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Abstract

The training phase is the most crucial stage during the machine learning
process. In the case of labeled data and supervised learning, machine
learning entails minimizing the loss function under various constraints. We
provide an innovativemodel for learningwith numerous data sets, resulting
from the application of multicriteria optimization techniques to existing
deep learning algorithms. Data fitting is formulated as amulticriteriamodel
in which each criterion measures the data fitting error on a specific data
set. This is an optimization model involving a vector-valued function, and
it has to be analyzed using the notion of Pareto efficiency. We present
stability results for efficient solutions in the presence of input and output
data perturbations. The multiple data set environment comes into play
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to eliminate the bias caused by the selection of a specific training set. To
apply this concept, we present a scalarization strategy as well as numerical
experiments in digit classification using MNIST data.
Keywords: Artificial Intelligence, Deep Learning, Machine Learning,
Multicriteria Optimization, Classification, MINST data

1. Introduction

It is now generally agreed that Artificial Intelligence (AI) refers to an in-
terdisciplinary field - encompassing biology, computer science, philosophy,
mathematics, engineering and robotics, and cognitive science - concerned
with simulating human intelligence using computer-based technologies.
This is accomplished by teaching machines how to execute activities that or-
dinarily require human intelligence, such as visual perception, speech recog-
nition, decision-making, and language translation (Wang and Barabási,
2021; Goel and Davies, 2011; Schank and Towle, 2000; de la Higuera, 2010).

Machine Learning (ML) is a subfield of AI that focuses on algorithms
used to learn from data andmake future predictions and judgments (Ripley,
1996). There are two primary families of ML algorithms: supervised learn-
ing refers to the process of learning an unknown function using labeled
training data and example input-output pairs. In contrast, "unsupervised
learning" refers to the detection of previously unnoticed patterns and infor-
mation in an unlabeled data set.

Deep Learning (DL) is an AI discipline and a type of ML technique
aimed at developing systems that can operate in complex situations (Good-
fellow et al., 2016). Deep architectures underpin DL systems (Bottou et al.,
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2007).
Many current DL applications, aided by the quantity of data, necessitate

a significant amount of training. Local rules, on the other hand, posed severe
limitations in terms of data transfer in distributed systems (Ahmed et al.,
2021). As a result, Konečnỳ et al. (2016) proposed the Federated Learning
notion (FL). According to Bonawitz et al. (2019) FL is a distributed learning
methodology that allows model training on a vast corpus of decentralized
data. With dispersed data across multiple nodes, the Decision Maker (DM)
must deal with opposing node objectives as well as potential hostile threats
(Bagdasaryan et al., 2020).

Multicriteria Optimization (also known as MOP) is a discipline of Op-
erations Research and Decision Making that studies optimization models
with multiple and often contradictory criteria. In the last fifty years, a
rising number of researchers have contributed to this topic, and a range
of approaches, methods, and strategies have been developed for use in a
variety of disciplines, spanning from economics to engineering, finance to
management, and many others. Multicriteria decision-making problems
are more difficult to assess and computationally intensive. They usually do,
however, lead to more informed and better decisions.

The application of MOP in DL in order to allow for the learning of
numerous data sets is a novel and unexplored area of research (Yang et al.,
2020). With the rise of Edge Computing (EC) and the Internet of Things
(IoT), there has been a considerable increase in the demand for these sorts
of applications, which has resulted in an increase in the cost of development.
In order to allow for such types of applications, we propose an innovative
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and rigorous technique that is also practical in nature. This paper extends
to a more general setting the approach proposed in Bryson et al. (2021) in
which the authors consider a model integrating into a unique framework
three different criteria, namely, a data-fitting term, and the entropy and the
sparsity of the set of unknownparameters. This paper has also been inspired
by other contributions in the literature related to the application of MOP
to inverse problems and estimation of unknown parameters in complex
systems as, for instance, in Berenguer et al. (2016) and Kunze and La Torre
(2020). Finally, it is worth mentioning that DL algorithms can be embedded
into MOP decision-making models to make them more informative and
effective, as in La Torre et al. (2021). Other recent applications of MOP to
DL can be found in Repetto et al. (2021), Hafiz et al. (2021).

In this paper, the machine training problem is initially formulated as an
abstract optimization problem involving a vector-valued functional. Conse-
quently, the concept of minimization is intended in the Pareto sense. We
offer results about the stability and convergence of the set of efficient solu-
tions. We then extend it to the case of machine training with numerous data
sets. We offer numerical experiments based on scalarization techniques
and test their performance utilizing digit data from the MINST data set
(see, for example, Deisenroth et al. (2020); Poole and Mackworth (2017);
Shalev-Shwartz and Ben-David (2014); Barber (2012); Jiang (2022); Moitra
(2018); Shah (2020)). Our findings indicate that the employment of multi-
criteria optimization techniques can also improve the training algorithm’s
precision.

The structure of the paper is as follows: Deep Learning Architectures
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and Multicriteria Optimization are introduced in Section 2. Section 3 gives
a vector-valued formulation of machine training using labeled data and
the principal stability properties. Section 4 introduces an extended ma-
chine training with several data sets. After presenting several numerical
experiments in Sections 5, 6, and 7, Section 8 concludes.

2. Preliminaries

2.1. Deep Learning: A Literature Review

It is well known that Deep Learning is a subarea of Machine Learning
that focuses on Artificial Neural Networks (ANNs). ANNs are networks
composed of many interconnected processing nodes or neurons that can
learn how to recognize complex patterns from data. ANNs are used for dif-
ferent applications, mostly for image recognition and classification, pattern
recognition, and time series prediction. In Deep Learning, the so-called
deep architectures are combinations of different ANNs.

In a very abstract formulation, a general deep architecture is defined as:

F = {f(·, w), w ∈ W}

where f(·, w) is a shallow architecture (for instance, the Perceptron pro-
posed in Rosenblatt (1958)). The origin of Deep Learning dates back be-
tween the 40s and the 60s in a broader area called Cybernetics. Before the
fundamental paper by Rosenblatt, other authors (see, for instance, McCul-
loch and Pitts (1943)) proposed a binary neurons-based system able to
implement simple logic operations. Nowadays, neither the Perceptron nor
the system proposed by McCulloch and Pitts (1943) are used in the current
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ANN configurations. Modern architectures, instead, rely on gradient-based
optimization techniques based on the Stochastic Gradient Descent (SGD)
algorithm and its recent variants (Saad, 1998). One of the first architectures
that have been trained using gradient-based methods is the Multilayer Per-
ceptron (MLP) (McClelland et al., 1987). The MLP architecture, presented
in Figure 1, is inspired by the brain’s essential functioning, and it emulates
a simple feedforward network of neurons, historically called "Perceptrons".
From a modeling perspective, the main activity of a neuron is described
by means of an activation function that can either be linear, sigmoidal, or
piecewise.

Figure 1: The architecture of the Multilayer Perceptron with a single hidden layer and fully
connected nodes

MLPs are widely used nowadays in many applications. In oncology,
Sharma et al. (2018) used an MLP architecture for breast cancer detection
achieving remarkable accuracy and relatively low training time. In time
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series forecasting Nosratabadi et al. (2021) used an MLP to forecast food
production, leveraging theMLP capability to learn from nonlinear historical
data. In engineering, Sopelsa Neto et al. (2021) relied on MLP to classify ce-
ramic insulators based on an ultrasonic inspection in order to avoid possible
interruptions of electricity. Another architecture well known for its rele-
vant applications to image processing is the Convolutional Neural Network
(CNN). The first definition of CNN goes back to the notion of Neocognitron
proposed in Fukushima and Miyake (1982), but the first implementation in
a supervised learning setting was proposed in LeCun et al. (1989) for digit
recognition. With respect to the MLP architecture, a classical CNN does
not rely only on fully connected layers, even if feature extraction through
filtering is performed by convolution layers. A schematic representation
of the functioning of a convolution layer is presented in Figure 2. As one
can see, a second pooling layer is attached to the initial one to allow for
dimensionality reduction.

input image
or input feature map

output feature maps

Figure 2: Interaction between a convolution layer and a pooling layer in a Convolutional
Neural Network architecture

CNNs are primarily used for image classification as they rely on the
local dependencies of the pixels used as features of the ANN architecture.
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In such cases, CNNs perform better than the standard MLP. In breast cancer
prediction Desai and Shah (2021) found higher accuracies compared to
the MLP. Still, in medical image recognition, Billones et al. (2016) used a
CNN applied to three dimensional MRI scans to detect Alzheimer’s disease
and cognitive impairment. In some cases, CNNs have been repurposed in
order to be utilized with tabular data as in the case of Zhu et al. (2021),
achieving remarkable performance. With the renewed interest in ANNs and
DL, more advanced and sophisticated architectures have been proposed
to overcome the problems presented in earlier ANNs as, for instance, the
problem of the vanishing gradient. Initially proposed by He et al. (2015)
ResNet differs from the canonical MLP architecture in that it allows for
"shortcut connections" that mitigate the problem of degradation in the
case of multiple layers. Although the usage of shortcut connections is not
new in the literature (Venables and Ripley, 1999), the key proposal of He
et al. (2015) was to use identity mapping instead of any other nonlinear
transformation. Figure 3 shows the smallest building block of the ResNet
architecture in which both the first and the second layer are shortcutted,
and the inputs x are added to the output of the second layer.

The rationale behind ResNet is that by residual learning, the solvers will
be able to capture identity mappings that otherwise will be lost in multiple
nonlinear layers. With shortcuts, identity mapping is achieved by simply
annihilating the weights of the input layers that have been shortcutted.
ResNets proved to be a parsimonious yet effective architecture in several
image classification tasks (Canziani et al., 2017; Chen et al., 2018; Wu et al.,
2019). An application of MOP and ResNet is provided in Khan et al. (2019).
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weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 3: A shortcut connection layer with identity mapping characterizing the Residual
Network architecture

In this paper, the authors proposed a Transfer Learning approach based
on multiple training instances. In particular, the authors addressed the
problem of breast cancer prediction, achieving a remarkable performance.

2.2. Basics on Multicriteria Optimization

In Multicriteria Optimization (MOP), we consider an optimization
model with several conflicting criteria. In this section, we recall some basic
notions inMOP that will be used in the following sections. Given a compact
subset Ω of Rn and a vector-valued map J : Ω ⊂ Rn → Rp, J = (J1, . . . , Jp)

with Ji : Ω ⊂ Rn → R, any finite-dimensional MOP problem can be written:

min
x∈Ω

J(x). (1)

In this paper, we assume that an ordering on Rp is induced by the Pareto
cone Rp

+. A point x ∈ Ω is said to be Pareto optimal or efficient if it is
feasible and, for any possible x′ ∈ X , J(x) ≤Rp

+
J(x′) implies J(x) = J(x′).
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Equivalently, a point x ∈ Ω is said to be Pareto efficient if (J(x)−Rp
+)∩J(Ω) =

{J(x)}. We denote byEff(J) the set of efficient points for function J . We say,
instead, that x ∈ Ω is weakly Pareto efficient when (J(x)−intRp

+)∩J(Ω) = ∅.
We denote by WEff(J) the set of weakly efficient points for function J . We
mention also that the point x is properly Pareto efficient (with respect to C)
when there exists a cone C with Rp

+ ⊆ intC such that x is Pareto efficient
with respect to the cone C, i.e.

(J(x)− C) ∩ J(Ω) = {J(x)} (2)

In the following PEffC(J) denotes the set of Pareto properly efficient points.
Obviously, every properly Pareto efficient point is also Pareto efficient. For
a deeper exposition of the notions of Pareto efficiency, one can see Sawaragi
et al. (1985). Scalarization techniques allow reducing a MOP problem to a
single criterion one. Linear scalarization is the most classical scalarization
approach. In this context, a MOP model is reduced to a single criterion one
by summing up all criteria with different weights, which gives the relative
importance of each criterion for the DM. Hence, a scalarized version of a
MOP model is given by:

min
x∈Ω

p∑
i=1

βiJi(x), (3)

where β = (β1, . . . , βp) is a vector taking values in Rp
+. The next result is

well-known and gives relations between solutions of the scalarized problem
(3) and solutions of the vector problem (1).

Proposition 1. (see e.g. Sawaragi et al. (1985)) The following statements hold

true:
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i) If β ∈ Rp
+, then every solution of problem (3) is weakly Pareto efficient for

problem (1). If functions Ji, i = 1, . . . , p are convex, then the converse holds

true, i.e. for every weakly Pareto efficient solution x of problem (1) there

exists a vector β ∈ Rp
+ such that x is a solution of problem (3).

ii) If β ∈ intRp
+ then every solution of problem (3) is properly Pareto efficient for

problem (1) and hence a Pareto efficient solution. If functions Ji, i = 1, . . . , p

are convex, then the converse holds true, i.e. for every properly Pareto efficient

solution x of problem (1) there exists a vector β ∈ intRp
+ such that x is a

solution of problem (1).

In the literature, one can find different scalarization approaches that can
also be applied to non-convex problems. Scalarization techniques can also
be considered for problems in which Rp is ordered by a general cone K,
different from the Pareto one. In this case, linear scalarization relies on the
elements of the dual cone.

3. Learning with Labeled Data: A Vector-Valued Formulation

In supervised machine learning, machine training is fundamental and
measures how well a trained ML model will perform. In the training phase,
which is essential for future predictions, one wants to avoid the problems
of overfitting and underfitting. A model is said to be well-fitted when it
produces accurate outcomes, something between underfitting and over-
fitting (see Alpaydin (2014); Mak and Chien (2020); Chase and Freitag
(2019)). During the training phase, a supervised ML algorithm is run on
data for which the target output, known as “labeled” data, is known. The
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training process is based on the minimization of an objective function that
models the data-fitting error over a set of unknown parameters that define
the model accuracy. Over time, as the algorithm learns, the data-fitting
error on the training data decreases (Blum et al., 2020; Rao, 2013; Flach,
2012).

Machine training from data consists of finding the optimal model pa-
rameters to describe the data. The notion of “fitting” provides a measure of
how well a model generalizes from given data.

3.1. Model formulation

Most of the data-fitting techniques in an abstract formulation, can be
summarized as follows. Let (X, dX) and (Y, dY ) two metric spaces, Λ ⊂ Rn ,
a compact set of parameters. Consider a set of input vectors xi and labels
yi, i = 1, . . . , N , a black box function f : X × Λ → Y and the following
data-fitting/minimization problem:

min
λ∈Λ

DFE(λ) := (dY (f(x1, λ), y1), dY (f(x2, λ), y2), ..., dY (f(xN , λ), yN))

(4)
The folllowing properties of function DFE(λ) are immediate:

• DFE(λ) : Λ→ RN
+

• if the function f(x, ·) is continuous, then DFE is continuous over Λ

and, therefore, DFE has at least one global Pareto efficient solution

• if there exists λ∗ ∈ Λ such that DFE(λ∗) = 0 then λ∗ is an ideal - and
then efficient - point (In this case f(xi, λ

∗) = yi and this corresponds
to the ideal case in which f(·, λ∗) maps exactly xi into yi.)
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As one can see from its definition, the data-fitting term measures the
distance between the empirical values yi and the theoretical values f(xi, λ)

obtained by the black box function if a specific value of λ is plugged into it.
Therefore the training process is reduced to the minimization of the vector-
valued function DFE(λ) over the parameters’ space Λ. The function DFE

can exhibit different mathematical properties that depend on the specific
functional form of f and the definition of dY .

As explained in the previous section, one technique to simplify the
complexity of a vector-valued problem and reduce it to a scalar one consists
in taking its scalarization using weights. If we denote by βi ≥ 0, i = 1...N , a
set of weights, and we scalarize the problem as follows:

min
λ∈Λ

β ·DFE(λ) :=
N∑
i=1

βid
Y (f(xi, λ), yi) (5)

where β = (β1., ..., βN), then Eq. (5) and Eq. (4) are related to each other
via the results presented in the previous section.

The following examples show how one can obtain classical regression
models by specifying the form of dY and f and by means of a linear scalar-
ization approach.

Example 1. Let us suppose that f(x, λ) = λ · x, dY (f(xi, λ), yi) = (λ · xi− yi)2,

and scalarization coefficients are βi = 1
N
, i = 1...N . Then the scalarization of the

above model (4) takes the form:

min
λ∈Λ

β ·DFE(λ) :=
1

N

N∑
i=1

(λ · xi − yi)2 (6)

which coincides with the mean squared error.
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Example 2. Suppose that yi ∈ {−1, 1} and dY (f(xi, λ), yi) = φ(f(xi, λ)yi)

where φ(u) = ln(1 + e−u) and βi = 1
N
. Then the scalarization of the above model

(4) takes the form

min
λ∈Λ

β ·DFE(λ) :=
1

N

N∑
i=1

ln(1 + e−f(xi,λ)yi) (7)

which coincides with the logistic regression model.

Example 3. Suppose that yi ∈ {0, 1} then

dY (f(xi, λ), yi) = −
N∑
i=1

[yi log(f(xi, λ)) + (1− yi) log(1− f(xi, λ))]

and scalarization coefficients are βi = 1
N
, i = 1...N . Then the above problem (4)

takes the form:

min
lambda∈Λ

β ·DFE(λ) := − 1

N

N∑
i=1

[yi log(f(xi, λ)) + (1− yi) log(1− f(xi, λ))]

(8)
which coincides with the Binary Cross Entropy loss with reduction.

3.2. Stability results

It is well known that data can be subject to errors due to limited observ-
ability, noisy measurements, computational implementations, and predic-
tion errors. Hence, it is worth studying the stability of the function DFE

and of optimal solutions to the problem (4) with respect to data set pertur-
bations. The following proposition states a stability result for the values of
the function DFE with respect to perturbation of the label set.
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Proposition 2. Let {(xi, yi)} and {(xi, ỹi)} be two data sets with the same nu-

merosity N ∈ N, and let DFE(λ) and D̃FE(λ) be the two corresponding fitting

functions. Then

‖DFE(λ)− D̃FE(λ)‖2 ≤

√√√√ N∑
i=1

dY (yi, ỹi)2 (9)

The following result, instead, provides a condition for the stability of
the values of the function DFE with respect to perturbation of the input
data.

Proposition 3. Let {(xi, yi)} and {(x̃i, yi)} be two data sets with the same nu-

merosity N ∈ N, and let DFE(λ) and D̃FE(λ) be the two corresponding fitting

functions. Let us suppose that f(x, λ) is Lipschitz with respect to x, that is there

exist K such that dY (f(a, λ), f(b, λ)) ≤ KdX(a, b) for any a, b ∈ X and λ ∈ Λ.

Then

‖DFE(λ)− D̃FE(λ)‖2 ≤ K

√√√√ N∑
i=1

dX(xi, x̃i)2 (10)

The next result, stated in terms of convergence of optimal solutions,
concerns the stability of weakly efficient solutions and properly efficient
solutions of problem (4) with respect to perturbations of both the input
and the label data.

Proposition 4. Let (xni , y
n
i ) be sequences in X × Y converging to (xi, yi) in the

dX×Y = dX + dY metric such that f(xni , λ) converges to f(xi, λ), uniformly with

respect to λ ∈ Λ, i = 1, . . . , N . Assume f(x, ·) is continuous and let

DFEn(λ) := (dY (f(xn1 , λ), yn1 ), dY (f(xn2 , λ), yn2 ), ..., dY (f(xnN , λ), ynN)) (11)
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i) Let λn ∈WEff(DFEn). Then there exists a subsequence λnk
converging to

λ̄ ∈ Λ such that λ̄ ∈WEff(DFE).

ii) Let λn ∈ PEffC(DFEn), with Rp
+ ⊆ intC. Then there exists a subsequence

λnk
converging to λ̄ ∈ Λ such that λ̄ ∈ Eff(DFE).

The previous stability result is stated in terms of convergence of weakly
efficient and properly efficient solutions. Often, for computational reasons,
it is worth having an estimation of the distance between optimal solutions
of a problem (4) with unperturbed and perturbed data in order to give a
bound to the error that can be made computing solutions of problem (4)
with imprecise data. This is the aim of Proposition 5 below. In order to state
this result, we need to introduce some preliminary concepts.
For two subsets of Λ, A and C, we set

e(A,C) = supa∈Ad(a, C) (12)

with d(a, C) = infc∈C‖a − c‖. In the following, for simplicity sake, let
zi = (xi, yi) ∈ Z = X × Y , z = (z1, . . . , zN) ∈ ZN , z0 = (z0

1 , . . . , z
0
N). We

assume Z is a metric space with distance dZ = dX + dY .
Let gi(λ, zi) = di(f(xi, λ), yi) , i = 1, . . . , N and

g(λ) = (g1(λ, z1), . . . , gN(λ), zN) = DFE(λ)

Minimizing g clearly means minimizing DFE(λ), with data given by the
vector z. We denote by Effz(DFE) the set of efficient solutions with data
set given by z.
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Definition 1. (see e.g. Li and Xu (2010)) Let f : Λ→ R. We say that λ0 ∈ Λ

is an isolated minimizer of order α > 0 and constant h > 0 when for every λ ∈ Λ

it holds

f(λ)− f(λ0) ≥ h‖λ− λ0‖α (13)

We say that λ0 ∈ Λ is a local isolated minimizer of order α > 0 and constant h > 0

when (13) holds for λ in a neighborhood of λ0.

Let βi ∈ (0, 1], i = 1, . . . , N with ∑N
i=1 βi = 1 and consider function

l(λ, z) =
∑N

i=1 βigi(λ, zi) . Denote by Slz the set minimizers of l(·, z) over Λ.
It is well known that Slz ⊆ Effz(DFE) where Effz(DFE) denotes the set of
efficient points of DFEwith data set given by z (see Proposition (1)).

Proposition 5. Assume that

i) for some choice of scalars βi ∈ (0, 1], i = 1, . . . , N with
∑N

i=1 βi = 1 there

exists a point λ(z0) ∈ Λ that is an isolated minimizer of order α > 0 and

constant h > 0 for l(·, z0).

ii) for any λ ∈ Λ, each gi(λ, ·) is Hölder of order δ > 0 on Z with constant

m > 0, i.e. for any z1
i , z

2
i ∈ Z it holds

|gi(λ, z1
i )− gi(λ, z2

i )| ≤ mdZ(z1
i , z

2
i )
δ (14)

Then it holds

e(Slz, S
l
z0) ≤

(
2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

(15)

Consequently, there exists λ(z) ∈ Effz(DFE) such that

d(λ(z),Effz0(DFE)) ≤
(

2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

. (16)
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Proposition (5) admits a local version presented in the following result.

Proposition 6. Assume that

i) for some choice of scalars βi ∈ (0, 1], i = 1, . . . , N with
∑N

i=1 βi = 1 there

exists a point λ(z0) ∈ Λ that is a local isolated minimizer of order α > 0 and

constant h > 0 for l(·, z0).

ii) for any λ ∈ Λ, each gi(λ, ·) is Hölder of order δ > 0 on Z with constant

m > 0.

iii) for z → z0, gi(λ, z)→ gi(λ, z
0) uniformly with respect to λ in a neighbor-

hood of λ(z0).

Then there exists a neighborhood U of z0 such that for every z ∈ U one can find

λ(z) ∈ Effz(DFE) such that

d(λ(z),Effz0(DFE)) ≤
(

2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

. (17)

4. Learning with multiple data sets

Learning frommultiple distributed data sets has many advantages, such
as improved generalizability, lower sensitivity to overfitting, and increased
robustness. For instance, it is possible to take advantage of the redundancy
of the information and improve accuracy by combining multiple comple-
mentary data sources. It allows us to avoid bias toward a specific data set.
It also allows us to use the data from the different available sources at differ-
ent times. Such a type of distributed learning also carries a computational
advantage. Several samples scattered in different nodes allow scalability
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without increasing the sole worker’s computational burden. In addition, it
is also more cost-effective and easier to manage.

We now extend the previous approach to the case of multiple data
sets, Γ1, Γ2, ... ΓM , each of them with cardinality si. This is an extended
scenario in which we want to learn simultaneously from different data sets
by balancing the information extracted from each of them. This approach
also allows for reducing the bias in the training process due to the choice
of a particular set of samples. It is pretty straightforward to extend to this
context the stability results proved in the previous sections. The training
process in this context reads as

min
λ∈Λ

DFE(λ) := (DFE1(λ), ...,DFEM(λ)) (18)

where DFE1 : Λ→ Rs1 , ... DFEM(λ) : Λ→ RsM are the data fitting terms
defined on each data set Γi, i = 1...M .

One possible way to solve the above model is to rely on the linear scalar-
ization approach. If we denote by βi ∈ Rsi

+ , i = 1, . . . ,M , the weights
associated with each criterion, the scalarized model reads as

min
λ∈Λ

β1 ·DFE1(λ) + · · ·+ βM ·DFEM(λ) (19)

As demonstrated in the previous section, it is possible to characterize
the efficient solutions of the above Eq. (18) by varying the scalarization
weights in Eq. (19). The same argument applies to the stability results
presented in the previous section that can be extended to this case as well.
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5. Numerical experiments

The following sections present some computational experiments regard-
ing digit recognition with different neural network architectures. As it is
classical in image recognition, the input layer corresponds to a vectorized
form of the training image: a greyscale image with n × m pixels can be
digitalized into a n×mmatrix and therefore transformed into a nm dimen-
sional vector. The training set we consider in our analysis is a subset Γ of the
MNIST data set. The MNIST data set, whose sample is presented in Figure
4, has been extensively employed to test several families of ML classification
algorithms 1. In the considered data set, a digit is a 20x20 pixels image. The
associated matrix contains numbers between 0 and 255, proportional to the
pixel’s brightness. In order to proceed with our analysis, the data set Γ has
been split into three subsets, each of them with the same amount of data,
Γ1, Γ2, and Γ3 (s1 = s2 = s3). Γ1 is the unaltered third of the original data,
while the data in Γ2 and Γ3 have been modified by adding a zero-mean
Gaussian noise with standard deviations σ2 and σ3, respectively.

The above vector problem can be scalarized to be presented in the fol-
lowing form:

min
λ∈Λ

β1DFE1
s1

(λ) + β2DFE2
s2

(λ) + β3DFE3
s3

(λ) (20)

where βi is the weight associated with the i-th term, while DFEi
si
refers

to the data fitting function defined using the data set Γi. Here, with some
abuse of notation, we still indicate the scalarized data fitting terms over
each data set with the expressions DFEi

si
(λ).

1Available at http://yann.lecun.com/exdb/mnist/

20



Figure 4: Handwritten digits from the MNIST data set

To test our approach, we select β = 1
3
, which corresponds to the case of

no data set splitting, and we perturb each architecture by an ε parameter.
The resulting loss function reads as:

min
λ∈Λ

(
1

3
+ ε

)
DFE1

s1
(λ) +

(
1

3
− ε

2

)
DFE2

s2
(λ) +

(
1

3
− ε

2

)
DFE3

s3
(λ) (21)

when ε = 0 we obtain the basic formulation. All ANN structures were opti-
mized using a stochastic gradient descent approach with the same learning
rate and pseudo-randomly generated weights to compare the results.

5.1. The case of the Multilayer Perceptron

In this section we perform a numerical experiment by employing the
MLP architecture. In this context the fitting function DFEi

si
reads as:

21



DFEi
si

(λ) =
1

si

si∑
j=0

K∑
k=1

[y
(k)
j log((hλ(xj))k) + (1− y(k)

j ) log(1− (hλ(xj))k)]

(22)
where si is the cardinality of Γi. The hypothesis function (hλ(xj))k fol-

lows the idea of forward propagation: each unit in the second and the
third layer evaluates the linear combination (λTxj) of its preceding signals
through a sigmoid function, detailed in :

hλ(xj) =
1

1 + eλT xj
. (23)

The index k = 1, . . . , K represents the kth label. The matrices λ(1) and λ(2)

incorporate the forward propagation from layer 1 to layer 2 and from layer
2 to layer 3, respectively.

In order to investigate small variations of this configuration we perturb
the weight βi with a small ε. The specific architecture we use consists of an
MLP with an input layer, a hidden layer, and an output layer. Given that the
data set contains images with 20× 20 pixels, an input layer with N = 400

nodes will be needed. The hidden and the output layer have H = 25 and
K = 10 nodes, respectively.

Figure 5 shows how the accuracy changes as a function of the pertur-
bation parameter ε. By varying ε uniformly over the interval [0.001, 0.01],
the accuracy levels are compared with respect to the benchmark case in
which ε = 0. Once again, this experiment confirms the previous results on
accuracy improvement.
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Figure 5: Accuracy on the MNIST data set of the Multilayer Percepron with different values
of ε (blue line). The non-perturbed benchmark case with = 0 is in red.

5.2. The case of ResNet

In the second numerical experiment, we consider a more recent ANN
architecture, the so-called ResNet, whose configuration is illustrated in
Figure 6. The flattened input image passes through the first and second
layers with the rectifier activation function, that is:

hλ(xj) = max{0, λTxj} (24)

The shortcut is placed in the output of layer one and added to the output
of layer two. For the numerical experiment to be consistent with the ones
in the previous section, we employ the same cost function as in Eq. (22).
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Figure 7 shows the accuracy as the perturbation parameter ε changes. The
results corroborate the theoretical findings of the previous sections.

20x20 linear, 64

64 linear, 64

+

64 linear, 10

Relu

Relu

Figure 6: Residual Network architecture employed in the numerical experiment

5.3. The case of Convolutional Neural Networks

For the last numerical example, we consider a Convolutional Neural
Network architecture. In our experiment, we use the architecture illustrated
in Figure 8. Figure 9 shows the change in terms of accuracy with the epsilon
perturbation on the betas.

6. Testing on the validation set

The results of the previous numerical experiments have been analyzed
only from the perspective of the training process. However, in the general
empirical setting, the performance is taken from a set, or multiple sets, of
data that is not used in training. This set of data is called the validation set
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Figure 7: Accuracy on the MNIST data set of the Residual Network with different values
of ε perturbation (blue line), against the non perturbed benchmark (red line)

and serves a different role from the test set. The necessity of a validation
set is twofold. First, the model performance on a validation set is a rough
proxy of the model’s generalization error (Friedman, 2017). Second, the
validation set is also used to check the goodness of possible hyperparameter
configurations (Goodfellow et al., 2016). In our case, ε should be treated
as a hyperparameter. Therefore our empirical setting uses the results de-
rived from the best neural network architecture out of the three used in
the numerical experiments. Then we select the model with the value of
ε achieving the best performance in the training set and compare it with
the model’s accuracy in the validation set with respect to the benchmark in
which ε = 0.
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1 Conv2d, 32

32 Conv2d, 64

64 MaxPool2d

9216 Linear, 128

128 Linear, 10

Relu

Relu

Flatten

Relu

Figure 8: Convolutional Neural Network architecture employed in the numerical experi-
ment

7. Architecture design with sparsity

In the literature, several authors have used the notion of sparsity to
reduce the complexity of a model by considering only those parameters
whose values have a major impact on the solution. In fact, the addition of
the sparsity term allows finding solutions that are "simpler" to be used or
decision rules that are "easier" to be implemented. In general, we say that a

Table 1: Accuracy on the training and validation sets, with ε = 0.0 and ε = 0.01

ε Training set Validation set

0.0 0.9912 0.9668

0.01 0.9971 0.9673
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Figure 9: Accuracy on the MNIST data set of the Convolutional Neural Network with
different values of ε perturbation (blue line), against the non perturbed benchmark (red
line).

real vector x in Rn is sparse when most of the entries of x vanish. This is
equivalent to saying that the 0-pseudonorm, or counting ‘norm’, defined as
‖x‖0 = #{i : xi 6= 0}, must be as small as possible. The 0-pseudonorm is
a strict sparsity measure, and most optimization problems based on it are
combinatorial in nature and hence in general, NP-hard. In this section, we
consider the impact of sparsity on performance in order to further analyze
the ramifications of our findings. Consequently, we enhanced the data
fitting loss function by incorporating an L-2 norm on the CNN’s parameters,
resulting in the loss function shown below:

min
λ∈Λ

(
1

3
+ ε

)
DFE1

s1
(λ)+

(
1

3
− ε

2

)
DFE2

s2
(λ)+

(
1

3
− ε

2

)
DFE3

s3
(λ)+β4‖λ‖0

The CNN architecture was used for this investigation since it was the
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most effective one on the holdout sample. In order to implement sparsity in
our architecture, we reduced the importance given to each data set during
training. To be more specific, we fixed the level of sparsity so that β4 = 0.1

was achieved. In Figure 10, we can see that the level of sparsity has an
impact on the performance of the model. Indeed the model for lower values
of ε is in line with the benchmark, i.e., the case with no adversarial learning
and no sparsity. This result is consistent with the overall tradeoff between
sparsity and training performance that has been demonstrated in many
works (Hoefler et al., 2021). In essence, the gain given by the adversarial
learning is captured by the sparsity requirement. What is noteworthy is
the rise in such performance as ε increases, indicating a favorable impact
of employing a multicriteria approach throughout the learning process, as
demonstrated in the graph. However, the effect of sparsity is still significant
in negatively impacting the performance, which is nowhere near the case
without sparsity. This is clear when the value of ε is relatively high. In this
case, sparsity eliminates the benefit of increased performance, making the
model’s performance plateauing.

8. Policy implications and conclusions

Nowadays any decision-making process relies more andmore on precise
and accurate predictions. Having more accurate predictions than market
competitors has a huge impact on any strategic decision and, ultimately, on
performances.

With this aim in mind, in recent years, public organizations and com-
panies have invested a lot of effort and financial resources in hiring data
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Figure 10: Accuracy on the MNIST data set of the Convolutional Neural Network with
different values of ε perturbation (blue line), against the non perturbed benchmark (red
line), with and without L-2 norm sparsity.

scientists and machine learning engineers. This aspect, combined with the
access to a huge amount of freely available data as well as the development
of more and more advanced machine learning algorithms, have increased
the likelihood of estimating future scenarios and events.

Recent literature has demonstrated that there is still room for improving
existing techniques, for instance, by bringing experiences and approaches
developed in other contexts into the machine learning literature.

This is the case of this paper, in which we propose a new approach
which integrates machine learning with multicriteria decision-making tech-
niques. The modified machine learning model presented in this paper
has been formulated in an abstract setting as a vector-valued optimization
problem in which each criterion measures the distance between the output
value associated with an input value and its label. Stability results for this
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problem, which demonstrate how the modified algorithm performs under
perturbations, have been proved as well,

We have then considered the case of multiple data sets. Learning from
multiple distributed data sets has many advantages, such as improved
generalizability, lower sensitivity to overfitting, and increased robustness.
We have demonstrated how to use our proposed multicriteria approach in
the case of multiple data sets in which the training can be split over each
data set and run parallelly and independently.

We have applied this model to the case of Multilayer Perceptron, Deep
Residual Network, and Convolutional Neural Network via scalarization
approach. Our numerical simulation shows that the adoption of multicrite-
ria techniques can not only provide a general framework to contextualize
the machine training with multiple data sets, but it can also provide better
accuracy and performance than classical deep learning algorithms if the
right choice of the weights is selected.

Future works should include the implementation of more advanced
multicriteria techniques as well as the use of dynamic approaches.
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9. Technical Appendix

Proof. This is the proof of Proposition 2. By computing, we get:

‖DFE(λ)− D̃FE(λ)‖2
2 = (25)

‖(dY (f(x1, λ), y1), ..., dY (f(xN , λ), yN))−(dY (f(x1, λ), ỹ1), ..., dY (f(xN , λ), ỹN))‖2
2 =

(dY (f(x1, λ), y1)−dY (f(x1, λ), ỹ1))2+...+(dY (f(xN , λ), yN)−dY (f(xN , λ), ỹN))2 ≤

dY (y1, ỹ1)2 + ...+ dY (yN , λyN)2

where the last inequality follows from the distance property:

|dY (a, b)− dY (b, c)|2 ≤ dY (a, c)2

Proof. This is the proof of Proposition 3. By computing, we get:

‖DFE(λ)− D̃FE(λ)‖2
2 = (26)

‖(dY (f(x1, λ), y1), ..., dY (f(xN , λ), yN))−(dY (f(x̃1, λ), y1), ..., dY (f(x̃N , λ), yN))‖2
2 =

(dY (f(x1, λ), y1)−dY (f(x̃1, λ), y1))2+...+(dY (f(xN , λ), yN)−dY (f(x̃N , λ), yN))2 ≤

K2dX(x1, x̃1)2 + ...+K2dY (xN , x̃N)2

and now the thesis easily follows.
Proof. This is the proof of Proposition 4.
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i) Since Λ is compact, λn admits a subsequence λnk
converging to λ̄ ∈ Λ.

Since λnk
∈WEff(DFEnk

), we have

DFEnk
(λ)−DFEnk

(λnk
) 6∈ −intRN , ∀λ ∈ Λ (27)

Further we have

‖DFEnk
(λnk

)−DFE(λ̄‖2 ≤

‖DFE(λnk
)−DFE(λ̄)‖2 + ‖DFEnk

(λnk
)−DFE(λnk

)‖2

(28)

Uniform convergence of DFEnk
to DFE implies DFE is continuous.

Hence, from (28) we get DFEnk
(λnk

)→ DFE(λ̄) and (27) implies

DFE(λ)−DFE(λ̄) 6∈ −intRN , ∀λ ∈ Λ (29)

i.e. λ̄ ∈WEff(DFE).

ii) Let λn ∈ PEffC(DFEn) and let λnk
be a subsequence converging to

λ̄ ∈ Λ. Then

DFEnk
(λ)−DFEnk

(λnk
) 6∈ −C\{0}, ∀λ ∈ Λ (30)

Passing to the limit we obtain

DFE(λ)−DFE(λ̄) 6∈ −intC, ∀λ ∈ Λ (31)

and hence

DFE(λ)−DFE(λ̄) 6∈ −Rn
+\{0}, ∀λ ∈ Λ (32)
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Proof. This is the proof of Proposition 5. Let λ(z0) ∈ Slz0 be an isolated
minimizer of order α and constantm for l(·, z0). Then, for λ(z) ∈ Slz it holds

l(λ(z), z0)− l(λ(z0), z0) ≥ h‖λ(z)− λ(z0)‖α (33)

We have

l(λ(z0), z)− l(λ(z), z) = l(λ(z0), z0)− l(λ(z), z0) + w (34)

where

w = [l(λ(z0), z)− l(λ(z0), z0)] + [l(λ(z), z0)− l(λ(z), z)] (35)

We have

|w| ≤ |l(λ(z0), z)− l(λ(z0), z0)|+ |l(λ(z), z0)− l(λ(z), z)| ≤ (36)
N∑
i=1

βi|gi(λ(z0), zi)−gi(λ(z0), z0
i )|+

N∑
i=1

βi|gi(λ(z), z0
i )−gi(λ(z), zi)| ≤ (37)

2m
N∑
i=1

βid
Z(zi, z

0
i )
δ ≤ 2m

N∑
i=1

dZ(zi, z
0
i )
δ (38)

We claim that
l(λ(z), z0)− l(λ(z0), z0) ≤ |w| (39)

Indeed, suppose to the contrary that

l(λ(z), z0)− l(λ(z0), z0))− |w| > 0 (40)

If w = 0, then
l(λ(z0), z)− l(λ(z), z) < 0 (41)

which contradicts λ(z) ∈ Slz. If w 6= 0, then we have

l(λ(z), z)− l(λ(z0), z) = g(λ(z), z0)− l(λ(z0), z0)− w > 0 (42)
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which again contradicts λ(z) ∈ Slz.
Observe now that we have

h‖(λ(z)− λ(z0)‖α ≤ l(λ(z), z0)− l(λ(z0), z0) (43)

and therefore

h‖λ(z)− λ(z0)‖α ≤ l(λ(z), z0)− l(λ(z0), z0) ≤ 2m
N∑
i=1

dZ(zi, z
0
i )
δ (44)

So, it holds

‖λ(z)− λ(z0)‖ ≤
(

2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

(45)

which finally implies

d(λ(z), Slz0) ≤ ‖λ(z)− λ(z0)‖ ≤
(

2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

(46)

Since this holds for any λ(z) ∈ Slz finally we have

e(Slz, S
l
z0) ≤ d(λ(z), Slz0) ≤

(
2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

(47)

Since λ(z) ∈ Effz(DFE) we have

d(λ(z),Effz0(DFE)) ≤
(

2m

h

)1/α
(

N∑
i=1

dZ(zi, z
0
i )
δ

)1/α

(48)

which concludes the proof.
Proof. The proof of Proposition 6 is similar to that of Proposition 5 and,
therefore, it is omitted.
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