for which the function is undefined.

Definition 2. An SDB instance of DB := (X,T) with ¥ :=
YPB U X is a B-structure M that is a model of T and
s.t. every id sort of ©PB is interpreted in M on a finite set.

There is a key difference between SDB instances and arbi-
trary models of TP® U T": finiteness of id sorts and of the
non-id values that can be pointed from id sorts using func-
tions. This is customary for DBs [Abiteboul et al., 1995].
Notice, TP® has the finite model property for constraint sat-
isfiability, so the SMT problem can be equivalently reframed
by asking for the existence of an SDB instance instead of a
generic TPP model [Calvanese et al., 2020].

Example 1. Consider a visa application center, with a read-
only DB storing information critical to the application pro-
cess. We formalize this in a DB signature Y., with: (i) one id
sort to identify citizens; (ii) two value sorts INT and STRING,
used for evaluating applications (e.g., by giving scores).

4.2 RAB Transitions

The working memory of a RAB consists of individual and
function variables. Function variables model evolving rela-
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tions, in the style of [Li et al., 2017], while individual vari-
ables are used both to store global information about the con-
trol state of the process, and to load and manipulate (compo-
nents of) tuples from the static relations.

Given an SDB schema (X, T'), a (working) memory exten-
sion of ¥ is a signature X.,; obtained by adding to X ex-
tra sort symbols F, Fq, F . . ., called memory sorts, together
with corresponding equality predicates. Now, the “old” sorts
from ¥ are called basic (variables of basic sorts we call ‘basic
sort’ variables). This is done to model the mutable work-
ing memory similarly to the static DB: implicit identifiers
of working memory tuples form working memory relations,
whereas data values of such tuples have basic sorts.

A memory schema is a pair (z, a) of individual and unary
function variables. Variables in x are called memory vari-
ables, and the ones in a — memory components. The lat-
ter are required to have a memory sort as source sort and
a basic sort as target sort. Given an SDB instance M of
Y ext, an assignment to a memory schema (z,a) over Xy
is a map « assigning to every z; € x of sort S; an el-
ement 2 € SM and to every a; : E; — U; (with
a; € a) a function a§ : EM — UM. The notion of as-
signment formally captures the current configuration of the
working memory. An assignment to (z,a) can be seen as
an SDB instance extending the SDB instance M. Assum-
ing that @ contains a;, : B — S1,---,a;, : E — S,
the memory relation E in the assignment (M, «) is the set
{(e,a (¢),...,a (e)) | e € EM}. Thus each tuple of E is
formed by an implicit unique “identifier” e € EM (called in-
dex) and by “data” a* (e) taken from the static DB M. When
the system evolves, E remains fixed, while a®(e) may get
repeatedly updated. “Removing” a tuple from E results in e
being reset to undef. This clarifies the relational nature of the
working memory.

Given a memory schema (z,a) over X.,; with z =
zi1,...,x, and @ = aq,...,a,, we list the kind of for-
mulae that can be used in RABs: (1) an initial formula
uz,a) = (Ais 2 = ) AN(NjZ a5 = Ay.d;), where
¢;, d; are constants from X (typically, ¢; and d; are initially
set to undef); (2) a state formula e (e, z,a), where ¢ is
quantifier-free and e are individual variables of artifact sorts
(called ‘index’ variables); (3) a transition formula (t-formula)

ﬂY(§7 d7 Z, Q) A (Vk/' ’Yu(k‘7§7 d7 Z, Q))
tr(z,a,2’,a’) :=3e,d | AN\, zi = Fi(e,d, z,a)
A /\j CL;' = AyG](y,Q, dv xz, Q)

where the e and d are ‘index’ and ‘basic sort’ individual vari-
ables resp., k is an individual variable of artifact sort, v (the
“(plain) guard”) and +,, (the “universal guard”) are quantifier-
free, 2’ and @’ are renamed copies of z and a, and Fj, Gj
(the “updates™) are case-defined functions. The existentially
quantified “data” variables d (of basic sort) are essential: they
support existential queries over the SDB schema for retriev-
ing data elements or arithmetical values (integers or reals),
and (non-deterministic) external inputs. There are two key
technical differences with the RAS model [Calvanese et al.,
2020]: universally quantified guards -y,, and the usage of
arithmetical constraints and operations in guards and updates.
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Such transition formulae can model operations over tuples
like (i) insertion (with/without duplicates) in a memory rela-
tion, (ii) removal from a memory relation, (iii) transfer from
a memory relation to memory variables (and vice-versa), and
(iv) bulk removal/update in a memory relation, based on a
condition expressed on such relation. These operations can
be formalized as RAB transitions: modeling patterns using
this approach have been shown in [Calvanese e al., 2019].

Definition 3. A relational action base (RAB) is a tuple
S = ((ET1),%c, z,a,u(z,a),7(z,a,2',a")), where:
(i) (X,T) is an SDB schema, (ii) Xy is a memory exten-
sion of %5, (iii) (x, a) is a memory schema over ¥ .4, (iv) L is
an initial formula, and (v) 7 is a disjunction of t-formulae tr.

Notice that 7 symbolically represents the union of all sys-
tem transitions. Such transitions are used to establish interac-
tion between the static DB (with SDB schema D B) and the
working memory (with memory schema (z, a)).

Example 2. Consider a RAB S, capturing a process for
evaluating visa applications and informing the applicants
about the visa decisions. S,, works over the SDB schema
from Example 1. The working memory of S,, consists of
variables capturing the main process phases (pState), the cit-
izen’s visa status (visaStat) and ID used to notify about the
application result (toNotify), and a multi-instance artifact
for managing visa applications. The latter is formalized by
adding to DB signature 3., a memory sort applndex (to “in-
ternally” identify the applications), and by adding a memory
schema with the applicant’s ID applicant : applndex —
Int, evaluation score appScore : applndex — Int, and ap-
plication results appResult : applndex — String.

We now showcase a few t-formulae for managing visa ap-
plications. We assume that if a memory variable/component
is not mentioned in a t-formula, then its values remain un-
changed. To insert an application into the system, the pro-
cess has to be enabled. The corresponding update simul-
taneously (i) selects the applicant’s ID and inserts it into the
memory component applicant, (ii) evaluates the visa applica-
tion and inserts a non-negative score into the memory com-
ponent appScore. Since memory tuples must have implicit
identifiers, the above insertion requires a“free” index (i.e.,
an index pointing to an undefined applicant) to be selected:

di:applndex, Ja:Int, s:Int

pState = enabled A a # undef As > 0

A pState’ = enabled

A applicant’ = Nj. (if j = i then a else applicant][j])

A appScore’ = Nj. (if j = i then s else appScore[j])
Applications can be nondeterministically evaluated (by as-
signing evaluation to pState), resulting in highly evalu-
ated ones being approved and others re jected:

pState = evaluation A pState’ = evaluated
NappResult’ = \j. if appSc'ore[j] > 80 then approved
else re jected
If there is at least one approved application, a nondetermin-
istically selected applicant is getting notified:
Ji:applndex
pState = evaluated A pState’ = notified

A applicant[i] # undef A appResult[i] = approved
A toNotify' = applicant[i] A visaStat’ = appResult]i]

Algorithm 1: BReachgap
input: RAB (3, T), S, 2, 0, 1(z, a), (2, 0,2, a'))
input: (Unsafe) state formula v(z,a)

1 P+— v, B+— 1;

> while PA—BisT -satisfiable do

3 if ¢ A P is T-satisfiable then
| return (UNSAFE, unsafe trace witness)

4 B+— PV B;
5 P +— InstPre(r, P);
6 P «— Covers(T, P);

return (SAFE, B);

Finally, we demonstrate a transition with a univer-
sal guard checking whether no application has been ap-
proved and, if so, changes the process state to no—visa:
pState = evaluated A Vk (appResult|k] # approved)

A pState’ = no-visa

5 Parameterized Safety Verification

We turn to safety verification of a RAB S, formalizing it by
analogy with RASs [Calvanese et al., 20201, in tradition of ar-
tifact systems [Deutsch et al., 2018]. As we will see, inspite
of similar formulation, the corresponding algorithmic tech-
niques for RABs are different, and so is proving their (meta-)
properties. The main idea is to analyse whether S is safe
(i.e., S never reaches an undesired state satisfying unsafe for-
mula v(x, a)) independently from the specific configuration
of read-only data, i.e., for every instance of the SDB schema
of §. Technically, S is safe w.r.t. v if there is no SDB instance
M of (3., T), no k > 0, and no assignment in M to the
variables z°,a’ . .., z*, @ s.t. formula
(20, a°) A7(2°,a% 2t ah)
k

(D

is true in M (2%, a* are renamed copies of z, a). Formula
can be seen as a symbolic unsafe trace. The safety problem
(S, v) consists of establishing whether S is safe w.r.t v.

Example 3. The following formula describes an unsafety
property for the RAB from Example 2, checking whether
the evaluation notification goes to an applicant who was
rejected:  Ji:applndex(applicant[i] # undef A toNotify =
applicant[i] A visaStat = re jected A pState = notified).

Safety verification procedure. Algorithm 1 introduces the
BReachgrap procedure for safety verification. It shows how
the backward reachability procedure for SMT-based safety
verification, first studied in [Ghilardi and Ranise, 2010a] for
array-based systems and refined in [Calvanese et al., 2020]
to deal with RASs, is extended to handle the advanced fea-
tures of RABs. BReachgap takes as input a RAB S and an
unsafe formula v. The main loop starts from the undesired
states of the system (represented by v), and explores back-
wards the state space by iteratively computing, symbolically,
the set of states that can reach the undesired ones. Every iter-
ation regresses the current undesired states by considering the
transitions 7 of S in a reversed fashion. As we describe next,
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due to the presence of universal guards, 7 can be reversed
only in an approximated way. The computation of symbolic,
approximated preimages is handled in Lines 5 and 6.

Let ¢)(z, a) be a state formula describing the state of vari-
ables z, a. The exact preimage of the set of states captured by
Y(z,a) is the set of states captured by Pre(r,v) (note that,
when 7 = \/, tr;, then Pre(r,v) = \/, Pre(tr;,)). This
is the exact set of states that, by executing 7 once, reaches
the set of states described by . The main issue we get in
doing so is that a state formula is an existentially quantified
Y.-formula over indexes only. While ¥ is a state formula, Pre
is not, making it impossible to reiterate the preimage compu-
tation. This is due to universally quantified ‘index’ variable k
and existentially quantified ‘data’ variables d in 7. To attack
this problem, we introduce in Lines 5 and 6 of BReachgap
two over-approximations, guaranteeing that the preimage is a
proper state formula and that we use preimage computation
to regress undesired states arbitrarily many times.

The first approximation (Line 5) compiles away the uni-
versal quantifier ranging over the index k through instanti-
ation, by invoking InstPre(r,1). Given 7 := \/*_, tr,,
let Yk ~(k,e,d, z,a) be the universal guard of tr, for all
r =1,...,p. InstPre(t,1)) approximates Pre by instanti-
ating the universally quantified ‘index’ variable k£ with the
existential ‘index’ variables appearing in Pre(tr,,), for
all » = 1,...,p. Formally, given ¢ := Je;¢1(eq,z,a),
InstPre(tr,, 1) is the formula obtained from

Hzlaglagaglyd
(e, d,z,a)
A /\kégugl ’VIL(kagv dv £, Q)
A /\i x; = FZ(dea&aQ)
AN\ a5 = Ny.Gj(y, e,d,z, a)

A pi(er, 2’ a’)

by making the appropriate substitutions (followed by beta-
reduction) in order to eliminate the existentially quantified
variables 2’ and a’ (see, e.g., [Calvanese er al., 2020] for
details). The second approximation (Line 6) takes the so-
computed result InstPre(r,v) = Je,,d 2, and compiles
away the existentially quantified data variables d. This is
done by invoking Covers(T, Je,, d ¢2): it ‘eliminates’ the d
variables via the cover computation algorithm for the theory
combination TPZ U T, which admits covers [Calvanese et
al., 2022a]. Both approximation operators are T-implied by
the exact preimage operator.

Together, Lines 5 and 6 produce proper state formula )’
that can be fed into another approximate preimage compu-
tation step. In fact, BReachgap iteratively computes such
preimages starting from the unsafe formula v, until one of two
possible termination conditions holds: these conditions are
tested by SMT-solvers. The first condition occurs when the
non-inclusion test in Line 2 fails, detecting a fixpoint: the set
of current unsafe states is included in the set of states reached
so far by the search. In this case, BReachgap stops return-
ing that S is safe w.r.t. v. The second termination condition,
occurring when the non-disjointness test in Line 3 succeeds,
detects that set of current unsafe states intersects the initial
states (i.e., satisfies ¢). In this case, BReachgrap stops return-
ing that S is unsafe w.r.t. v, together with a symbolic unsafe
trace of the form (1). Such a trace provides a sequence of
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transitions tr; that, starting from the initial configurations,
witness how S can evolve from an initial state in ¢, under
some instance of its SDB, to a state satisfying v.

Being preimages computed in an over-approximated way,
unsafety may be spuriously returned, together with an unsafe
spurious trace that cannot be produced by a given RAB. We
next study this and other meta-properties of BReachgag.

Meta-properties. Consider a procedure for verifying safety
of RABs. Given a RAB S and an unsafe formula v, a SAFE
(resp. UNSAFE) output is correct iff S is safe (resp. unsafe)
w.r.t. v. We use this to define some key meta-properties.

Definition 4. Given a RAB S and an unsafe formula v, a
procedure for verifying unsafety of S w.rt. v is: (i) sound
if, when terminating, it returns a correct result; (ii) partially
sound if a SAFE result is always correct; (iii) complete if,
whenever UNSAFE is the correct result, then it returns so.

By using that reachable states via approximated preimages
include those obtained via exact preimages, we get:

Proposition 1. [f BReachgyp returns SAFE when applied to
the safety problem (S, v), then S is safe w.r.t. v.

It can be also proved (see the extended version [Ghilardi
et al., 2022b]) that if S is unsafe w.r.t. v, the procedure ter-
minates with UNSAFE. We show that BReachgap can only
be used partially to verify unsafety of RABs. Next, effec-
tiveness means that all subprocedures in BReachgap can be
effectively computed (from [Calvanese erf al., 20201, the oc-
curring T'-satisfiability tests are decidable).

Theorem 1. BReachgyp is effective, partially sound and
complete when verifying unsafety of RABs.

RABs that do not employ universal guards collapse to
RASs equipped with numerical values and arithmetics. By
carefully combining results on soundness and completeness
of backward reachability of RASs [Calvanese et al., 2020],
and on the existence of combined covers for EUF and
LTAILRA [Calvanese et al., 2022al, we obtain for these
RABs that no spurious results are produced:

Theorem 2. BReachgyp is effective, sound and complete
(and hence a semi-decision procedure) when verifying safety
of RABs without universal guards.

Proof. From Theorem 1, the only thing that remains to prove
is that Algorithm 1 is fully sound if the RAB does not con-
tain universal guards. In this case, InstPre = Pre, hence
Algorithm 1 coincides with the SMT-based backward reach-
ability procedure for RASs introduced in [Calvanese et al.,
2020]. Notice, however, that RABs without universal guards
still strictly extend plain RASs from [Calvanese et al., 2020],
since SDB are strictly more expressive than DB schemas
of RASs: SDB schema contain arithmetic operations and
are constrained by theory combinations where one compo-
nent is an arithmetical theory. Nevertheless, using the re-
sults and the procedures presented in [Calvanese er al., 2021,
Calvanese er al., 2022a] for computing covers, and given the
equivalence between computing covers and eliminating quan-
tifiers in model completions from [Calvanese et al., 2020], in
order to conclude one can use the analogous arguments based
on model completions as the ones used in [Calvanese et al.,
2020] for proving full soundness of RASs. O
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6 Safety Universal Invariants

Injecting and exploiting invariants in the verification of dy-
namic systems is a well-known approach. Also, instantia-
tion is a widely studied in invariant checking [Feldman er al.,
2019]. In our setting, invariants can dramatically prune the
search space of backward reachability procedures, in gen-
eral also increasing the chances that the procedure termi-
nates [Ghilardi and Ranise, 2010a]. We contribute to this line
by introducing a suitable notion of (universal) invariant for
RABSs, and by studying its impact to safety verification.

Definition 5. ¢(z,a) = Vi(i,z,a) (with i variables of
artifact sort) is an (inductive) universal invariant for a RAB
Siff(a)T = vz,a) = ¢(z,a), and (b)) T = ¢(z,a) N
T(z,0,2,a') = ¢(a’,a'). If, in addition to (a) and (b), we
also have (c) ¢(z, a) A\v(z, a) is T-unsatisfiable, then ¢(x, a)
is a safety universal invariant for the safety problem (S, v).

Following the arguments from [Calvanese et al., 2020], the
T-satisfiability tests required in (a), (b), and (c) are decid-
able. Using invariants for safety verification is, to some ex-
tent, “more general” than using (variants of) backward reach-
ability. Unfortunately, the so-called invariant method is more
challenging because finding safety invariants cannot be mech-
anized (see, e.g., [Ghilardi and Ranise, 2010al). Yet, if a
universal invariant has been found in some way (e.g., with
heuristics) or supplied by a trusted knowledge source, then it
can be effectively employed in the fixpoint test of backward
reachability, e.g., by replacing Line 2 of Algorithm 1 with:

2’ while (P A Inv A =B is T-sat.) do

where Inv is a conjunction of universal invariants. This fur-
ther constrains the formula P A =B with Inwv, possibly in-
creasing the chances to detect unsatisfiability.

The following result is useful: it shows that Algorithm 1
can be used to find safety universal invariants.

Proposition 2. If Algorithm 1 returns (SAFE, B), then =B
is a safety universal invariant.

Sketch. By construction, B is an existential formula over
artifact sorts only, hence —B is universal. We show in
the extended version [Ghilardi et al., 2022b] that conditions
(a),(b),(c) from Definition 5 hold. O

Let P,, the value of the variable P at the n-th iteration of
the main loop BReachgrag. We prove the following key, non-
trivial result on how safety universal invariants relate to the
(approximated) preimages computed by BReachgag.

Theorem 3. If a safety universal invariant ¢ exists for a RAB
S w.rt. v, then for every n € N, we have P, — —¢.

Sketch. The argument is quite delicate: it is always possible
to extend a structure w.r.t. its X-reduct and at the same time to
restrict the given structure w.r.t. its 3., \ X-reduct, and these
‘opposite’ constructions does not interfere with each other.
We prove the statement by induction on the number n of iter-
ations of the main loop of BReachgag.

Base case. In case n = 0, the statement follows from Py = v
and condition (b) of Definition 5.
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Inductive case. By inductive hypothesis, we have that T' =
P, — —¢. We show that T = P,,.1 — —¢ holds as well.
First, we notice that, by condition (c) of Definition 5, T =
T(z,a,2',0") N ~p(a’,a’) — —d(x,a) holds. The previous
implication can be rewritten as
T = Pre(r,—¢) = =¢ 2)

since, by definition of preimage, we have T |
J2'3d/ (1(z, a,2',a") N ~¢(2', a’)) = Pre(r, =¢).

Preimage is monotonic, i.e., given two formulae « and £,
a — [ implies Pre(r,a) — Pre(r, ). Hence, from the
inductive hypothesis T' = P,, — —¢, we get

T = Pre(r, P,) — Pre(r, =¢). 3)
From Formulae (3) and (2) it follows that
T k& Pre(r, P,) — —¢. ()]

By construction and induction, InstPre(r, P,) is an ex-
istential formula over artifact and basic sorts. By applying
Covers, we eliminate the existentially quantified variables
over basic sorts, and get an existential formula over artifact
sorts only. Hence, since P,, 11 = Covers(T, InstPre(r, P,,)),
we can assume that P, has the form 3¢é(¢é), where ) is
quantifier-free. Thus, we need to prove that:

T | Fw(@) — . 5)
By reduction to absurdum, suppose that there is a SDB in-
stance A s.t. A = Jep(é) — —¢. By model-theoretic prop-
erties of covers, from A it is possible to build a SDB instance
B s.t. By |= InstPre(t, P,) A ¢. Moreover, from 3, we can
find a SDB instance B, where the instantiations of the uni-
versal quantifiers cover all the elements of its domain: hence,
By = Pre(t, P,) A ¢, which contradicts entailment (4), as
wanted. All the details are in [Ghilardi et al., 2022b]. O

By combining Definition 5 and Theorem 3 we get:

Corollary 1. If there exists a safety universal invariant ¢ a
RAB S, then BReachgyp cannot return UNSAFE.

Corollary 1 implies that if there is a safety universal invari-
ant for S, then Algorithm 1 cannot find any spurious unsafe
traces. We know from Proposition 1 that in case Algorithm 1
returns (SAFE, B), then the system is safe: notice also that

in this case, — B is a safety universal invariant (see [Ghilardi
et al., 2022b] for details). However, if it returns an unsafe
outcome, the answer could be wrong due to the presence of
spurious unsafe traces.

The importance of Corollary 1 lies in the fact that, even if
we do not know any safety universal invariant, we are assured
that in case one exists, the procedure behaves well/properly/in
a fair way, as no unsafe outcome can be returned and therefore
no spurious trace can be detected. Corollary 1 is conceptually
analogous to the invariant result in [Karbyshev er al., 20171,
with two subtantial technical differences: (i) they deal with
formulae that fall into the decidable Barneys-Schonfinkel FO
fragment (the ‘3*V*’ fragment) with only relational symbols,
which does not capture functional key dependencies nor stan-
dard arithmetical operations over real/integers as we do here;
(ii) the two results hold for different verification procedures:
ours for backward reachability, theirs for IC3.

Example 4. The following is a safety universal invariant for
(Sva,v): (visaStat = rejected — toNotify = undef).
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Ex Ar UG #T #Q #U #S uT MaxT  #(calls)
EOl  n y 28 14 9 3 08 128 (U) 33982
B2y n 48 3 6 6 031 037(S) 40114
E03 n y 38 17 6 6 074 249(S) 43018
E4 n n 2 9 5 7 03 0.64(U)  1899.7
EO5 n n 20 9 5 7 023 051(U) 16568
E06 y n 16 6 5 7 017 034(U) 14964
EO7 n y 14 10 10 2 018 0.62(U)  1126.1
E08 n n 3 4 6 6 065 250(S) 30364
E09 n n 23 39 3 1976 171.63(S) 203024
EI0 n y 20 11 9 3 02 046(S) 15503
Ell vy y 21 8 7 5 015 038(S) 13396
E12 y y 2 8 7 5 0I5 038(S) 13267
EI3 n y 20 10 8 4 065 239(U) 27648
El4 n y 20 10 8 4 06 224(U) 27240
EI5 vy no2 13 7 5 037 076 (U) 22834
EI6  n n 47 19 8 4 096 547(U) 51518
E17 vy n 13 8 7 5 008 0.13 (U) 768.5
EI8 n n 21 9 6 6 0.1l 0.19(U) 12126
E19 y n 3 10 6 6 037 074(U) 24162
E20 n n 24 7 6 6 011 0.17(U) 10265
E21  y y 27 77 5 040 138(S)  2509.6
E2 vy y 20 29 3 815 5392(U) 97363
E23  y n 17 2 8 4 099 373(S) 29959
E24 y y 15 77 5 o0ll 0.13(U) 10515
E25 n y 34 14 6 6 452  2474(S) 74867
E26 n y 34 15 6 6 497  1779(S)  481LI
E27 n y 34 15 75 459 2081(S) 46337
E28 y y 3» 10 7 5 023 046 (U)  2740.0
E29 n y 15 36 6 008 0.42 (S) 648.8
E30 y n 26 9 6 6 031 079(U) 23162
E31 y y 37 12 8 4 038 071(U)  3367.0
E2 vy n 5l 9 9 3 248 849 (U) 92313
E33 y n 43 8 9 3 127 424(S) 66378
E+ y y 15 7 22 11 739  9827(S) 56125

Table 1: Experimental results for safety properties

7 Practical Verification of RABs

We now put our verification machinery in practice, exploit-
ing that, as shown in our technical development, we can em-
ploy the different modules of MCMT to handle parameterized
safety checking of RABs. We test the novel features of RABs,
namely universal quantification and arithmetics on relational
dynamic systems, for which no other existing tool can be
employed. Specifically, we conduct an extensive experimen-
tal evaluation on RABs representing 33 (32 plus one vari-
ant) concrete data-aware processes derived from the existing
benchmark in [Li et al., 2017]. We encode all these 33 models
into RABs, using the concrete syntax of the database-driven
mode of MCMT (available since Version 2.8). We set up our
benchmark by taking 26 out of the 33 process models in [Li
et al., 20171, naturally extending them with arithmetic and/or
universal guards (features not supported by VERIFAS [Li et
al.,2017]). The remaining 7 examples do not lend themselves
to such an extension, and are kept unaltered. We nevertheless
include them for completeness. We also add an extra example
E+ that incorporates all modeling features of RABs (e.g., bulk
updates that go beyond the capabilities of VERIFAS [Li ez al.,
2017]), with the intention of stress-testing MCMT. Each ex-
ample is checked against 12 conditions, with at least one safe
and one unsafe; E+ is checked against 33 conditions. Overall,
we ran MCMT over 429 specification files. The benchmark is
on https://github.com/AlessandroGianola/R AB-verification.
Experiments were performed on a 2.3 GHz Intel Core i5
machine with macOS High Sierra and 8 GB RAM. Results
are shown in Table 1 (more detailed information is in [Ghi-
lardi et al., 2022b]), which reports, for each example: (i) if it

3255

contains arithmetics (Ar) and universal guards (UG); (ii) the
number of transitions (#T), also counting those that contain
quantified data variables (#Q). The table also includes sev-
eral measures: (i) number of UNSAFE (#U) and SAFE (#S)
outcomes; (ii) seconds for the average (4T) and maximum
(MaxT) MCMT execution time; (iii) indications of number of
calls to the external SMT solver (#(calls)).

The means of execution times are relatively small. For the
26 plus 1 models supporting the specific features of RABs,
MCMT terminates in less than one second for 85.2% of the
tested files, and in less than one minute for 343 out of 345.
The two files over one minute take 90.36 and 98.27 seconds.
For all 34 models, MCMT terminates in less than one second
for 366 out of 429, the highest timing being 171.63 seconds.
Our preliminary experiments indicate that universal guards
and arithmetic constraints do not sensibly impact the timing.

If the outcome is unsafe, MCMT returns a witness that re-
constructs the unsafe trace as a formula. With this formula
one can test whether the trace is spurious or not. This feature
is currently not directly supported by MCMT, but can be tested
via SMT solvers off-the-shelf. In particular, trace formulae
belong to the 3*V* (EPR) fragment of FOL, for which the Z3
solver [de Moura and Bjgrner, 2008] has a dedicated decision
procedure. The complexity is the one of satisfiability check-
ing in the EPR fragment, which is NEXPTIME-complete.

As far as we know, no other tool or benchmark exists for
further experimental evaluation. The existing model check-
ers (also infinite-state ones) rarely can handle specifications
expressed with quantifiers: however, as also argued in [Cal-
vanese et al., 2020], quantifiers are needed when dealing with
relational database-driven verification. For handling them,
we need non-trivial approximation modules, such as instanti-
ation for universal variables and covers computation for data
variables. MCMT is the only model checker specifically ori-
ented to employ these sophisticated techniques.

8 Conclusions

We have presented the RAB framework for modeling rich
relational dynamic systems with arithmetics and universal
guards, developing techniques for safety verification and
invariant-based analysis. Our results do not only have a foun-
dational importance, but also witness that separately imple-
mented verification modules in the MCMT model checker
can be indeed gracefully combined to obtain a safety verifica-
tion procedure for RABs. The experimental evaluation here
reported shows that this is an effective, practical approach.

In the paper, we have surveyed concrete scenarios that re-
quire the advanced features of RABs, in the context of mul-
tiagent systems [Felli ef al., 2021] and extensions of Petri
nets [Fahland, 2019; Polyvyanyy er al., 2019; Ghilardi er al.,
2020]. The next step is to encode them into RABs. Con-
sidering that encoding concrete models typically produce up-
date formulae with a specific shape, we then want to extract
relevant universal invariants as a by-product of the encoding.
Another interesting direction is to verify properties that go be-
yond safety. This is an open research problem for SMT-based
verification in general, as symbolic reachability techniques
like those used in this paper are tailored to safety.


https://github.com/AlessandroGianola/RAB-verification
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