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Abstract

Polarizable force fields are pervasive in the fields of computational chemistry and

biochemistry; however, their empirical or semi-empirical nature gives them both weak-

nesses and strengths. Here, we have developed a hybrid water potential, named q-

AQUA-pol, by combining our recent ab initio q-AQUA potential with the TTM3-F

water potential. The new potential demonstrates unprecedented accuracy ranging from

gas-phase clusters, e.g., the eight low-lying isomers of the water hexamer, to the con-

densed phase, e.g., radial distribution functions, the self-diffusion coefficient, triplet

OOO distribution, and the temperature dependence of the density. This represents

a significant advancement in the field of polarizable machine learning potential and

computational modeling.



Introduction

Force fields (FFs) for large molecules, many-atom or many-molecule non-reactive interac-

tions, are pervasive in computational chemistry, biology, and materials. Among these are

polarizable force fields with efficient parameterizations, as reviewed recently.1–3 Water, in

particular, has been the subject of an astonishingly large number (ca. 50) of FFs, including

non-polarizable fixed-charge models and polarizable models like TTM3-F, AMOEBA, and

MB-UCB.4–6 A large set of these FFs has been critically reviewed for their performance across

various properties, ranging from cluster binding energies to condensed phase thermodynamic

properties.7,8 Very recently, 15 water potentials were assessed against high-level ab initio re-

sults for the binding energies of water clusters by Herman and Xantheas.9 Of these, seven

are fixed-charge pairwise models, while eight are many-body potentials. Quoting from that

paper “The potentials that perform most consistently across the entire n = 2 – 25 [cluster

size] range include q-AQUA and TTM2.1-F which all give binding energies within 2.5 % of

the reference ab initio values.” q-AQUA10 is a recent many-body CCSD(T)-based potential

up to 4-body interactions. However, it was also noted that the polarizable TTM2.1-F po-

tential relies on a cancellation of errors of the many-body contributions to the total binding

energy. It should be noted that TTM2.1-F is semi-empirical polarizable potential11 and a

member of the TTMn family of sophisticated polarizable water potentials.4,12

Of particular interest here are what we term hybrid ab initio-polarizable water poten-

tials. The first example may be the TTM3-F.4 In this force field, the 2-b interaction was

described by an exp-6 functional form in the OO distance, and fit to MP2 calculations. This

was followed by the CC-pol potential which, in the original version, was a full dimensional fit

to CCSD(T) 2-body energies for rigid monomers and correct long-range electrostatic inter-

actions for higher body terms.13 The HBB1 potential14 was the first flexible potential that

was a fit to thousands of CCSD(T) energies, using permutationally invariant polynomials

(PIPs).15 Extending these 2-b potentials to ab initio flexible 3-b interaction came soon after

that, and the FFs including that interaction are known by the acronyms WHBB16,17 and

3



MB-pol.18,19 The WHBB and MB-pol potentials were “hybridized” by using the TTM3-F4

and TTM4-F12 potentials, respectively, to describe polarization interactions beyond the 3-b

level. The details of how these potentials were interfaced to WHBB and MB-pol are different

but not of relevance here. These hybrid potentials, which are approaching the first decade

of use, have been applied with quantitative accuracy over the entire range of interest from

isolated clusters and hydrate clathrates to the condensed phase20,21 up to the phase diagram

of water.22 This statement underscores the major goal of such potentials, which is to be

general and with transferable accuracy.

We recently reported a new water potential, q-AQUA,10 which includes for the first time

a PIP fit to CCSD(T) 4-b energies. This truncation of the many-body interactions appears to

be sufficient for many challenging applications from clusters to the condensed phase (radial

distribution functions and self-diffusion constants), as described in that paper and references

therein. This potential performed very well in the recent assessment for clusters mentioned

above and also for radial distribution functions and the self-diffusion coefficient. In order

to enhance the treatment of polarization, beyond 4-b interactions, we follow the general

strategy used in WHBB to interface q-AQUA with the TTM3-F potential and present the

results of doing so here.

The approach we take can be considered as ∆-Machine Learning.23–29 We recently pro-

posed and demonstrated this approach to a many-body force field.30 The general expression

for this approach is

V∆-ML+MB-FF = VMB-FF +
N∑
i>j

∆V2-b(i, j) +
N∑

i>j>k

∆V3-b(i, j, k) +
N∑

i>j>k>l

∆V4-b(i, j, k, l) + · · · ,

(1)

Ideally, and in our experience, the correction terms, ∆Vn−b, are short-range. This will

be the case provided the MB-FF does provide a quantitatively accurate description of the

long-range interactions. Polarizable FFs do in principle provide this level of accuracy. As

an aside, it is worth noting that this expression can be re-written in the more canonical MB
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form seen in papers describing the MB-pol potential of Paesani and co-workers.31 Namely,

EN(1, · · · , N) =
N∑
i

ϵ1-b(i) +
N∑
i>j

ϵ2-b(i, j) +
N∑

i>j>k

ϵ3-b(i, j, k) + EPOL, (2)

where the 1-b term is the monomer potential and the 2-b and 3-b terms are the corresponding

“short-range” 2 and 3-b interactions. EPOL is the TTM4-F potential (without monomer

terms) which describes the full N -monomer polarization interactions using standard long-

range expressions.12 The terminology “short-range” is equivalent to the difference potentials

∆V2-b and ∆V3-b, and EPOL is the same as VMB-FF, which for MB-pol is TTM4-F. Note that

the CCSD(T) corrections in MB-pol potential extend to 3-b terms.

Here we use the extensive datasets of CCSD(T) energies for 2, 3 and 4-b interactions

that we recently reported and used to develop the q-AQUA potential,10 which we remind

the reader is truncated at the 4-b level. Thus, q-AQUA is a fully ab initio MB water

potential. These datasets are used to fit the difference potentials ∆Vn−b, n = 2, 3, 4, where

we use the well-known TTM3-F as the polarizable FF for water.4 Details of these fits and fast

gradient evaluation are given below. Standard tests of the new potential, denoted q-AQUA-

pol, are also provided. These are diffusion Monte Carlo calculations of the dissociation

energies of the water dimer and trimer, the energies of the hexamer isomers, the water radial

distribution functions, the temperature dependence of the density at 1 atm, the tetrahedral

order parameter and the triplet OOO angular distribution. The new potential is shown to

be slight improvement over the already highly accurate q-AQUA potential for the hexamer

energies. Significant improvements are seen for these energies as well as for the temperature

dependence of the density compared to the MB-pol potential.
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Methods and Computational Details

Electronic Energies and Fits

The data set to construct the ∆V2-b PES consists of 71 892 energies at widely dispersed

geometries of the water dimer, taken from the 2-b data in q-AQUA.10 For each dimer struc-

ture, the differences between CCSD(T)/CBS 2-b energies and TTM3-F 2-b were computed

and used as the target of the fit. We used permutationally invariant polynomials (PIPs)

of Morse variables (exp(−rij/λ), where rij is the internuclear distance and λ is a range pa-

rameter which is 3 bohr in this fit) as the fitting basis. We used the polynomial basis with

2211 permutational symmetry and a maximum polynomial order of 6. The notation “2211”

indicates that permutational invariance of the two H atoms in each monomer. The basis

was purified and therefore approaches zero asymptotically.32 the RMS fitting error is 9.4

cm−1. Because the correction is short-ranged, we applied a switching function when the OO

distance in the dimer is between [6.5, 7.0] Å to make the correction decay to zero; thus the

2-b interaction beyond 7 Å is completely from the TTM3-F force field.

Two separate databases were used to construct the ∆V3-b correction potential. The first

database includes 43 214 reference energies of water trimer structures with maximum OO

distance in the range of [2.0, 7.5] Å. The second database has 25 191 reference energies with

maximum OO distance in the range of [5.0, 9.0] Å. These trimer structures were selected

from the 3-b database in Ref. 10. For each trimer structure, the ∆V3−b correction energy was

computed as the difference between BSSE-corrected CCSD(T)-F12a/aVTZ and TTM3-F 3-b

energies. The two data sets were fit separately using 4th-order 222111-symmetry PIPs which

are functions of Morse variables with a range parameter of 2.5 bohr. Further symmetrization

was done, as described in detail in Ref. 10, so that the fit is also invariant with respect to all

permutations of the three monomers. The fitting RMS error is 9 cm−1 for the first data set

and 2 cm−1 for the second one. The two fits were smoothly connected through a switching

function when the maximum OO distance is in [5.0, 5.5] Å. Finally, for the consideration
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of both computationally efficiency and accuracy, we applied an additional smooth switching

function when the maximum OO distance is within [6.0, 7.0] Å for the ∆V3−b correction

potential to make it decay to 0 smoothly in the long-range region.

The 4-b correction potential, ∆V4−b, is a fit to a dataset of 3692 tetramer structures and

corresponding reference energies computed at the CCSD(T)-F12/haTZ (aug-cc-pVTZ basis

for O atoms and cc-pVTZ for H atoms) level of theory. This is the same data set we used to

develop the 4-b component of the q-AQUA potential,10 except that in this work we fit to the

difference between CCSD(T) and TTM3-F 4-b energies rather than to direct 4-b energies.

The fitting basis is the same as described in q-AQUA 4-b and the ∆-ML 4-b to MB-pol;33

briefly, it consists of 200 “super PIPs” of Morse variables; these super PIPS are formed from

sums of regular PIPs so as to ensure invariance with respect to permutation of monomers.32

The fitting RMS error for the whole data set is 6.3 cm−1. Similar to the ∆V2−b and ∆V3−b,

a switching function is applied to make ∆V4−b decay to 0 smoothly when the maximum OO

distance in a tetramer is within [6.0, 6.5] Å.

Diffusion Monte Carlo Calculations

The diffusion Monte Carlo (DMC) method is based on the similarity between the diffusion

equation and the imaginary-time Schrödinger equation with an energy shift Eref

∂ψ(x, τ)

∂τ
=

N∑
i=1

h̄2

2mi

∇2
iψ(x, τ)− [V (x)− Eref]ψ(x, τ) (3)

The reference energy Eref in the above equation is used to stabilize the diffusion system

in its ground state and thus is the estimator of the zero-point energy.34 We employed the

unbiased, unconstrained implementation of DMC,35 in which the DMC calculation starts

from an initial guess of the ground-state wave function, represented by a population of

N(0) equally weighted Gaussian random walkers. These walkers then diffuse randomly in

imaginary time according to a Gaussian distribution. The population is controlled by a
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birth-death processes, described elsewhere.35 To maintain the number of random walkers at

about the initial value N(0), Eref is adjusted at the end of each time step according to

Eref(τ) = ⟨V (τ)⟩ − α
N(τ)−N(0)

N(0)
(4)

where N(τ) is the number of walkers at the time step τ , α is a feedback parameter, typically

around 0.1, and ⟨V (τ)⟩ represents the average potential energy of all of the walkers at that

step. Finally the average of the Eref provides an estimate of the ZPE.

In this study, the DMC calculations were carried out for water monomer, dimer, trimer,

and three isomers of the water hexamer (prism, book, and cage). The ZPEs of the dimer and

trimer are subsequently used to compute the dissociation energies of the dimer and trimer,

while the calculations for the hexamer are mainly exploratory. In these DMC calculations,

the imaginary time step ∆τ = 5 a.u. and α = 0.1 are used. For monomer, dimer and trimer,

five DMC calculations were performed for each system. In each DMC calculation, the number

of walkers is 50 000, and these walkers are equilibrated for 5000 time steps followed by 50

000 propagation steps. The statistical uncertainty is estimated as the standard deviation of

the 5 DMC runs for the same system.

Classical and path integral-based MD simulations

The q-AQUA-pol water potential was interfaced with the i-PI software36 to enable classical,

path integral and the ring polymer MD simulations (MD, PIMD, and TRPMD) to obtain

the theomodynamical and dynamical properties of liquid water at various temperatures

and atmosphere pressure (P = 1 atm). The system consists of 256 water molecules in

a periodic cubic box. All simulations were performed in the isothermal-isobaric ensemble

(constant NPT) which was controlled through a isotropic barostat as described in Ref. 37.

For classical MD simulations, an optimal-sampling GLE thermostat38 was applied. For

PIMD and TRPMD simulations, the PIGLET thermostat39 was employed and 8 beads were
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used. The trajectories were propagated for 2 ns with time step of 0.5 fs in classical MD

simulations. In PIMD simulations, we applied 8 beads and propagated the trajectories for 1

ns with time step of 0.5 fs. The first 200 ps of the trajectories was used for equilibrium and the

reminder used for analysis. To obtain dynamical property, such as self-diffusion constants,

additional NVE trajectories of 200 ps were propagated for classical MD and TRPMD using

the calculated densities from NPT simulations. Finally, a radial cutoff distance of 9.0 Å was

used in the q-AQUA-pol potential for the components of TTM3-F force field. The long-range

electrostatic interactions were treated using an extension of Wolf’s method which was shown

to efficiently and accurately treat the electrostatic interactions for liquid water the aqueous

solutions.40

Results

∆V2-b, ∆V3-b and ∆V4-b PIP Fits

The first results focus on the large 2-b interaction, which is the interaction of highest mag-

nitude. Fig. 1 is a scatter plot of all the ∆V2-b data vs the OO distance in panel A. As seen

there are large positive and negative differences in the region of the water dimer minimum,

i.e., around 2.7 Å as surmised from panel C. Also ∆V2-b goes to zero at OO distances greater

than 6.0 Å. Note that a direct fit to the CCSD(T) 2-b interaction is roughly 0.4 kcal/mol

at 6.5 Å.10 Thus, as expected, ∆V2-b is shorter range than the 2-b interaction. From the

correlation plot shown in panel B it is clear that the PIP fit to the data is highly precise

over the entire large range; From panels C and D it is clear that TTM3-F becomes rapidly

inaccurate as the OO distance decreases for both geometries shown and thus the correction

to it is large. Also it is clear that the corrected 2-b is in excellent agreement with direct

CCSD(T)/CBS energies.
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Figure 1: (A) Distribution of ∆V2−b correction energies (V CCSD(T)
2−b − V TTM3-F

2−b ) and OO
distance. (B) Correlation between fitted ∆V2−b correction energies and reference data. (C)
Comparison of the q-AQUA-pol 2-b potential, the TTM3-F 2-b potential, and the direct
CCSD(T)/CBS 2-b energies for an attractive cut. (D) Comparison of the q-AQUA-pol 2-
b potential, the TTM3-F 2-b potential, and the direct CCSD(T)/CBS 2-b energies for a
repulsive cut.
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Figure 2: (A) Distribution of ∆V3−b correction energies (V CCSD(T)
3−b − V TTM3-F

3−b ) and OO dis-
tance. (B) Correlation between fitted ∆V3−b correction energies and reference data. (C)
Comparison of the q-AQUA-pol 3-b potential, the TTM3-F 3-b potential, and the direct
CCSD(T) 3-b energies for an attractive cut. (D) Comparison of the q-AQUA-pol 3-b po-
tential, the TTM3-F 3-b potential, and the direct CCSD(T) 3-b energies for a repulsive cut.
All the CCSD(T) energies are calculated at CCSD(T)-F12/aVTZ level of theory
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Figure 3: (A) Distribution of ∆V4-b correction energies (V CCSD(T)
4-b −V TTM3-F

4-b ) as a function of
the maximum OO distance in a tetramer. (B) Correlation between fitted ∆V4-b energies and
reference data. (C) Comparison of the q-AQUA-pol 4-b potential, the TTM3-F 4-b potential,
and the direct CCSD(T)-F12 4-b energies for a monomer-trimer cut. (D) Comparison of the
q-AQUA-pol 4-b potential, the TTM3-F 4-b potential, and the direct CCSD(T) 4-b energies
for a dimer-dimer cut.
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As noted already, the 3-b and 4-b corrections are done using fits to ∆V3−b and ∆V4−b.

Figure 2 panel A shows a scatter plot of the ∆V3−b data (not a fit) vs the maximum OO

distance in a trimer. As seen, many of these are less than 1 kcal/mol; however, a large

number are several kcal/mol and as large as 10 kcal/mol. These are clearly significant errors

in the TTM3-F 3-b interaction. Panel B shows the correlation plot of the precise ∆V3-b PIP

fit (described in detail above). Panels C and D show two 1-d cuts when one of the monomer

is moved away from the dimer. As one can see, the ∆V3−b energy can be very large at short

range, indicating the inaccuracy of the TTM3-F force field in this range; this is also clearly

shown in the two potential cuts. The fitting brings the 3-b interaction into much better

agreement with CCSD(T) energies.

Similarly, Figure 3 panel A shows a scatter plot of the ∆V4−b data (not a fit) vs the

maximum OO distance in a tetramer and again significant errors in the TTM3-F 4-b is seen.

Panel B shows the correlation plot of the ∆V4-b PIP fit. Panels C and D show two 1-d cuts

when one of the monomer and a dimer are moved away from the remaining water molecules;

again the ∆V4-b correction brings the TTM3-F into better agreement with CCSD(T)-F12

energies, especially at the short range.

Tests for water clusters

Diffusion Monte Carlo calculations of D0 for the dimer and trimer

Unconstrained diffusion Monte Carlo (DMC) calculations were preformed for the zero-point

energies of the water dimer and trimer using the q-AQUA-pol. Recall that these are rigor-

ous “exact” quantum calculations and give the exact dissociation energy, D0, when combined

with the electronic dissociation energy (De) and exact ZPE of the water monomer. Ta-

ble 1 shows the electronic dissociation energy (De), ZPEs of the reactants and products,

and ZPE-corrected dissociation energy (D0) for the following dissociations: (H2O)2→2H2O,

(H2O)3→2H2O+H2O, and (H2O)3→3H2O. As seen, agreement with experiment is excellent.

Agreement is also excellent with DMC calculations of D0 for the dimer using the HBB217
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and MB-pol41 potentials, both of which potentials predict 1101 cm−1. These values are also

in excellent agreement with D0 reported for the dimer42 using the recent flexible CCpol-8sf

potential.43 For the water trimer the present results are in excellent agreement with previous

DMC calculations using WHBB,44 2724 cm−1, and MB-pol,41 2693 cm−1. Also there is very

good agreement for dissociation to three monomers, namely 3854 cm−1 for WHBB and 3794

cm−1 for MB-pol.

Table 1: Electronic dissociation energy (De), ZPEs of the reactants and products, and ZPE-
corrected dissociation energy (D0) for water dimer and trimer. Energies are in cm−1

.
Dissociation De ZPE (react.) ZPE (prod.) D0 D0 (expt.)

(H2O)2→2H2O 1739 9913±1 9272±1 1098±2 1105± 10 a

(H2O)3→2H2O+H2O 3764 15616±2 14549±2 2697±4 2650±150 b

(H2O)3→3H2O 5503 15616±2 13908±2 3795±4 NA

a From Ref. 45
b From Ref. 46

Finally, note that we performed exploratory DMC calculations using 20 000 walkers and

25 000 steps for the hexamer using the new PES and did not find “holes”, i.e., regions of

spuriously large negative energies. The ZPE of the cage isomer is roughly 26 cm−1 lower

than that of the prism isomer (both ZPEs are referenced to the electronic energy of the

prism isomer), in semi-quantitative agreement with the results using q-AQUA,10 though the

uncertainties in this work are much larger due to the smaller number of walkers and steps.

Energy analysis and harmonic frequencies of the water hexamer isomers

The isomers of the water hexamer play a major role in both experimental and theoretical

studies of water clusters. The lowest energy isomers are non-cyclic.47,48 The energies of eight

isomers have become a standard test of the fidelity of a water FF.49 A detailed analysis of the

electronic energies of the eight isomers is given Table 2. The electronic dissociation energies,

De, for q-AQUA-pol are in better agreement the benchmark CCSD(T) result than MB-pol,

which is in good agreement with the benchmarks for De and the many-body interactions.
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This analysis is presented graphically in Fig. 4 which also shows results from TTM3-F. The

results shown there and in the Table 2 are even more accurate those from our q-AQUA

potential, which is truncated at the 4-b level10 and also more accurate than the MB-pol

potential.31

Figure 5 shows the deviations in the harmonic frequencies of various water potential

on 4 hexamer isomers, compared to the benchmark calculations.50 The TTM3-F model

significantly underestimates the frequencies of OH stretches, as seen in the figure. Both MB-

pol and q-AQUA are quite accurate, and can achieve a mean absolute deviation of ∼ 10 cm−1.

The new q-AQUA-pol achieves an unprecedented accuracy on the harmonic frequencies of

hexamers, with a mean absolute deviation of ∼5 cm−1, and a maximum deviation of only

15 cm−1.
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Figure 4: Binding energies (A), 2-body energies (B), 3-body energies (C) and 4-body en-
ergies (D) for water hexamer isomers from TTM3-F, q-AQUA-pol, MB-pol and benchmark
CCSD(T) calculations (taken from refs. 51 and 31).

15



Table 2: 2-b, 3-b, 4-b and total dissociation energies (kcal/mol) for water hexamer isomers.
The geometries are taken from Ref. 51 without further optimization.

De 2-b energy
Isomer CCSD(T)a q-AQUA-pol MB-pol CCSD(T)b q-AQUA-pol MB-pol
Prism 45.92 45.77 45.73 -38.94 -38.94 -38.93
Cage 45.67 45.62 45.46 -38.47 -38.56 -38.48
Book 1 45.20 45.05 44.59 -36.02 -36.06 -35.81
Book 2 44.90 44.79 44.36 -36.13 -36.14 -35.92
Bag 44.30 44.13 43.71 -35.28 -35.28 -35.24
Chair 44.12 43.97 43.30 -32.71 -32.70 -32.48
Boat 1 43.13 42.97 42.45 -32.30 -32.28 -32.02
Boat 2 43.07 42.95 42.48 -32.24 -32.24 -32.02
MAE / 0.13 0.53 / 0.02 0.15

3-b energy 4-b energy
Isomer CCSD(T)a q-AQUA-pol MB-pol CCSD(T)b q-AQUA-pol MB-pol
Prism -8.70 -8.75 -8.77 -0.66 -0.55 -0.52
Cage -8.97 -9.03 -8.93 -0.53 -0.43 -0.47
Book 1 -10.38 -10.37 -10.26 -1.08 -1.03 -0.92
Book 2 -10.11 -10.14 -10.03 -1.00 -0.95 -0.85
Bag -10.35 -10.34 -10.15 -1.16 -1.09 -0.90
Chair -11.78 -11.76 -11.60 -1.78 -1.72 -1.44
Boat 1 -11.34 -11.35 -11.30 -1.63 -1.56 -1.35
Boat 2 -11.34 -11.33 -11.29 -1.61 -1.56 -1.35
MAE / 0.03 0.10 / 0.07 0.21

higher-body (> 4-b) energy
Isomer CCSD(T)a q-AQUA-pol MB-pol
Prism 0.06 0.03 0.05
Cage 0.01 0.01 0.03
Book 1 -0.04 -0.02 -0.03
Book 2 -0.02 -0.01 -0.01
Bag -0.01 -0.02 -0.02
Chair -0.20 -0.12 -0.11
Boat 1 -0.17 -0.10 -0.10
Boat 2 -0.17 -0.10 -0.10
MAE / 0.04 0.04

a CCSD(T)/CBS data from Ref. 51
b CCSD(T)/CBS data from Ref. 31
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Figure 5: Deviations from benchmark harmonic frequencies of water hexamers,50 calculated
with different water potentials. Each normal mode, indicated by a stick line, is colored
based on the type of the vibration (blue: OH stretches; red : bending; green: inter-molecular
vibrations).

Condensed phase properties

Properties at T = 298 K, P = 1 atm

We performed both classical and path integral simulations of liquid water under ambient

conditions for its thermodynamic properties. The simulations were carried out in constant

temperature-constant pressure (NPT) ensembles. The calculated liquid water density, tetra-

hedral order parameter, and self-diffusion coefficient are given in Table 3. At 298 K and

1 atm, the calculated water density from classical MD is 1.002 g/cm3 which is slightly

higher than the experimental data. After nuclear quantum effects are considered in PIMD

simulations, the density decreases to 0.997 g/cm−1 which reaches excellent agreement with

experiment. This indicates the importance of zero-point energy and quantum delocalization

in affecting the water structures and dimensions.
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Table 3: Properties of liquid water (tetrahedral order parameter q, density ρ, and self-
diffusion coefficient D) at 298 K from classical and PIMD or TRPMD simulations with
q-AQUA-pol potential

Classical PIMD Expt.
q 0.684 0.596 0.576a

ρ (g/cm3) 1.002 ± 0.002 0.997 ± 0.002 0.997b

D (Å2/ps) 0.185 ± 0.004 0.233d ± 0.027 0.230c
a from Ref. 52, b from Ref. 53, c from Ref. 54 and 55. d TRPMD
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Figure 6: OO, OH, and HH radial distribution function for liquid water at 298 K from
classical MD and PIMD NPT simulations. The experimental data are taken from Ref.
56,57.
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Figure 6 shows the OO, OH, and HH radial distribution functions (RDF) from both

classical MD and PIMD NPT simulations. As seen, the RDFs from q-AQUA-pol are in good

agreement with experimental measurement. For the OO RDF from classical MD simulation,

the first and second peak appear at 2.80 and 4.47 Å, respectively, while the experimen-

tal peaks are at around 2.81 and 4.50 Å. The classical MD simulations with q-AQUA-pol

potential correctly describe both H-bonded neighbors and non–H-bonded water molecules

that occupy the interstitial space between H-bonded neighbors. Such agreement is further

improved by the PIMD simulations, where the first and second peaks locate at 2.82 and 4.50

Å. In addition to the peak positions, other regions of the OO RDF also show better agree-

ment with experiment, especially the fact that the distribution becomes more delocalized in

the region of [3,4] Å. This is consistent with our previous finding in the NVT simulations

with original q-AQUA potential.10 Similar behavior is seen in the OH and HH RDFs which

further verifies the accuracy of q-AQUA-pol potential and the importance of nuclear quan-

tum effects in describing the covalent OH bonds in liquid water, as well as the H-bonded

and non-H-bonded solvation shells.

The oxygen-oxygen-oxygen triplet angular distribution POOO(θ) and tetrahedral order

parameter58,59 are convenient properties of detecting the tetrahedral orientational ordering

of the liquid water induced by the H-bonded network. To compute POOO(θ), three oxygen

atoms are considered as a triplet combination where two of the oxygen atoms are within

a cut-off distance from the third oxygen. The cut-off distance was selected to yield an

average oxygen-oxygen coordination number of around 4. The cut-off distances were chosen

as 3.27 and 3.45 Å for classical MD and PIMD simulations respectatively. The larger cut-off

distance in PIMD simulation indicates a less compact first solvation shell and a lower liquid

density after nuclear quantum effects are considered. This agrees with the findings in radial

distribution functions above. The tetrahedral order parameter, q, was calculated as:59

q = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cos(θijk) +

1

3

)2

(5)
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Figure 7: The oxygen-oxygen-oxygen triplet angular distribution functions of liquid wa-
ter at 298 K from classical MD and PIMD simulations. The experimental data are taken
from Ref. 52. The triplet angular distribution functions shown here were normalized to∫ π

0
POOO(θ)sin(θ)dθ. The calculated tetrahedral order parameters at T = 298K and P = 1

atm are 0.684 for classical MD, 0.596 for PIMD, and the experimental value is 0.576.52

As seen from Eq. 5, the tetrahedral order parameter, q, varies between 0 and 1. When

the system has perfect tetrahedral structure, q is exactly equal to 1. From classical MD

simulation at 298 K and 1 atm, we obtained q = 0.684, shown in Table 3, which is higher

than the experimental value of 0.576.52 This is confirmed in the distribution plot of POOO(θ)

in Figure 7, where the classical MD simulation presents a peak at 102.7◦ and a narrower

distribution than that from the experiment. This indicates that the classical MD simula-

tion with q-AQUA-pol potential overestimates the tetrahedral structural of the liquid water

with overly strong H-bond network. However, PIMD simulation generates tetrahedral order

parameter as q = 0.596 which is close to the experimental value. As for the distribution

of POOO(θ), results from the PIMD simulation with q-AQUA-pol potential are in excellent

agreement with experiment in terms of both peak position, width, and intensity. Again,

these observations confirm the effectiveness of combining PIMD and q-AQUA-pol potential

in describing the structural properties of liquid water.
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The self-diffusion coefficient, D, was also calculated to investigate the dynamical property

of liquid water at ambient condition. The results are listed in Table 3. With classical MD,

D is predicted as 0.185 ± 0.004 Å2/ps which is lower than the experimental value of 0.230

Å2/ps. With PIMD, a higher diffusion coefficient (0.233 ± 0.027) is observed and agrees

better with experiment. The significant change of diffusion coefficients in PIMD simulation

is due to nuclear quantum effects. As indicated in Ref. 60, there exist two competing nuclear

quantum effects in liquid water, intramolecular and intermolecular quantum effects. The

former weakens the covalent bond and induces a larger molecular dipole moment. The later

weakens the hydrogen bond and results in a less structured H-bond network. From our work

with q-AQUA-pol potential, the latter (intermolecular) effect dominates over the former one

(intramolecular ZPE). Liquid water has a destabilized hydrogen-bonding network and larger

diffusion coefficients. This observation also agrees with our previous NVT simulation with

the original q-AQUA potential.

Properties at various temperatures

Next, we explore the properties of condensed water at various temperatures. We performed

NPT classical MD simulations at P = 1 atm with temperatures from 238 K to 340 K,

which spans the region from supercooled to room-temperature water liquid water. The cal-

culated densities of liquid water are shown in Figure 8 in comparison with MB-pol data

and experimental measurements. As seen, the q-AQUA-pol results agree excellently with

the corresponding experimental values in high temperature region. When the temperature

decreases, the exists differences between q-AQUA-pol and experiment. However, the over-

all trend agrees well with experiment and the estimated temperature of maximum density

is between 268-278 K, closer to the experimental maximum at 277 K. Such behavior out-

performs MB-Pol which has larger disagreement with experiment and lower temperature of

maximum density.31,61 The difference between q-AQUA-pol and experimental densities can

be partly attributed to the neglect of nuclear quantum effects (NQE) in classical MD sim-
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ulations, which has been shown to be important.62 We conducted PIMD NPT simulations

at 288 K, 298 K, and 320 K to investigate the effect of NQE on densities. As shown in the

red diamond data in Figure 8, when the nuclear quantum effects are included, the predicted

densities decreases and excellent agreement with experiment is achieved for all these three

temperatures. It is satisfying to see that the two sets of results appear to merge at higher

temperatures. The error bars shown for the q-AQUA-pol results come from the density vs

time plots. These are shown in Fig. S3 of the Supporting Information, which extends to 1 ns

of the trajectory. It can be reasonably inferred that liquid water densities from q-AQUA-pol

can be improved with NQE included, resulting in better agreement with experiment.
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Figure 8: Temperature-dependence of the density of liquid water at 1 atm. Densities cal-
culated from PIMD simulations with q-AQUA-pol potential are indicated in red diamond
symbols. The MB-pol data are taken from Ref. 31. The experimental data are taken from
Ref. 53 and 63.

The temperature dependence of the order parameter58 is shown in Figure 9. As seen, the

distribution narrows as the temperature decreases into the supercooled liquid regime. That

cold water, i.e., ice, assumes a tetrahedral H-bonding motif can be traced at least to Bernal

and Fowler.64 The ridge at ≈ 0.5 is interesting; however, it is beyond the scope of this paper
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to investigate this in detail. Some discussion of it can be found in a recent paper where the

order parameter obtained with MB-pol was reported.61
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Figure 9: Probability distribution of the tetrahedral order parameter q at different temper-
atures from classical MD simulations.

Timing

Finally, we examine the computational cost in q-AQUA-pol for both energy and gradient

calculations for a 256-water system, using one single core or multiple cores of 2.4 GHz Intel

Xeon processor, where the cost for each correction term ∆Vn−b is also listed. The 256-water

structure is chosen from MD simulation of liquid water using our recently developed water

potential, q-AQUA.10 Note, the number of terms given is less than the factorial result owing

to the use of the finite range switching function. For example, the total number of 3-b

interaction terms in this 256 mer water system is

256

3

 = 2 763 520, however, only 3-b

interactions with maximum O-O distance smaller than 7.0 Å are considered for correction,

which resulted in only 20 790 ∆V3−b terms. It is also straightforward to do multi-core
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processing (using OpenMP) of the potential as shown in Table 4. Overall the speed up is a

factor of 5.9.

It is also clear from this table that the evaluation of the 20 790 3-b interactions is the

largest single contribution to the total time. Clearly if the cutoff range is smaller the number

of 3-b evaluations will decrease substantially; however, at some cost in accuracy. We plan to

investigate this in the future.

Table 4: The computation cost of the q-AQUA-pol potential for energy and gradient calcu-
lations of a 256 water system

Time for energy (s) Time for energy+gradient (s)
Component Number 1 core 8 core 1 core 8 core
TTM3-F / 0.27 0.07a 0.27 0.07a

∆V2-b 3816 0.11 0.02 0.36 0.06
∆V3-b 20790 0.65 0.23 2.20 0.39
∆V4-b 28786 0.30 0.04 1.05 0.14

Total 1.33 0.36 3.88 0.66
a Current TTM3-F force filed code calculates the gradients by default.

Discussion

The current state-of-the-art, machine-learned, CCSD(T) based force-fields for condensed-

phase water are substantially beyond what it was even 5 or so years ago. At that time there

were two machine-learned CCSD(T)-based FFs using the many-body approach, WHBB and

MB-pol. In these FFs, 2 and 3-b interactions for flexible monomers were obtained using

permutationally invariant polynomial regression15 fits to thousands of ab initio 2 and 3-

body interactions. These were rigorously tested against direct CCSD(T)/CBS results for

the electronic dissociation energy (atomization energies) of isomers of the water hexamer.

Such calculations51 were basically at the limit of feasibility for hexamers. Since these FFs

were trained peforce on small clusters, i.e., the dimer and trimer, the CCSD(T) calculations

were feasible. It should be noted that both WHBB and MB-pol made use of polarizable

FFs (TTM3 for WHBB and TTM4 for MB-pol) to account approximately for 4- and higher-
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body interactions. Numerous tests of the accuracy of MB-pol by Reddy et al31 have shown

that this potential is robust for many applications. In particular for the eight hexamer

isomers, a mean absolute error of 0.53 kcal/mol was reported. (Also, see Table 2.) Errors

are larger using WHBB, however, both potentials obtained the correct energy ordering of

the isomers, with the prism being the lowest energy isomer in electronic energy. In 2022,

we reported q-AQUA which is a strict machine-learned, CCSD(T)-based potential including

4-b interactions.10 The MAE for these hexamer isomers is 0.25 kcal/mol, which is roughly

half the MB-pol MAE. As shown here, q-AQUA-pol yields even more accurate electronic

dissociation energies for the benchmark water hexamer isomers than q-AQUA.

Coarser properties for the condensed phase liquid such as the OO, OH and HH radial

distribution functions and self-diffusion coefficient were accurately obtained using q-AQUA

(in NVT calculations) as well as MB-pol (in NPT calculations). These properties are also

accurately described by q-AQUA-pol in NPT calculations. Nuclear quantum effects, de-

scribed using PIMD calculations, using q-AQUA and here using q-AQUA-pol, were found to

be noticeable and generally to bring theory closer to experiment. The current results using

q-AQUA-pol for the temperature dependence of the density of H2O are especially encourag-

ing. They (both classical and PIMD) are significantly closer to experiment than those from

MB-pol.

Atom-centered neural network approaches have been reported for water for a number

of years, of which the “Deep Neural Network” (DNN) architecture, which is trained on

snapshots of AIMD trajectories using efficient DFT approach for the potential and forces,

is a prominent and versatile example.65,66 But even a perfect fit provides a level of accuracy

that is below the gold standard CCSD(T) method of electronic structure theory used in the

many-body approaches just discussed. Very recent reports using transfer-learning67 have led

to CCSD(T)-transfer-learned FFs for water.68,69 These are both atom-centered NN fits, and

in both cases were trained on DFT-based samples of condensed phase water consisting of

32 or 64 monomers. Several condensed phase quantities, i.e., radial distribution functions
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and diffusion constants, were reported using NVT simulations and shown to in very good

agreement with experiment. So this recent work perhaps marks a convergence of the MB

and atom-centered NN approaches. One graphical example of this is Fig. 10, which shows

the tetrahedral order parameter at room temperature calculated from q-AQUA-pol and the

recent NN-transfer-learned potential,69 as well as from q-AQUA in NVT simlulations. The

q-AQUA distributions were smoothed with a gaussian of FWHM=0.05. (The unsmoothed

q-AQUA-pol distributions are given in Fig. 9 ) Note all distributions are normalized to one.

As seen there is very good agreement, and we find this interesting and significant as the

three potentials, albeit all at a CCSD(T) level, are different in architecture. Also note the

self-diffusion constant obtained from this NN-TL force field (from NVT TRPMD), 0.221 ±

0.06 Å2/ps , is in good agreement with the present one of 0.233 ± 0.027 Å2/ps (from NPT

TRPMD).
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Figure 10: Probability distribution of the tetrahedral order parameter q at room tempera-
ture from q-AQUA-pol, q-AQUA, and recent NN-transfer-learned potential with CCSD(T)
accuracy.69 See text for more details.
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A similar, at least in spirit, NN-TL water potential was reported by Marx and co-

workers.68 That potential made use of long-range fixed-charged electrostatic interactions,

that are damped as usual to avoid the Coulomb singularity, as well as short range repulsive

Yukawa potentials. The charges are -0.8 for O and 0.4 for H, exactly the ones in the first gen-

eration (1981) fixed charged model, TIP.70 The properties reported were radial distribution

functions and the self-diffusion constant, which are in good agreement with experiment.

We have already described the basic difference between q-AQUA and q-AQUA-pol and

also the difference in treating the long-range for NN-TL potential of Marx and co-workers.

We now make some general comments on the differences between the q-AQUA or q-AQUA-

pol and the NN-TL potentials. One is the training of the models. For the MB approaches,

training is done on small water clusters, as these are all that is needed for n-b interactions.

For 2-b, 3-b and 4-b interactions included in q-AQUA and q-AQUA-pol, these are respec-

tively the dimer, trimer and tetramer. CCSD(T) calculations are quite feasible for these

and so a large range of geometries and energies can be explored for them. PIP fitting for

the dimer and trimer was certainly feasible a decade ago as these were just 6 and 9-atom

systems. The tetramer was a challenge a decade ago as it is a 12-atom system; however,

given the recent progress in doing PIP fitting,32 the fit for the 4-b became quite feasible. In

any case, one consequence of training on these small clusters is the high accuracy in describ-

ing the energies of other clusters such as the hexamer, provided the MB representation up

to the 4-b is accurate for these clusters. Indeed that was verified even for clusters as large

as the 20-mer71 and also for clusters up to the 25-mer.9 The question that if a 1-4 body

MBE would also provide an accurate description of condensed phase water, as demonstrated

by q-AQUA, was certainly not obvious; however, as we showed elsewhere10 and here for

the order parameter it is. In one respect, however, we were not satisfied with accuracy of

q-AQUA for the density. By interfacing q-AQUA to TTM3 we have “hedged our bets” and

hopefully provided a somewhat more solid footing for q-AQUA. By contrast, training for

the atom-centered NN force fields is done on samples of ca 32 or 64 monomers from direct
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DFT-MD simulations. Transfer learning is then done on even smaller samples using approx-

imate but feasible CCSD(T) calculations. So, it would be interesting to see if these NN-TL

force fields produced the level of accuracy seen here or in MB-pol for the hexamer isomer

energies. These were not reported in the two recent NN-TL force fields,68,69 and so we are

only making an educated speculation here.

Finally, we note an interesting recent study by Paesani and co-workers in which a NN

FF was “transfer-learned” using MB-pol as the source of data.72 The success in doing this

was limited with respect to training on one property and transferability to other properties.

This was especially extreme in the case of the many-body contributions to the water hexamer

isomer energies. On the other hand if training was done on the n-body contributions to these

energies, transferability to other properties was more successful, i.e., in agreement with MB-

pol was good. Given that MB-pol is a many-body based potential, this could perhaps be

seen as somewhat circular. However, it may also indicate that an accurate treatment of

many-body components of the water potential is indeed an effective way to train a force

field. The excellent results for the many-body q-AQUA and q-AQUA-pol for the properties

of water investigated to date support this latter possibility.

Summary and Conclusions

The q-AQUA water potential has been enhanced to describe higher (greater than 4)-body

interactions by interfacing it to the TTM3-F potential. In the spirit of ∆-machine learn-

ing, short-range 2- 3- and 4-b corrections were connected to the TTM3-F force field. These

are permutationally invariant polynomial fits to 2b-, 3- and 4-b energy differences between

corresponding CCSD(T) and TTM3-F energies. The resulting water potential, denoted as q-

AQUA-pol, was shown, as expected, to be even more accurate than q-AQUA for benchmark

energies and harmonic frequencies of eight isomers of the hexamer. Both q-AQUA-pol and

q-AQUA are more accurate than the excellent MB-pol potential for this benchmark. Unre-
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stricted diffusion Monte Carlo calculations of the water dimer and trimer using q-AQUA-

pol, demonstrate the robustness of the potential for these demanding quantum calculations.

Condensed phase properties including radial distribution functions, the self-diffusion con-

stant, the liquid and supercooled liquid densities, the triplet OOO and tetrahedral order

distribution were reported in NPT calculations for MD and PIMD or TRPMD calculaions.

Agreement with available experimental data is uniformly excellent, especially for the temper-

ature dependence of the density, which has been a major challenge for first-principles theory

and to some extent for the MB-pol potential. The tetrahedral order parameter distributions

from q-AQUA-pol and q-AQUA (shown here for the first time) are in very good agreement

with one from a recent transfer-learned Neural Network potential69 at 298 and 300 K, re-

spectively. The ∆-machine learning approach taken here and described earlier30 appears to

be general, and it would be straightforward to use in any polarizable water potential.

Supplementary information

Effects of many-body corrections on the OO radial distribution function, representative plots

of the time dependence of the the density of liquid water in NPT simulations and the mean

square displacement for classical MD and PIMD simulations

Data Availability

The data generated and used in this study are available at upon request to the authors.
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