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ARTICLE INFO ABSTRACT

Keywords: When researchers are faced with building machine learning (ML) radiomic models, the first choice they have
Radiomics to make is what model to use. Naturally, the goal is to use the model with the best performance. But what is
Prostate cancer the best model? It is well known in ML that modern techniques such as gradient boosting and deep learning

Deep learning

Gradient b have better capacity than traditional models to solve complex problems in high dimensions. Despite this, most
radient boost

radiomics researchers still do not focus on these models in their research. As access to high-quality and large
data sets increase, these high-capacity ML models may become even more relevant. In this article, we use
a large dataset of 949 prostate cancer patients to compare the performance of a few of the most promising
ML models for tabular data: gradient-boosted decision trees (GBDTs), multilayer perceptions, convolutional
neural networks, and transformers. To this end, we predict nine different prostate cancer pathology outcomes
of clinical interest. Our goal is to give a rough overview of how these models compare against one another in
a typical radiomics setting. We also investigate if multitask learning improves the performance of these models
when multiple targets are available. Our results suggest that GBDTs perform well across all targets, and that
multitask learning does not provide a consistent improvement.

1. Introduction [1-3]. The idea is to use the radiomic features to build predictive
models for purposes such as treatment planning or outcome prognosis.
The overwhelming majority of radiomic studies to date have focused
on proof-of-concept experiments demonstrating the usefulness of ra-
diomics in specific circumstances [4-7]. By and large, the discrepancies
between different predictive models have not been studied, with re-
searchers often relying on relatively simple but intuitive models such

Quantitative image analysis as a tool to improve decision-making
and management in healthcare has been growing steadily. A specific
analytic technique called Radiomics, where predefined mathematical
features are calculated from regions of interest (ROIs) in medical
images, has recently gained particular attention in radiation oncology
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as logistic regression, random forests, basic support vector machines,
or cox regression. These generally work well for small datasets (e.g.
under 100 samples) but their performance likely deteriorates in high
dimensions and non-linear scenarios [8-12].

Prediction models for tabular data (like the ones constructed from
radiomic features) are a staple in machine learning (ML) research since
considerable amounts of real-world data are collected in the form
of spreadsheets. In medical research, traditional algorithms such as
logistic regression are often preferred when building prediction mod-
els, in part because they naturally integrate with statistical inference
such as the likelihood ratio test. On the other hand, developments in
data science and ML have largely rendered traditional models obso-
lete in favor of better-performing approaches such as deep learning
(DL) and gradient-boosted models. One of the most popular models
is gradient-boosted decision trees (GBDTs), which use the gradient-
boosting technique to iteratively build an ensemble of decision trees
(analogous to a gradient descent algorithm). A great deal of research
has also been devoted to developing DL models that can compete
with GBDTs; some noteworthy efforts being TabNet [13], NODE [14],
DNF-Net [15], SNN [16], GrowNet [17], DCN V2 [18], and Autolnt
[19]. However, when evaluated on a wide range of different tasks,
many of these models have shown little to no improvement over
simpler baselines like 1D convolutional neural networks (CNNs) or mul-
tilayer perceptrons (MLPs) [11,12,20-22]. Therefore, standard MLPs
and CNNs may be preferred when evaluating the utility of DL on a
new task such as radiomics, particularly when comparing many models
is impractical. The question remains as to whether these DL models
have the potential to compete with GBDTs in radiomics, where the
datasets are characterized by few samples, many variables, and a mix
of categorical, ordinal, and continuous data.

In clinical prostate oncology, it is recommended practice to char-
acterize the tumor via both MR-image-related parameters (such as
prostate volume, number of dominant lesions, PI-RADS score, EPE
value, and ADC value) and biopsy-related parameters (such as initial
PSA, ISUP grade group, tumor stage, lymph node status, and risk class)
in order to select an appropriate treatment and follow-up schedule.
Surgery by radical prostatectomy (removal of the prostate) and radio-
therapy are the two most common treatments for localized prostate
cancer and have comparable oncological outcomes. Pre-treatment ac-
cess to the information from the pathological assessment after surgery
would enable doctors to refine their evaluation of the patient so that
better decisions and prognoses can be made. Thus, non-invasive predic-
tion of pathological determinants of prostate cancer could reduce risks
and improve outcomes, but so far this has not been the primary focus
in prostate cancer radiomics. In this work, we focus on predicting nine
different endpoints from prostate cancer pathology, all of which hold
critical clinical value.

In this article, we address the issue of building the best-performing
radiomic models within the context of prostate radiomics. To do this,
we compare the performance of different prediction models and learn-
ing techniques on a large dataset of 949 prostate cancer patients with
nine different pathology endpoints of clinical value in prostate cancer
care. Our chosen methods are a mix of common high-performance ML
models: gradient-boosted decision trees (GBDTs), multilayer perceptron
(MLP), one-dimensional convolutional neural network (1IDCNN), and
a transformer model with a feature tokenizer (FT-Transformer) [20]
specialized for tabular data. To combat the problem of overfitting and
overoptimistic performance estimates, we employ rigorous training,
validation, and test procedures in all experiments. We also evaluate the
benefit of multitask learning, which is a training technique in which
the model learns to predict every available endpoint simultaneously,
leading to a potential improvement in both performance and speed. To
the best of our knowledge, multitask/multi-target learning has not been
adequately explored in previous radiomics studies.
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2. Methods
2.1. Dataset

Patient data were retrospectively collected from 949 prostate cancer
patients who had undergone multiparametric prostate MRI and prosta-
tectomy in the European Institute of Oncology (IEO) from 2015 to
2018. For each patient, we used the T2-weighted MRI sequences and
all potentially relevant clinical variables.

The MRI images were acquired using a 1.5 T MR scanner with slice
thickness 3.0-3.6 mm, slice gap 0.3 mm, pixel spacing 0.59 x 0.59 mm,
echo time 114-118 ms, and repetition time 3780 ms (median). Eight
out of the 949 images were acquired with non-habitual protocol se-
quences or a second scanner from another manufacturer.

The clinical variables included age, initial PSA, and comorbidity as
well as MRI-related data such as prostate volume, number of dominant
lesions, PI-RADSV2 score, extraprostatic extension score, and ADC (ap-
parent diffusion coefficient). The following tumor-related pre-treatment
variables were obtained: initial ISUP grade group, clinical tumor stage
(T), clinical lymph node status (N), and NCCN2019 risk class. We also
collected six post-treatment pathology variables to use as prediction tar-
gets: post-operative ISUP grade group, pathological T, pathological N,
surgical margin, biochemical progression, and clinical progression. An
overview of the clinical characteristics within the cohort is presented
in Table 3 in Appendix A.

2.2. Experiments

To compare the different models, we trained them to predict six
pathological endpoints of clinical interest:

. Post-operation ISUP grade group

. Pathological tumor stage (T)

. Pathological lymph node status (N)
. Surgical margin

. Biochemical progression

. Clinical progression

U A WN -

as well as three “delta”-variables encoding change between the clinical
and pathological assessments of the ISUP, T, and N endpoints:

7. AISUP
8. AT
9. AN

Details of the models and their training routines are given below.

The models were compared in terms of their overall test perfor-
mance in a nested five-fold cross-validation routine (see Section 2.5
for details). The performance was measured in terms of three different
classification metrics: Matthews correlation coefficient (MCC), AUC,
and accuracy.

2.3. Models

We compared four different tabular data models: GBDTs imple-
mented with the CatBoost [23] package, an MLP, an FT-Transformer
(FTT), and a 1D CNN. We also trained multitask variants of each model.
An additional MLP-style model tailored specifically towards multi-
objective training was also tested. The models are described briefly
below while their training routines are presented in Section 2.5.

2.3.1. CatBoost

CatBoost [23] is a free open-source library for GBDT models (similar
to XGBoost [24] and LightGBM [25]). GBDT models have been incred-
ibly successful in tabular data analysis applications, in large part due



L.J. Isaksson et al.

Informatics in Medicine Unlocked 37 (2023) 101161

| T T, g
X T [cLs] [cLS] j=» Predict == ]
Feature
n — f—s —
Tokenizer Transformer
Fig. 1. The architecture of the FT-Transformer. An input x is passed through a feature tokenizer and converted into embeddings 7. Multiple transformer layers (T, ..., T,) are

connected in sequence after which the CLS token is used for prediction.
Image source: [20].

to their high discriminative power yet simple structure and high speed.
For instance, the top positions in the Kaggle competitive ML platform
are most often held by gradient-boosted models [26]. Compared to DL,
building and training GBDT models is considerably easier since it only
requires specifying a set number of parameters (e.g. the number of
decision trees in the ensemble, their maximum depth, the learning rate,
and a handful of optional regularization parameters), after which the
tree-growing algorithm builds and trains the model. Consequently, it
also requires much less computation time and resources.

2.3.2. MLP

The MLP model is one of the earliest and most straightforward DL
architectures. Despite their relative simplicity, they have been shown
to perform well on tabular data if trained properly [12,22,27]. They
are often faster and use fewer hyperparameters than their alternatives,
which makes them attractive candidates for search-based optimization
pipelines. Apart from regularization parameters, MLPs can be parame-
terized by just the number of layers and the number of neurons within
each layer. Our implementation used two layers (we found that more
layers did not improve the performance but increased the training time)
and a swish activation function followed by batch norm and dropout.

2.3.3. FT-Transformer

The FT-Transformer [20] was recently proposed as a transformer
architecture specifically tailored for tabular data. The use of transform-
ers in this scenario is not commonplace, but the research direction is
attractive given the success of transformers in natural language process-
ing [28] and more recently computer vision [29]. The model consists of
a feature tokenizer module and several consecutive transformer layers
(Fig. 1), where the former converts the input variables (both categorical
and numeric) into embeddings, and the latter performs the recurrent
self-attention that is characteristic of the transformer. The final layer
performs prediction with the CLS (“classification”) token, which is
designed to contain information about the sentiment of the whole input
sequence (as opposed to information about individual elements in the
sequence).

2.3.4. 1D-CNN

Convolutional archetypes are commonly used for image analysis be-
cause they can handle local correlations efficiently and are not impaired
by positional and morphological variances. Tabular data, however, do
not display these types of characteristics, which makes the value of
CNNs less apparent in these scenarios. One way to circumvent this is
to map the data into a higher-dimensional superspace in which the
locality of convolutions is not an impediment. The implementation we
used is taken from the second-place submission (the 1D-CNN itself had
the best single-model performance) in a 2020 Kaggle competition for
tabular data [30] and uses a learnable dense/linear layer to perform
this mapping. After the initial dense layer, several 1D-convolution and
pooling layers are connected in sequence along with a skip connection
and a flatten operation (see Fig. 2).

2.3.5. Multitask-tailored MLP

In addition to multitask variants of the four models above, an
additional MLP model was created and optimized specifically for the
multitask scenario. This is motivated by the fact that some design
and architectural choices have no analogous counterpart in the single-
task setting. In particular, the multitask model was constructed by two
distinct partitions: a base that is shared among all different tasks, and
N classification heads that have distinct parameters for each output
task. The base handles the input and latent representations of the
model while the heads are fine-tuned for their respective tasks. The
architecture (displayed in Fig. 3) builds upon the MLP and uses skip
connections and varying activation functions.

2.4. Data processing

2.4.1. Image processing

Each image was corrected with the N4 bias-field correction algo-
rithm (implemented in sITK 2.1.1 using default parameters), and the
image intensities were subsequently normalized with an outlier-aware
range normalization that linearly maps the Oth and 99th percentile
values of every image to a predefined range (in this case between 0
and 424). Unique values in the 100th percentile were appended after
424 using a 1:1 linear map (the first value was mapped to 424+1, the
second to 424+2, etc.)

2.4.2. Image segmentation

The prostate in each image was segmented with a bespoke deep
learning segmentation algorithm with a 3D U-net-like architecture
[31,32]. The Dice coefficients for the segmentations were subsequently
estimated by a deep learning quality assurance model [33]. In order
to ascertain an acceptable standard for the automatically generated
contours, a subset of the segmentations was selected and sent for
correction by an expert radiologist. Segmentations were included in
this subset if at least one of the following two criteria was met: (1)
the segmentation had an estimated Dice coefficient of 0.8 or lower,
and (2) the volume of the segmentation was in the upper or lower two
percentiles. In total, 98 segmentations were selected.

2.4.3. Radiomic feature extraction and pruning

Radiomic features were extracted from the whole prostate using
PyRadiomics [34] 3.0 in Python 3.7. All available features were ex-
tracted from all available filter classes (Laplacian of Gaussian, wavelet,
square, square root, logarithm, exponential, gradient, local binary pat-
tern 2D, and local binary pattern 3D). For the Laplacian of Gaussian
filter, we calculate features for three different values of sigma corre-
sponding to 1, 2, and 5 times the in-plane spacing (0.59375 mm). No
resampling was performed since all the images had nearly identical
resolution and spacing. In total, 1967 features were extracted. Features
were removed if their variance was lower than 107 or if they had an
absolute Spearman correlation above 0.98 with any other feature. In
the latter case, the feature with the lowest cumulative correlation with
other features was kept. After these steps, 737 features remained.
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Fig. 2. The architecture of the IDCNN model. An initial dense layer maps the input feature vector into a larger vector more suited for convolutional operations. Standard
convolutional and pooling operations are connected, and a normal dense layer performs the final prediction. The numbers represent the dimension at each step (njauers @ gepn)-
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Fig. 3. The architecture of the multitask-tailored MLP model. A base (left) structure is shared between all different tasks, and multiple prediction heads (right) are trained to

optimize each individual task separately.

2.4.4. Data preprocessing
The clinical variables were ordinally encoded as follows:

Clinical and pathological T: stages were encoded by their integer
value such that both T3a and T3b were encoded as 3, and T2a
and T2b as 2, etc.

Clinical and pathological N: stages were encoded by their integer
value (N1-1, NO—0).

Risk class: “low” and “very low” were encoded as 0, “intermedi-
ate favorable” and “favorable” as 1, “intermediate unfavorable”
and “unfavorable” as 2, and “high” or “very high” as 3.

Clinical progression: absence of progression was encoded as 0,
and any type of progression (pelvic, extrapelvic, or both) was
encoded as 1.

Prior to training the models, we binarized the non-binary target
variables (post-operation ISUP grade, pathological T, and the delta
variables), which allowed us to readily compare the performance of
all different targets with the same metrics. Figure 9 shows the class
distribution of the targets after the binarization. We also observed
that this achieved better classification performance than binarizing the
predictions after training the models with regression. This can be done
without much loss of clinical utility since many of the decisions within

the clinical workflow surrounding these parameters are primarily made
based on threshold values.

For the DL models, all input variables were normalized with a
quantile transformer with the number of quantiles set to the number
of training samples, and missing values were imputed with a k-nearest
neighbors imputer with k = 8 and distance-based weights (see Ap-
pendix B.1 for a deeper analysis on the imputation and its parameters).
Neither imputation nor quantile transformation is needed in CatBoost,
since CatBoost inherently handles missing values' and the tree-growing
algorithm uses cutoff values that are scale-independent.

2.5. Model training & feature selection

2.5.1. CatBoost

The CatBoost model was trained with a nested 5-by-5 stratified
cross-validation (CV) and a standard binary cross-entropy (log-loss) loss
function. The inner 5-fold was used to search for parameters and the
outer 5-fold was used to estimate the performance. This eliminates
the selection bias from selecting the lowest error model. To search

! In CatBoost, missing values are treated as smaller than the smallest
real-valued entry, effectively making them a separate category.
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for parameters, we used the Tree-structured Parzen Estimator (TPE)
in the Optuna (v2.10) python package [35] and ran it for 600 trials
with default parameters. Among the trials, we selected the model with
the highest Matthews correlation coefficient (MCC) on the validation
sets and proceeded to retrain it on the full training+validation set.
The performance of the retrained model was then evaluated on the
previously held-out test sets.

The hyperparameter search space is shown in Table 4 in Appendix
B.2. Note that we directly optimize the number of radiomic features to
include (“n_features”) based on their estimated predictive power over
the target variable (see Appendix C for details).

2.5.2. Deep learning models

The DL models were trained with a similar cross-validation proce-
dure, but instead of a full 5-fold validation in the inner loop, we used
a single train—test split (80%-20%) due to computational constraints.
Moreover, the DL hyperparameter search was carried out with 64 trials
instead of 600. All random seeds were fixed so every model was trained
and evaluated on the same data (including the CatBoost model).

The hyperparameter search spaces and complete training details
for the different DL models are shown in Appendix B.2. Like for the
CatBoost model, we directly optimize the number of radiomic features
to use within the parameter search (see Appendix C for details).

We trained the DL models to directly optimize a differentiable
version of the MCC, which can be achieved by defining continuous
versions of the true positives/negatives (TP and TN), and false posi-
tives/negatives (FP and FN). In other words, if we let y be the real
target label and h(x) be the network’s prediction:

TP= Z y;h(x;) €Y}
TN = Z(l -y - h(x;)) (2
FP= 2(1 —y)h(x) 3
FN = 2 y;(1 = h(x,)). Q)

In the above formulae, it is assumed that the last operation in A is a
logistic function such that the outputs are in the (0, 1) range. This
loss function has been argued to exhibit many attractive properties
compared to its alternatives, particularly for imbalanced and medical
datasets [36-38].

2.5.3. Multitask learning

For each of the four models mentioned above, we built alterna-
tive versions that were trained with a multitask/multi-objective loss
function. This can be done with very minor modifications to the archi-
tectures (e.g. simply adjusting the number of outputs of the final layer)
and has the potential to improve both speed and accuracy [39-41]. The
multitask versions of the models were trained in the same way as the
regular ones, but with three important modifications:

1. Since the loss of the models needs to be a single scalar value,
we calculated the total loss by averaging the individual classi-
fication errors over all different targets (the binarization of the
target values allows us to make this aggregation without needing
to tune the weights between different types of targets).

2. A consequence of simultaneously predicting all targets is that
missing target data needs to be handled differently. In the single-
task case, we did not implement any target-specific imputation
considerations since we could simply select and train on all the
patients with target data available. In the multi-task case, the
patients have varying target values missing, which means that
some loss values are not defined. Hence, we divided the full data
set into training and test data as the first step, and whenever a
batch of samples with missing target data was encountered, we
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Table 1
Class distributions of the pathological target variables in terms of the number of positive
and negative cases and percentages. In total, 949 patients were considered.

Class Negses (/=) % (+/-) Missing
Post-op ISUP Group 877/68 93/7 4
Pathological T 582/367 61/39

Pathological N 495/76 87/13 378
Surgical margin 716/232 76/24 1
Biochemical progression 637/140 82/18 172
Clinical progression 726/50 94/6 173
AISUP 603/343 64/36 3

AT 2030/715 24/76 4

AN 493/75 87/13 381

calculated the total loss for each patient as the mean loss over
all its non-missing values.? A consequence of this is that regular
(e.g. non-stratified) cross-validation has to be used.

3. An issue similar to point 2 is faced when we calculate the
predictive power of the features prior to feature selection. The
predictive power was thus also calculated by averaging the loss
over all available targets.

3. Results
3.1. Dataset

Table 1 shows the class distribution of the target variables (the
number of positive, negative, and missing values) after discretization. A
detailed overview of the clinical properties of the patient cohort is given
in Appendix A, including a graphical representation of the distributions.

3.2. Radiomic model performance

An overview of the performance of the models is displayed in
Fig. 4 and a summary of their relative scores in terms of their rank is
displayed in Fig. 5. ROC curves for the AUC values are shown in Figure
14 in Appendix D. For all endpoints, the CatBoost model achieved the
highest MCC whereas the FTT and 1DCNN models appear to be nearly
equivalent (2.33 and 2.78 mean rank, respectively). The MLP only
achieved a similar MCC to the other DL models in one of the nine cases
(biochemical progression), resulting in the worst overall mean rank of
3.89. In terms of AUC, the results are similar, with the exception that
the 1IDCNN achieved a better mean rank than the FTT (2.33 vs. 3.0).
The results for the accuracy are different: all four models performed at
a comparable level, with MLP achieving the best mean rank. However,
the mean rank difference between the MLP and the worst-performing
model, which is a tie between the FTT and the 1DCNN (mean rank of
2.67), is relatively small (0.56 mean ranks).

3.3. Multitask performance

Fig. 6 shows the performance of the multitask models and Fig. 7
shows their respective ranks. The 1DCNN appears to be the overall
best model in terms of both MCC and AUC (though tied for first place
with the CatBoost model in the AUC case). CatBoost, MLP, and FTT all
had comparable performance in terms of MCC, but the MT-MLP clearly
performed worse. The MT-MLP has no AUC score since it was trained
with regression, but between the remaining two models, MLP and FTT,
the FTT performed better. The accuracy ranks are very different: the
1DCNN was the worst-performing model and MLP was the best. The
MT-MLP still performs poorly with its second-to-last place, but CatBoost
and FTT perform very similarly.

2 We can do this without worrying about undefined gradients since no
sample has all its target values missing. If such a patient existed, it would
not have been included in the dataset in the first place since we cannot hope
to receive any signal from it.
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Fig. 5. Total mean rank of the different models, aggregated as the mean over all nine different prediction targets. A lower rank is better.
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Fig. 7. Total mean rank of the multitask versions of the different models, aggregated as the mean over all nine different prediction targets. A lower rank is better.
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Fig. 8. Mean improvement gained from multitask training of the different models, aggregated over all nine different prediction targets.

The single best model, including both single-task (ST) and multitask (MT), in every prediction target and performance metric.

Accuracy

Table 2

Target MCC AUC

Post-op ISUP Group 1DCNN (MT)

Pathological T CatBoost (MT) CatBoost (ST + MT)
Pathological N CatBoost CatBoost (MT)
Surgical margin CatBoost CatBoost
Biochemical progression CatBoost,1IDCNN (MT) 1DCNN (MT)
Clinical progression CatBoost CatBoost

AISUP CatBoost CatBoost (ST + MT)
AT CatBoost CatBoost

AN CatBoost,1IDCNN (MT) CatBoost (MT)

CatBoost (ST + MT),1DCNN (ST + MT)

CatBoost (MT)

CatBoost (MT)

CatBoost (MT)

CatBoost (MT)

CatBoost (MT)

CatBoost (MT)

CatBoost (ST + MT),1DCNN (MT)
CatBoost (ST + MT)

CatBoost (MT)

3.4. Multitask improvement

In Fig. 8, we show the mean percentage performance gained from
training multitask models compared to several single-task models. The
overall difference is very large in terms of MCC (16%-31%) but fairly
small for AUC (0%-9%) and accuracy (2%-6%). The added benefit of
multitask training differs between models and metrics which makes
it hard to declare a single best approach. Note that the performance
difference can be positive for some endpoints even though the mean
improvement is negative, and vice versa. The most drastic change was,
by far, the MCC for the CatBoost model, which performed 31% worse in
the multitask case on average. The second largest change was the MCC
for the FTT model (-18%). In contrast, the MCC of both the MLP and
1DCNN benefited greatly (16% and 17%) from the multitask training.
In summary, the mean performance was better in one case (and a tie
in one case) for the CatBoost model, two cases for the MLP, two cases
for the FTT, and two cases for the 1IDCNN.

By comparing the best multitask models with the best single-task
models, we can discern the overall best-performing model across all
endpoints (Table 2). Only two architectures are represented: CatBoost
and, to a lesser extent, the 1DCNN. In the accuracy metric, multitask
models are clearly overrepresented. In MCC and AUC, the single-task
CatBoost model is the most common, and multitask 1DCNN the second
most common.

4. Discussion

CatBoost performed consistently well and was the model that most
often achieved the best score. Of the deep learning models, the mul-
titask 1DCNN was generally the best, followed by the FT-Transformer.
There appears to be a tendency for the multitask models to perform bet-
ter in terms of accuracy than in terms of the other metrics, which may
indicate a slight tradeoff between MCC/AUC and accuracy. This is also
supported by observing that the MLP generally performed much better
in terms of accuracy than the other two scores. It is however likely that
the MLP is not inherently better at achieving higher accuracy, and that

CatBoost would still be the best model if we decided to optimize for
accuracy instead.

The stability of models and variance of their performance:
A major concern in studies comparing the performance of different
models is the variance and reproducibility of the results. In the model
validation pipeline, there is a delicate balance between exploration
and validation in the sense that finding higher-performing models via
deeper exploration in the model space competes with performing more
thorough validation procedures (such as repeated cross-validation).
If the model space is not sufficiently explored, there will be large
variations in the selected models (since there will be a sparser sampling
of the error landscape). Conversely, if the models are not thoroughly
validated (e.g. with repeated experiments with different random seeds),
there may be large variations due to instabilities in the training data
or model weights. Multiple sources of variations make it hard to
analyze the performance with regular statistical tools without exces-
sive amounts of compute. In the medical field, these instabilities are
largely overlooked, even though the small datasets may exacerbate the
problem. Due to limited computational resources, this study focused
on finding high-performance models instead of repeated experiments,
which is currently the standard practice. To ensure the reliability of this
approach, we performed informal repeated tests (only on the first target
variable due to the required computational investment) and concluded
that this variability would not invalidate the results. It is worth noting
that another way of improving the reliability of predictions is to create
model ensembles, but this also requires an increased investment of
computational resources.

The optimization objective and different performance mea-
sures: We chose to optimize the MCC because it is known to be a more
reliable and informative measure of performance than other metrics
like accuracy, Fl-score, and AUC [36-38,42]. For example, the MCC
only achieves a high value when the classifier produces good results in
all four quadrants of the binary confusion matrix. In medical research,
the AUC has been the standard reporting metric for prediction models,
which in many ways can be seen as a cause for concern (see e.g. [43—
45]). For instance, the definition of AUC allows classifiers to increase
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their AUC without modifying a single prediction since it considers all
decision thresholds and not just the actual operating threshold. A sim-
ilar mechanism also allows them to simultaneously increase their AUC
and decrease their accuracy. This is not to say that AUC does not have
its uses, but we believe these are legitimate reasons to not optimize for
AUC directly. Accuracy is another natural candidate for optimization,
but this metric can be misleading for unbalanced data. In preliminary
experiments, we observed that optimizing either AUC or accuracy often
leads to majority classifiers that classify all patients into the majority
class, which are essentially useless in practice (they do not utilize
any information available in the variables). When deploying prediction
models in real clinical environments, it will be crucial to discuss and
clarify if true/false positives and negatives should be weighted equally,
and then optimize the appropriate metric.

Feature selection: Feature selection is one of the most important
aspects of model development because it dictates what information
the model will have at its disposal. Despite this, it is not commonly
discussed or researched within studies of medical prediction models.
Since the procedure’s outcome is heavily data and problem-dependent,
it can be wise to explore the options when presented with a new
problem or data set (though this requires additional effort). In most
studies, features are selected prior to training (e.g. by a clustering
procedure or statistical testing) or internally to the model (e.g. with
LASSO), which is problematic in several ways. First, it does not properly
account for feature-parameter interactions. Second, it may introduce
leakage if not incorporated correctly (once for each training set) into
the validation pipeline. It is also susceptible to additional variance
and lower performance. For these reasons, we instead incorporated the
selection procedure into the parameter optimization (see Appendix C),
which should generally be preferred if its implementation is possible.

Multitask features & loss weighting: When selecting features for
the multitask models, we chose to select the feature with the highest
mean predictive power over all different endpoints. An exciting alter-
native to this is to favor features with high predictive power for tasks
the model struggles with, which would effectively act as an indirect
loss-weighing for different targets. In loss-weighting, each task’s loss
function is weighted differently to optimize an aggregated loss function
that may be more ideal. This raises the question of how exactly to
weigh the different tasks, which is a complex optimization problem in
and of itself. Furthermore, the desired balance is heavily influenced by
external factors such as preference and the individual samples being
evaluated. It is also possible that other loss functions and/or different
weight-sharing strategies would improve the multitask performance.
We chose not to explore these considerations due to the foreseen
complexity, but it is of interest for future research.

Limitations: The radiomic features used in this study were ex-
tracted from the whole prostate in the T2-w MRI images. As such,
the performance may not be as good as models incorporating other
imaging modalities, such as DWI (diffusion-weighted images) and ADC,
and/or features extracted from the dominant lesion. However, some
information from the DWI and ADC images is encoded with the PI-
RADS and ADC values that were used as input features, meaning that
the information is not entirely lost. Another factor that may influence
the performance is the automatic segmentation procedure, but the
quality assurance step was incorporated to address this. Moreover, a
degree of variation in the acquisition protocol was present that may
contribute to noise in the radiomics features across subjects. However,
the small differences in echo and repetition time would not be expected
to affect the ordering of signal intensities across tissues, and thus
should be largely compensated by the image normalization process.
The differences in b-values may have had a similar effect on the
calculated ADC values. That said, our images were acquired in the
course of routine clinical practice, and should therefore reflect real-
world context. Finally, even though the dataset of 949 patients is the
largest one to date (the previous one being 489 patients, according to
a recent review covering 57 different prostate cancer radiomics studies
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[6]), it is still not big enough to make conclusive statements about
the validity of these models in clinical practice. It is conceivable that
the small dataset contributed to the somewhat subpar performance of
the DL models given that DL models are known to be data-hungry.
A potential solution for this that was not studied in this article is
data augmentation, which is standard practice for most non-tabular
DL models. But even with these limitations in mind, the comparison
between the models should be fair and relevant since all models were
trained under the same conditions.

5. Conclusion

In this study, we have compared the prostate radiomics performance
of one popular GBDT model and three popular DL models for tabular
data: an MLP, the FT-Transformer, and a one-dimensional CNN. We
also investigated whether these models benefit from multitask learning
when multiple pathological target variables are available. Our experi-
ments indicate that the GBDT model implemented with CatBoost was
generally the most consistently high-performing model (in terms of
both MCC and AUC). The multitask version of the 1DCNN also per-
formed well overall. Multitask learning brought a considerable benefit
for the MLP and 1DCNN models but was detrimental for the CatBoost
model and the FT-Transformer, which makes neither training procedure
a clear winner.
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