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Abstract

The purpose of this paper is to provide strong reformulations for binary
quadratic problems. We propose a first methodological analysis on a family
of reformulations combining Dantzig-Wolfe and Quadratic Convex optimization
principles. We show that a few reformulations of our family yield continuous
relaxations that are strong in terms of dual bounds and computationally efficient
to optimize. As a representative case study, we apply them to a cardinality con-
strained quadratic knapsack problem, providing extensive experimental insights.
We report and analyze in depth a particular reformulation providing continuous
relaxations whose solutions turn out to be integer optima in all our tests.

1 Introduction

Generic solvers for mathematical programming models have been steadily improv-
ing since long time, in terms of both computing capabilities and types of models they
can handle. While up to few years ago the focus was on effectively solving Mixed
Integer Linear Programs (MILP), the interest is currently shifting to more general
problems, possibly coping with nonlinearities in either the objective function or the
constraints. Binary Quadratic Problems (BQPs) are among the special classes of

*Partially funded by Regione Lombardia - Fondazione Cariplo, grant n. 2015-0717, project “RED-
NEAT”, and partially undertook when A. Ceselli was visiting LIPN - Université Sorbonne Paris Nord.
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Mixed Integer Non-Linear Problems (MINLP) which are currently subject to wider
investigation.

In its generic form a BQP reads as follows:

(BQP) min{x⊺Sx +L⊺x∣Ax ≥ b, x ∈ {0,1}n} . (1)

with S ∈ Qn×n, not restricted to be positive semi-definite, and L ∈ Qn, A ∈ Qm×n,
b ∈ Qm. Several generic solvers are already available to tackle BQPs. To mention
just a few examples BiqCrunch [25], CPLEX [23], GloMIQO [32], Gurobi [21] and
SCIP [37] support direct optimization of either BQPs or even MINLPs. In the vast
majority of the cases, these solvers rely on Branch-and-Bound techniques, embedding
special relaxations of the models provided by the user.

Restricting to the BQP case, a first popular choice for such relaxations is to refor-
mulate the problem by linearizing the quadratic terms [1, 17, 19, 20, 31, 38], thereby
obtaining a MILP. A second promising way to obtain dual bounds for BQPs is to rely
on Semidefinite Programming (SDP) relaxations, like for example [25, 36].

When the objective function is convex, even the simple continuous relaxation of
a BQP is appealing, as it yields convex optimization subproblems, for which effective
algorithms are engineered in state-of-the-art solvers. A third alternative for generic
BQPs is therefore to use a reformulation obtained via the so-called convexification of
the quadratic objective function. This convexification can be obtained by applying
Quadratic Convex Reformulation (QCR) methods like those introduced in [8] and
extended in [7].

On the other hand, Dantzig-Wolfe Reformulation (DWR) is a well known technique
used to obtain tight bounds for MILPs (see for example [13, 14, 39]). Its principle
is to replace the feasibility region corresponding to a subset of the constraints of a
model by the convex hull of its extreme points through an inner representation. A
recent research trend is indeed investigating on how to embed automatic decomposition
techniques into general purpose MILP solvers [6, 18, 5].

DWR can be applied in principle also to nonlinear mathematical programming
models, provided a subset of constraints exists whose corresponding feasible region
can be represented as a polyhedron. In fact, the extension of DWR to nonlinear
problems has been analyzed in several theoretical papers in the past years (see for
example [2, 22, 26]). However, whether or not its application to MINLP may yield
successful computational methods is still an open research question.

One of the main issues is the following: the application of DWR leads to a formula-
tion with an exponential number of variables. It can be solved via iterative procedures
like Column Generation (we refer the reader to [14] for an extensive review of such a
method), but additional conditions have to be fulfilled to ensure convergence.

Main contributions. The first contribution of this paper is an analysis of how to
generalize DWR to tackle 0-1 nonlinear problems (Section 3). As second contribu-
tion we present a methodology to systematically combine DWR and convexification
methods to effectively solve BQPs (Section 4). As a final contribution we show that
applying DWR to BQPs is not only theoretically possible, but also computationally
profitable: we consider as test-bed the 0-1 exact k-item Quadratic Knapsack Prob-
lem (kQKP), a particular BQP in which the objective function is generic, and the set
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of constraints is composed by a single inequality and a single equation (Section 5).
Remarkably, on that particular problem we obtain a reformulation producing models
whose continuous relaxation has an optimal integer solution in all the experiments
we have performed. Therefore, we undertake and discuss an additional set of tests in
order to better understand such impressive result (Section 6).

2 Basics

In this Section we discuss the concept of Lagrangian Duality and QCR method
introducing a unified notation.

2.1 Lagrangian Duality

We refer the reader to [27, 28] for an extensive analysis of Lagrangian Duality in
the context of Combinatorial Optimization. Let us consider the following (primal)
problem:

min f(x)

s.t. gi(x) ≤ 0 i ∈ I

hj(x) ≤ 0 j ∈ J

x ∈ Rn

The Lagrangian Function L(x,µ) of the primal variables x and the dual variables (or

multipliers) µ ∈ R∣I ∣+ is the following:

L(x,µ) = f(x) + µ⊺g(x) .

The definition of the dual variables can be easily extended to the case where for
some i′ ∈ I we have equations instead of inequalities by unrestricting the sign of the
corresponding multipliers. The dual function θ(µ) is defined as follows:

θ(µ) = min
x∈Rn∶ hj(x)≤0

j∈J

L(x,µ)

and the corresponding Lagrangian Dual problem is the following:

max
µ∈R∣I∣

+

θ(µ) =max
µ∈R∣I∣

+

min
x∈Rn∶ hj(x)≤0

j∈J

L(x,µ).

We say that the Lagrangian Function and the associated Lagrangian Dual are obtained
by relaxing (or dualizing) the constraints gi(x) ≤ 0. Several Lagrangian Duals can be
obtained after relaxing different sets of constraints. A key property of the Lagrangian
Dual is that (regardless of which set of constraints is relaxed) its optimal solution
always gives a valid lower (or dual) bound for the primal problem. It is important
to notice that the dual function is always concave; therefore the Lagrangian Dual is
always convex in the µ multipliers. That is, in principle, it could always be solved to
global optimality using convex optimization techniques, provided that, for a fixed µ,
evaluating the value of θ(µ) can be done effectively.
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2.2 Quadratic Convex Reformulation Method

If the problem we want to solve contains binary variables and a quadratic objective
function (as in the case of (BQP)), we can reformulate the objective function by
exploiting the facts that, on its feasible region, we always have

x2j = xj ∀j = 1 . . . n (2)

(because the variables are binary) and, in case we have a set of valid equations for our
problem, say A=x = b=, we also have:

(A=x − b=)
2 = 0 (3)

where, given a generic vector v, we use the notation v2 = v⊺v.
This idea is exploited in the Quadratic Convex Reformulation (QCR) method and

extensions (see [8, 7, 35]). By Lagrangian relaxation of constraints (2) and (3) with
the multipliers δj ∈ R (j = 1 . . . n) and ρ ∈ R respectively, we obtain the following
Lagrangian Function:

L(x, δ, ρ) = fδ,ρ(x) = f(x) +∑
j∈J
δj(x

2
j − xj) + ρ(A=x − b=)

2

and the corresponding Lagrangian Dual becomes

max
δ∈Rn,ρ∈R

θ(δ, ρ) = max
δ∈Rn,ρ∈R

min
x∈Rn∶Ax≥b

fδ,ρ(x) . (4)

In [16], the authors show that, in this special case, the Lagrangian Dual reduces to
a Semi Definite Program (SDP), and the set of optimal multipliers (δ∗, ρ∗) can be
obtained by solving an auxiliary semidefinite problem. The optimal multipliers are
selected in a way that the function fδ∗,ρ∗(x) is convex. This implies that we can
obtain a convex objective function by replacing f(x) with fδ∗,ρ∗(x), in such a way
that it can be efficiently solved by a classical branch-and-bound algorithm based on
its continuous relaxation. Moreover, among all the possible settings of (δ, ρ) making
fδ,ρ(x) convex, the optimal multipliers (δ∗, ρ∗) are those yielding the tightest possible
continuous relaxation.

In [7], the authors propose an improvement of the QCR method based on an
extended formulation using an additional set of variables zij, representing the products
of the binary variables xi and xj. This allows to have the following, more general,
Lagrangian Function:

fδ,ρ,Γ(x, z) = f(x) +∑
j∈J
δj(x

2
j − xj) + ρ(A=x − b=)

2 +∑
i∈J
∑
j∈J

Γij(zij − xixj)

with Γ ∈ Rn×n. To this formulation are also added the classical linearization constraints
introduced in [17]. This additional degree of freedom allows to obtain formulations
that are stronger than the one obtained with fδ,ρ(x) (see [7]). Also in this case, the
problem of finding the best set of multipliers (δ∗, ρ∗,Γ∗) reduces to solve an SDP.

For the sake of completeness, in Appendix A we report the two SDP needed to
compute the optimal set of multipliers (δ∗, ρ∗) and (δ∗, ρ∗,Γ∗).
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3 Dantzig-Wolfe Reformulation for 0-1 nonlinear

problems

A popular technique to obtain tight bounds for problems with discrete variables is
Dantzig-Wolfe Reformulation (DWR) (see for example [14] and [24], Chapter 13). The
main idea behind DWR is to replace the feasible region corresponding to a subset of
constraints with the convex hull of its extreme points, exploiting the Minkovsky and
Weyl theorem. From an algebraic point of view, this amounts to force the vector of
decision variables to be represented as a linear convex combination of a finite set of
(extreme) points. For this reason, in the literature this procedure is commonly known
as partial “convexification”; however, in order to avoid misunderstanding with the
QCR methods that deal with the convexification of the objective function, we refer to
the effect of DWR as “strengthening” of a subset of constraints.

DWR has been extensively used for solving problems with only linear constraints
and linear objective function. However, it has never been applied systematically to
generic nonlinear problems. In this section we give an exact procedure to perform
DWR on nonlinear problems. More precisely, we want to apply DWR to the following
problem:

(BF) min f(x)

s.t. gi(x) ≤ 0 i ∈ I

hj(x) ≤ 0 j ∈ J (5)

x ∈ {0,1}n

where hj(x), j ∈ J are convex. The basic idea of DWR is to substitute constraints (5)
with a set of constraints imposing on x to belong to their convex hull Ω = conv{x ∶
hj(x) ≤ 0 j ∈ J, x ∈ {0,1}n}. This leads to a reformulation with a finite number of
variables if all x are discrete and/or all constraints are linear. However, if some of
the constraints hj(x) are nonlinear and some of the variables are continuous this may
no longer be true and a more careful analysis of the problem is needed to guarantee
the convergence of the method (if some of the variables are no longer required to be
integer, the size of the set of extreme points of the convex hull of nonlinear constraints
can be infinite).

An important way to compare reformulations is to evaluate the strength of their
continuous relaxations, i.e. when constraints x ∈ {0,1}n are substituted by x ∈ [0,1]n.
In the following we indicate with (F) the continuous relaxation of (BF), that is (BF)
with variable bounds instead of binary restrictions. For convenience, we assume that
constraints x ∈ [0,1]n are part of the set of constraints gi(x) ≤ 0, i ∈ I. This notation
and this assumption apply in the following to all the formulations used. Furthermore
we say that a formulation is stronger than another if no instance exists in which the
dual bound produced by the former is looser (and some instance exists in which it is
tighter).

DWR with a Master Problem with nonlinear objective function. Let P be
the set of the extreme points of Ω. For each extreme point p ∈ P, we define xp as its
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incidence vector and we introduce a new variable yp associated to p. With a slight
abuse of notation, in the following we will use the notation P also for the set of yp

variables associated to the set P.
With the given notation, (BF) can be reformulated as follows:

(BF-NLM) min f(x)

s.t. gi(x) ≤ 0 i ∈ I [µi]

x −∑
p∈P

xpyp = 0 [π] (6)

∑
p∈P

yp − 1 = 0 [π0]

yp ≥ 0 ∀p ∈ P

x ∈ {0,1}n ,

where µi, π and π0 denote the dual variables of the associated constraints in its con-
tinuous relaxation (F-NLM), which is usually indicated as Master Problem. We refer
to the reformulation (F-NLM) as DWR with a nonlinear Master Problem. The refor-
mulation is valid for any f(x) and gi(x). It is stronger than (F) when used as a dual
bound for (BF). The drawback of the new formulation is that it can contain a very
large number of variables (one for each p ∈ P). The standard technique used in prac-
tice to solve such formulation is Column Generation (CG). This technique starts with
a model containing a smaller set of extreme points P̄ ⊆ P, the so-called (Restricted)
Master Problem (RMP), then it iteratively solves the RMP and an additional Pricing
Problem (PP) that checks if the set of points in P̄ is enough to determine the optimal
solution (and therefore the procedure stops) or if (at least) one additional variable
needs to be added to the RMP. A key component of CG is therefore an exact pricing
procedure.

If the Master Problem is convex (i.e., if f(x) and the gi(x) are convex), it is possible
to use the duality theory to present the pricing problem as a cutting plane separation
in the dual of the Master Problem. To do so, we can apply Wolfe duality to obtain the
following dual of (F-NLM) (see [40] and Appendix B for details about its calculation):

max f(x) +∑
i∈I
µigi(x) + π

⊺x − π0

s.t. ∇xf(x) +∑
i∈I
µi∇xgi(x) + π = 0

− π⊺xp + π0 ≥ 0 ∀p ∈ P (7)

yp ≥ 0 ∀p ∈ P (8)

µi ≥ 0 i ∈ I (9)

Starting with a subset of y variables in the primal is equivalent to having only a subset
of constraints (7) in the dual. For a given primal-dual solution of the RMP, the pricing
problem in the primal is equivalent to a separation problem of constraints (7) in the
dual. More formally, let (µ∗, π∗, π∗0) be an optimal dual solution of the RMP, the
pricing problem reduces to find a p ∈ P ∖ P̄ such that −π∗⊺xp +π∗0 < 0 (or to prove that
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none exists). This can be done by solving the following model:

min − π∗⊺x + π∗0
s.t. hj(x) ≤ 0 j ∈ J

x ∈ {0,1}n

and, if its optimal value is strictly lower than zero, its optimal solution identifies a
violated inequality to be added in the dual (or, analogously, a new variable to be added
in the primal).

DWR with a Pricing Problem with nonlinear objective function. An alter-
native reformulation can be obtained if we want to express the objective function and
the constraints as linear combination of their value on the extreme points p ∈ P:

(F-NLP) min ∑
p∈P

f(xp)yp

s.t. ∑
p∈P

gi(x
p)yp ≤ 0 i ∈ I [µi]

∑
p∈P

yp = 1 [π0]

yp ≥ 0 ∀p ∈ P

where µi and π0 denote the dual variables of the associated constraints. In this case
the Master Problem is linear, we can therefore use the standard Linear Programming
Duality to obtain its dual:

max π0

s.t. π0 −∑
i∈I
gi(x

p)µi ≤ f(x
p) ∀p ∈ P

µi ≥ 0 i ∈ I .

The pricing problem in this case reduces to find, given a set of optimal dual variables
(µ∗, π∗0), a p ∈ P ∖ P̄ such that π∗0 −∑i∈I gi(x

p)µ∗i > f(x
p). This can be done by solving

the following model:

max π∗0 −∑
i∈I
gi(x)µ

∗
i − f(x)

s.t. hj(x) ≤ 0 j ∈ J

x ∈ {0,1}n

that turns out to be a nonlinear problem. Therefore, we refer to the reformulation
(F-NLP) as DWR with a nonlinear Pricing Problem. We remark that we do not need
to impose to f(x) and gi(x) to be convex to use the duality theory to define the pricing
problem as with (F-NLM) because in this case the Master Problem is always linear
(and consequently convex).
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Reinterpretation of DWR. In order to compare the DWR with nonlinear Master
and nonlinear Pricing approaches, we cast both of them in the context of Lagrangian
duality. Let us consider the following rewriting of (BF):

(BF′) min f(w)

s.t. x −w = 0 [ϕ] (10)

gi(w) ≤ 0 i ∈ I [µi] (11)

hj(x) ≤ 0 j ∈ J

x ∈ {0,1}n

obtained by decoupling the objective function and the constraints hj(x) with the
introduction of the new set of variables w. Let (F′) be the continuous relaxation of
(BF′).

The following theorem shows how the proposed models can be viewed in terms of
Lagrangian Duality.

Theorem 1. When the f(x) and gi(x) (for all i ∈ I) functions are convex and the
Slater condition holds for (F), the bound given by formulation (F-NLM) is equivalent to
that given by the Lagrangian Dual of (F ′) when constraints (10) and (11) are relaxed.

Proof. We prove the equivalence between the Wolfe dual of (F-NLM) and the La-
grangial dual of (F ′) for this particular relaxation. In fact, the Lagrangian Dual
obtained after relaxing the first two constraints is the following:

max
µ∈R∣I∣

+

ϕ∈Rn

θ(µ,ϕ) =max
µ∈R∣I∣

+

ϕ∈Rn

min
xp∈P
w∈Rn

L(xp,w,µ, ϕ) =max
µ∈R∣I∣

+

ϕ∈Rn

min
xp∈P
w∈Rn

(f(w) + ϕ⊺(xp −w) + µ⊺g(w))

that can be rewritten as follows:

max (σ + min
w∈Rn
(f(w) − ϕ⊺w + µ⊺g(w))

s.t. σ − ϕ⊺xp ≤ 0 ∀p ∈ P

µ ∈ R∣I ∣+ , ϕ ∈ Rn, σ ∈ R .

The inner minimization problem is convex unconstrained, therefore it attains the op-
timum only if its gradient is zero. This allows to rewrite it as the following model:

max σ + f(w) − ϕ⊺w + µ⊺g(w)

s.t. ∇wf(w) − ϕ + µ
⊺∇wg(w) = 0

σ − ϕ⊺xp ≤ 0 ∀p ∈ P

µ ∈ R∣I ∣+ , ϕ ∈ Rn, σ ∈ R,

that, after the variable substitutions π0 = −σ, π = −ϕ, is equal to the Wolfe dual of
(F-NLM).
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Theorem 2. Formulation (F-NLP) is equivalent to the Lagrangian Dual of (F ′) when
constraints (11) are relaxed.

Proof. We prove that (F-NLP) turns out to be the dual of the Lagrangian dual of
(F ′). In fact, we first observe that, if we do not relax constraints (10), (F′) can be
remapped to (F) by simple replacement of the w variables. As previously mentioned,
in the Lagrangian Dual of (F) where constraints gi(x) ≤ 0 are dualized, the set Ω can
be replaced by the finite set of points P. In this special case, the Lagrangian Dual can
be rewritten as follows:

max
µ∈R∣I∣

+

θ(µ) =max
µ∈R∣I∣

+

min
x∈{0,1}n

hj(x)≤0,j∈J

L(x,µ) =max
µ∈R∣I∣

+

min
xp∈P

L(xp, µ) =max
µ∈R∣I∣

+

min
xp∈P
(f(xp) + µ⊺g(xp))

which, in turn, can be written as a linear program as:

max
µ∈R∣I∣

+

θ(µ) =max
µ∈R∣I∣

+

σ

s.t. σ − µ⊺g(xp) ≤ f(xp) ∀p ∈ P

and its dual becomes:

min ∑
xp∈P

f(xp)yp

s.t. ∑
xp∈P

gi(x
p)yp ≤ 0 ∀i ∈ I

∑
xp∈P

yp = 1

yp ≥ 0 ∀p ∈ P .

The following corollary establishes a relation between DWR with a nonlinear Mas-
ter Problem and the one with a nonlinear Pricing Problem:

Corollary 1. When the f(x) and gi(x) (for all i ∈ I) functions are convex and the
Slater condition holds for (F), (F-NLP) is stronger than (F-NLM).

Proof. The statement is a direct consequence of Theorem 1 and Theorem 2: both for-
mulations can be viewed as Lagrangian Duals of the same formulation (F′). However,
(F-NLP) relaxes less constraints than (F-NLM) and therefore it is stronger.

Corollary 1 states that, when the problem is convex, minimising f(x) on the convex
hull of the integer solutions provides a stronger bound than minimising the convex
envelope of f(x) on that set. This is not surprising and it has been showed before in
other context (See for example Theorem 2.11 in [28]).
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4 New reformulations for BQP

In the previous sections we showed how the continuous relaxation of a quadratic
problem, reformulated with the QCR method and with DWR, can be seen as particular
cases of Langrangian Duals. In principle, these two procedures do not dominate each
other because they arise from different relaxations. In this section, we explore the
possibility of combining them, applying DWR to an even stronger formulation of
(BF), obtained when f(x) is replaced by fδ,ρ(x).

The discussion presented in Section 3 concerns generic nonlinear problems. Never-
theless, in the following we focus on (BQ), a special case of (BF) where the objective
function is quadratic (not necessarily convex) and all constraints are linear:

(BQ) min f(x) = x⊺Qx +L⊺x

s.t. Gx ≤ g

Hx ≤ h

x ∈ {0,1}n .

With a slight abuse of notation, we assume that a subset of constraints Gx ≤ g and
Hx ≤ h can be equations. When needed, we identify with G=x = g= and G≤x ≤ g≤
(resp. H=x = h= and H≤x ≤ h≤) the subset of equations and inequalities of the set of
constraints Gx ≤ g (resp. Hx ≤ h). Moreover, we recall that we identify with A=x = b=
the union of both sets of equations.

For consistency, we denote by (BQ-QM) the Dantzig-Wolfe Reformulation of (BQ)
with nonlinear (more precisely, quadratic) Master Problem, by (BQ-QP) the Dantzig-
Wolfe Reformulation of (BQ) with nonlinear (more precisely, quadratic) Pricing Prob-
lem, and with (Q-QM) and (Q-QP) the corresponding continuous relaxations.

Finally, we denote by (BQδ,ρ) the model obtained from (BQ) by replacing f(x)
with fδ,ρ(x) and by (BQδ,ρ,Γ) that obtained by replacing f(x) with fδ,ρ,Γ(x, z). Con-
sequently, we denote by (Qδ,ρ-QM) the DWR of (BQδ,ρ) with a quadratic Master
Problem, and with (Qδ,ρ-QP) the DWR of (BQδ,ρ) with a quadratic Pricing Problem.
A similar notation, with (Qδ,ρ,Γ) in place of (Qδ,ρ), is used when fδ,ρ(x) is replaced by
fδ,ρ,Γ(x, z). To complete notation, (Q-QM) and (Q-QP) refer to the DWR of (BQ)
with no convexification of the objective f(x).

For completeness, in Table 1 we report an overview of the possible (BQP) relax-
ations arising from the combination of convexification and strengthening. The Table
is organized as follows: DWR options are reported in rows. The different options for
the objective function are reported in columns: column f(x) refers to the use of the
original (possibily non convex) objective function, while column fδ,ρ(x) and fδ,ρ,Γ(x)
refer to the option of reformulating the objective function with a QCR-like method.

In Appendix C we show a reinterpretation of the reformulations listed in Table 1 in
light of Lagrangian Duality theory and based on the results of Section 2 and Section 3.
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Objective function
f(x) fδ,ρ(x) fδ,ρ,Γ(x, z)

DWR
QM (Q-QM) (Qδ,ρ-QM) (Qδ,ρ,Γ-QM)

QP (Q-QP) (Qδ,ρ-QP) (Qδ,ρ,Γ-QP)

Table 1: Summary of possible (BQP) relaxations combining strengthening and con-
vexification for (BQ).

Applying fδ,ρ(x) to DWR with a quadratic Master Problem. Following the
proof of Theorem 1, (Qδ,ρ-QM) is equivalent to the following Lagrangian Dual:

max
δ∈Rn

+
,ρ∈R

µ∈R∣I∣
+

ϕ∈Rn

min
xp∈P
w∈Rn

(fδ,ρ(w) + ϕ
⊺(xp −w) + µ⊺(Gxp − g)) (12)

that can be viewed as a special case of the Lagrangian Dual (4) where the set {x ∶
Ax ≥ b} takes the form:

{(x, y) ∈ Rn ×R∣P ∣+ ∶ x −∑
p∈P

xpyp = 0,∑
p∈P

yp = 1} .

This implies that, in principle, the optimal dual multipliers can be obtained by solving
an additional SDP with an exponential number of variables. This option is clearly
prohibitive in practice because it is well-known that SDP solvers do not scale well
with the increase of the size of the problem and no effective warm-start techniques
exist for SDPs. Nevertheless, we recall that the multipliers (δ∗, ρ∗) (obtained after
solving the standard Lagrangian Dual for the QCR method, see Section 2.2) lead to a
feasible solution of the Lagrangian Dual (12) and thus can be used to obtain a feasible
reformulation of problem (F) of DWR with a nonlinear master problem. For this
reason in the following we limit our analysis to reformulations using such multipliers.

Applying fδ,ρ(x) to DWR with a quadratic Pricing Problem. Also in this
case, we investigate the problem of finding the set of multipliers yielding the strongest
(Qδ,ρ-QP) relaxation. We first observe the following:

Proposition 1. For a given f(x) and ρ′ ≤ ρ′′, we have that (Qδ,ρ′′-QP) is stronger
than (Qδ,ρ′-QP).

Proof. For a given δ and ρ, let cp = fδ,ρ(xp) be the coefficient of a yp variable (see
Section 3). The formula for cp is the following:

cp = fδ,ρ(x
p) = f(xp) +∑

j∈J
δj((x

p
j)

2 − xpj) + ρ(A=x
p − b=)

2 .

The extreme points xp ∈ P take binary coefficients, therefore the quantities δj((x
p
j)

2 −
xpj) are always equal to zero, regardless of the values of the δj. On the other hand, the
sign of ρ(A=xp − b=)2 is equal to the sign of ρ, and the value of all the coefficients cp

increases with the increase of ρ proving the claim.
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The following lemma gives an answer to the question of finding the optimal multi-
pliers:

Lemma 1. Let M be a sufficiently large number, the multipliers δ and ρ providing the
strongest dual bound belong to the following set:

{(δ, ρ) ∈ Rn ×R ∶ ρ ≥M}

and for such values, (Qδ,ρ-QP) respects the set of equations A=xp = b=.

Proof. We can write the problem of finding the best multipliers as follows:

max
δ∈Rn,ρ∈R

min ∑
p∈P

cpyp

s.t. cp = fδ,ρ(x
p) = f(xp) +∑

j∈J
δj((x

p
j)

2 − xpj) + ρ(A=x
p − b=)

2

∑
p∈P

gi(x
p)yp ≤ 0 i ∈ I

∑
p∈P

yp = 1

yp ≥ 0 ∀p ∈ P .

As showed in the proof of Proposition 1, the value of all the coefficients cp increases
with the increase of ρ. If ρ is sufficiently large, all the extreme points with the quantity
A=xp − b= different from zero have a corresponding cost cp = +∞ and they are never
part of an optimal solution. For this reason, starting from a value of ρ ≥M , only the
variables yp corresponding to extreme points that respect also the constraints A=xp = b=
are part of the optimal solution of (Qδ,ρ-QP).

The following theorems show how (Qδ,ρ-QP) behaves in the extreme cases where
the Master Problem contains either only or no equations:

Theorem 3. If Gx ≤ g contains only equations, and ρ ≥ M (for a sufficiently large
value of M), solving (Qδ,ρ-QP) is equivalent to solve the original problem (BQ).

Proof. The proof directly follows from Lemma 1, observing that no more constraints
need to be satisfied.

Theorem 4. If Gx ≤ g contains only inequalities, solving (Qδ,ρ-QP) is equivalent to
solve (Q-QP).

Proof. We can even prove that, in such a case, (Qδ,ρ-QP) directly reduces to (Q-QP).
The proof is similar to the one of Lemma 1: if no equations are present

cp = fδ,ρ(x
p) = f(xp) +∑

j∈J
δj((x

p
j)

2 − xpj)

but since xp have binary coefficients, cp = f(xp).
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Lemma 1 implies that the multipliers giving the strongest reformulation are easy
to characterize. However, in Section 6.3 we show that they are not useful in practice.

Finally we notice that, while Corollary 1 implies that (Qδ,ρ-QP) is stronger than
(Qδ,ρ-QM) for any suitable choice of δ and ρ, such a theoretical guarantee applies to
(Q-QP) and (Q-QM) only when the problem is convex. In fact, in the general case we
prove the following.

Proposition 2. There is no dominance between (Q-QP) and (Q-QM).

Proof. Let us consider the two following instances:

(A)min f(x) = −x1 ⋅ x2

s.t. g(x) ∶ x1 + x2 = 1

h(x) ∶ x1 + x2 ≤ 1

x1, x2 ∈ {0,1}

(B)min f(x) = −x1 ⋅ x2

s.t. g(x) ∶ x1 + x2 = 1

h(x) ∶ x1 + x2 ≤ 2

x1, x2 ∈ {0,1}

We recall that h(x) are the constraints that we want to strengthen. Let ΩA be the
convex hull of {x ∶ x1 + x2 ≤ 1, x ∈ {0,1}2} and ΩB be the convex hull of {x ∶ x1 + x2 ≤
2, x ∈ {0,1}2}. Let PA and PB be the sets of extreme points of ΩA and ΩB. We have
that :

PA = {(0,0), (1,0), (0,1)},PB = {(0,0), (1,0), (0,1), (1,1)} .

The optimal integer solution is 0 for both (A) and (B). The optimal solution for both
(A −QM) and (B −QM) is attained when y(1,0) = y(0,1) = x1 = x2 = 0.5, and has a
value of −0.5 ⋅0.5 = −0.25. The optimal solution for (A −QP ) is 0, since all the feasible
columns have objective function value 0. On the other hand, in (B −QP ) column
(1,1) has objective function value −1, and therefore the optimal solution is attained
when y(0,0) = y(1,1) = 0.5, and has a value of 0 ⋅ 0.5 − 1 ⋅ 0.5 = −0.5. Therefore, (A −QP )
is stronger than (A −QM), while (B −QM) is stronger than (B −QP ).

Proposition 3. There is no dominance between (Q-QP) and (Qδ,ρ-QM).

Proof. Let us consider the same pair of instances (A) and (B) introduced in the
proof of Proposition 1. Since (A −QM) is stronger than (A −QP ) and (Aδ,ρ −QM)
is stronger than (A −QM), it also holds that (Aδ,ρ −QM) is stronger than
(A −QP ). As an example of the converse behaviour, let us consider the following:

(C)min f(x) = −x1 ⋅ x2 − x3 ⋅ x4

s.t. g(x) ∶ x1 + x2 + x3 + x4 = 1

h(x) ∶ 2 ⋅ x1 + x2 + x3 + 2 ⋅ x4 ≤ 2

x1, x2, x3, x4 ∈ {0,1}

Let ΩC be the convex hull of {x ∶ 2 ⋅ x1 + x2 + x3 + 2 ⋅ x4 ≤ 2, x ∈ {0,1}4} and PC be
the set of extreme points of ΩC. We have that:

PC = {(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,1,0)}.
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The optimal integer solution is 0. The optimal solution for (C −QP ) is 0, since all the
feasible columns have objective value 0. On the other hand, the QCR method yields
the following set of optimal multipliers: δ∗ = {0.5,0.5,0.5,0.5} (due to the cardinality
constraint, the value of ρ∗ has no influence). The objective function of (Cδ,ρ −QM)
becomes

fδ,ρ(x) = −x1 ⋅ x2 − x3 ⋅ x4 + 0.5(x
2
1 − x1) + 0.5(x

2
2 − x2) + 0.5(x

2
3 − x3) + 0.5(x

2
4 − x4).

In this case, an optimal solution for (Cδ,ρ −QM) is attained when y(1,0,0,0) = y(0,1,0,0) =
x1 = x2 = 0.5, with value −0.5. Therefore (C −QP ) is stronger than (Cδ,ρ −QM).

Using fδ,ρ,Γ(x,z) instead of fδ,ρ(x) . The following theorem shows the effect
of improving the convexification of the objective function on DWR with a quadratic
Pricing Problem:

Theorem 5. For a generic f(x), and for any set of multipliers (δ, ρ), (Qδ,ρ-QP) and
(Qδ,ρ,Γ-QP) are equivalent.

Proof. Both formulations differ only in terms of their objective functions. The coeffi-
cients ĉp of the yp variables for (Qδ,ρ,Γ-QP) are the following:

ĉp = fδ,ρ,Γ(x
p, zp) = f(xp) +∑

j∈J
δj((x

p
j)

2 − xpj) + ρ(A=x
p − b=)

2 +∑
i∈J
∑
j∈J

Γij(z
p
ij − x

p
ix

p
j) .

Since the extreme points xp are always binary, we have zij = xixj, therefore

∑i∈J ∑j∈J Γij(z
p
ij−x

p
ix

p
j) = 0. This implies that ĉp = f(xp)+∑j∈J δj((x

p
j)

2−xpj)+ρ(A=x
p−

b=)2, that corresponds to the coefficients cp of the yp variables for (Qδ,ρ-QP). Showing
that the two formulations are equivalent.

Theorem 5 allows us to exclude the family of formulations (Qδ,ρ,Γ-QP) from our
computational analysis, being equivalent to (Qδ,ρ-QP) but larger in terms of number
of variables and constraints. We remark that, for a similar reasoning, any value of δ
provides the same values for the coefficients ĉp. However, we keep δ in the notation
for coherence with the other QCR formulations.

Overview of the reformulations. It is possible to establish a hierarchy among the
reformulations, based on their strength.

The overall hierarchy is provided in Figure 1: for each pair of formulation families
A and B, we depict A ⇒ B when A is stronger than B, A⇔ B when A and B are
equally strong, and A⇎ B when there is no dominance between A and B. Near each
dominance arrow we provide the proposition proving the statement.

By looking at Figure 1 we see that (Qδ,ρ-QP) and (Qδ,ρ,Γ-QP) are the ones providing
the strongest bounds.
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(Q-QM) ⇐[8],δ∗,ρ∗ (Qδ,ρ-QM) ⇐[7],δ∗,ρ∗,Γ∗ (Qδ,ρ,Γ-QM)
⇕̸Prop.2 ̸Prop.3 ⇑Cor.1 ⇑Cor.1

(Q-QP) ⇐Prop.1,ρ>0 (Qδ,ρ-QP) ⇔Th.5 (Qδ,ρ,Γ-QP)

Figure 1: Hierarchy of reformulations.

5 Case study: the 0-1 exact k-item Quadratic

Knapsack Problem (kQKP)

As a case study we focus on the 0-1 exact k-item Quadratic Knapsack Problem [29,
30] (kQKP). The kQKP is a BQP with a generic objective function, but only two
constraints (one equation and one inequality). It is hence perfect to be used as test
problem, allowing us to focus on the methodology rather than the technical issues.
More precisely, the kQKP consists of maximizing a quadratic function subject to a
capacity and a cardinality constraint, which are both linear. It can be formulated as
follows:

(BK) max f(x) =
n

∑
i=1

n

∑
j=1
cijxixj

s.t.
n

∑
j=1
ajxj ≤ b (kn)

n

∑
j=1
xj = k (ca)

xj ∈ {0,1} j = 1, . . . , n

where n (number of items), k (number of items to be filled in the knapsack), aj (weight
of item j), cij (profit associated with the selection of items i and j) and b (capacity
of the knapsack) are nonnegative integers. Without loss of generality, the matrix
C = (cij) is assumed to be symmetric.
Moreover, we assume that maxj=1,...,n aj ≤ b < ∑

n
j=1 aj in order to avoid either trivial

solutions or trivial variable fixing via constraint (kn). Let us denote by kmax the
largest number of items which could be filled in the knapsack, that is the largest k
such that the sum of the k smallest aj values does not exceed b. Therefore, we can
assume that k ∈ {2, . . . , kmax}, where kmax can be found in O(n) time [4, 15]. Outside
this range, either the value of the problem is equal to maxi=1,...,n cii (for k=1), or the
domain of (BK) is empty (for k > kmax). For notation consistency, we refer to (K) as
the continuous relaxation counterpart of formulation (BK).

5.1 Formulations Overview

In Table 2 we present an overview of the possible options arising from the combina-
tion of convexification and strengthening for (BK). The Table is organized as Table 1:
DWR options are reported in rows, with QM and QP refering to the formulations with
either a quadratic Master Problem or a quadratic Pricing Problem. Moreover, (kn),
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constraints Objective function
in the pricing f(x) fδ,ρ(x) fδ,ρ,Γ(x, z)

DWR

QM (kn) NCM (Kδ,ρ-QM-kn) (Kδ,ρ,Γ-QM-kn)
(ca) NCM IPP IPP

(kn,ca) NCM (Kδ,ρ-QM-kn,ca) (Kδ,ρ,Γ-QM-kn,ca)

QP (kn) (K-QP-kn) (Kδ,ρ-QP-kn) (Kδ,ρ,Γ-QP-kn)
(ca) (K-QP-ca) (Kδ,ρ-QP-ca) (Kδ,ρ,Γ-QP-ca)

(kn,ca) POP POP POP

Table 2: Summary of possible formulations combining strengthening and convexifica-
tion for (BK).

(ca) and (kn,ca) refer to the possible choices of constraints to be strengthened, that
is the choice of Ω. Also in this case, the different options for the objective function
are reported in columns: column f(x) refers to the use of the original (possibily non
convex) objective function, while column fδ,ρ(x) and fδ,ρ,Γ(x) refer to the option of
reformulating the objective function with a QCR-like method.

We first note that not every combination is relevant:

� NCM

The combination marked with NCM (NonConvex Master) are those leading to
a possibly nonconvex Master Problem. On these cases it is not possible, in
general, to ensure through KKT conditions that the solution achieved during
master optimization steps is a global optimum, and therefore it is not possible to
guarantee global convergence of the column generation process. For this reason
we discard these combinations from our analysis.

� IPP

The combination marked with IPP (Integrality Property on Pricing) are those
where the Pricing Problem has the so-called integrality property, i.e. the contin-
uous relaxation of the Pricing Problem has always an optimal integer solution.
In fact, the Pricing Problem is linear, and amounts in selecting a set of k items
of maximum prize. That is, even if we apply DWR, no improvement in the
continuous relaxation bound is obtained. We therefore decide to discard these
configurations.

� POP

The combinations marked with POP (Pricing is Original Problem) are those where
the Pricing Problem presents a quadratic objective function, and the same fea-
sible region as the original problem. Therefore, a single column generation it-
eration would be as hard as the original problem. Also these configurations are
discarded from further analysis.

Additionally, a preliminary set of experiments among (Kδ,ρ-QP-ca) and (Kδ,ρ-QP-kn),
showed the latter to produce more interesting computational insights.
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Therefore, among the remaining combinations, we show in details the master and
pricing problems of (Kδ,ρ,Γ-QM-kn,ca) and (Kδ,ρ-QP-kn), being representative of the
whole set of options.

Indeed, it is worth noting that (Kδ,ρ,Γ-QM-kn,ca) provides the strongest reformula-
tion of the feasible region, while the Pricing Problem is kept of manageable complexity
by leaving the quadratic part of the objective function in the master.

(Kδ,ρ,Γ-QM-kn,ca) max fδ,ρ,Γ(x, z)

s.t. xj = ∑
p∈Pkn,ca

xpjy
p j = 1, . . . , n [πj]

zij = ∑
p∈Pkn,ca

zpijy
p i, j = 1, . . . , n [ξij]

∑
p∈Pkn,ca

yp = 1 [π0]

yp ≥ 0 p ∈ Pkn,ca

with Pkn,ca being the set of extreme points of

conv{(x, z)∣
n

∑
j=1
ajxj ≤ b;

n

∑
j=1
xj = k;

zij ≤ xi, zij ≤ xj, zij ≥ 0, zij ≥ xi + xj − 1, i, j = 1, . . . , n

x ∈ {0,1}n}

and π, ξ, π0 being the dual variables associated to the constraints in the master. We
observe that the bounds on the x and z variables are automatically respected by the
variables yp associated to the extreme points of Pkn,ca. Let π∗, ξ∗, π∗0 be the optimal
dual variables of a master solution during a generic column generation iteration, the
Pricing Problem can be written as follows:

max
n

∑
j=1
π∗j xj +

n

∑
i,j=1

ξ∗ijzij + π
∗
0

s.t.
n

∑
j=1
ajxj ≤ b

n

∑
j=1
xj = k

zij ≤ xi, zij ≤ xj i, j = 1, . . . , n

zij ≥ 0, zij ≥ xi + xj − 1 i, j = 1, . . . , n

xj ∈ {0,1} j = 1, . . . , n.

On the other hand, in (Kδ,ρ-QP-kn) the Master Problem is linear and contains only
two constraints, and the Pricing Problem is a binary Quadratic Knapsack Problem.
This makes such a case potentially appealing to be used in dedicated algorithms, since
effective ad-hoc combinatorial algorithms exist for pricing [9, 11, 33, 34]:

17



(Kδ,ρ-QP-kn) max ∑
p∈Pkn

cpδ∗,ρ∗y
p

s.t. ∑
p∈Pkn

n

∑
j=1
xpjy

p = k [µ]

∑
p∈Pkn

yp = 1 [π0]

yp ≥ 0 p ∈ Pkn

with Pkn being the set of extreme points of conv{x∣∑
n
j=1 ajxj ≤ b, x ∈ {0,1}

n}, and µ
and π0 being the dual variables associated to the constraints in the Master Problem.

Denoting as µ∗ and π∗0 the optimal dual variables of a master solution during a
column generation iteration, the Pricing Problem can be written as follows:

max fδ∗,ρ∗(x) +
n

∑
i=1
µ∗i xi + π

∗
0

s.t.
n

∑
j=1
ajxj ≤ b

xj ∈ {0,1} j = 1, . . . , n .

6 Computational comparison

Building on the results of the previous sections, we designed an experimental cam-
paign in order to investigate the computational properties of our reformulations. Our
main aim is to assess the tradeoff that can be obtained in terms of dual bound quality
versus computing time.

In this section, the following set of instances from the literature is used as testbed:

� Density-Dependent (DD) instances.
This set consists of kQKP instances produced by the random generator of [29].
The number of items takes the following values: n = 50,60, . . . ,100; b, aj and cij
are nonnegative integers. The values of k ∈ {2, . . . ,min{kmax, ⌊

n
4 ⌋}} are chosen in

a way to make the instances harder than the corresponding Quadratic Knapsack
instance. The density of the objective function Dens (defined as the percentage
ratio between the number of non zero coefficients cij and n2) takes the following
values: Dens = 25,50,75,100. For any combination of n and Dens, 10 feasible
random instances are included in the data set. This test-bed consists in total of
240 instances.

We therefore implemented a C++ framework, in which the Master Problem is solved
by the continuous solver of IBM CPLEX [23]. Effective ad-hoc algorithms exist for
solving some of the Pricing Problems arising from our reformulations. In fact, in
preliminary investigations [12], we experimented on using them. However, to further
improve the fairness of our comparisons, we decided not to use them, but rather to
always solve Pricing Problems by the integer (either quadratic or linear) solver of IBM
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CPLEX. In both cases we kept default settings, except for the MIP emphasis during
pricing, which was set to “Hidden Feasibility” for up to 60 seconds, and then set to
“Best Bound”, returning the first solution found having positive reduced cost. That
is, once again the kQKP is used as benchmark problem, but its specific combinatorial
structure is not exploited by our optimization algorithms. Such a generic approach
is not without drawbacks: convexification methods produce large coefficient values
(often in the order of magnitude of 109 or more), which in turn affect column generation
numerical stability. Special care is required especially at the tail of column generation,
when by contrast, very low values of reduced cost are expected as optimal pricing
solutions. Hence, fine tuning of numerical constants turned out to be important:
choosing a relative optimality tolerance which is too low (resp. too high) may produce
a stall in the LP solver (resp. sub-optimal columns to be returned).

In our implementation, when quadratic masters are optimized by the barrier al-
gorithm, the convergence tolerance threshold was initially set to 10−9, and lowered
to 10−12 when no new column of positive reduced cost was found; setting the duals
of convexity contraints as objective offset in pricing also helped to improve stability.
Unfortunately, we argue that suitable values for these thresholds are machine (and
maybe even operating system) dependent. In fact, we experimented with a few differ-
ent versions of CPLEX, including 12.8, but release 12.6.3 produced best performances
overall.

Our tests run on a PC equipped with an Intel i7 6700K 4.0GHz CPU (4 cores, up
to 8 hardware threads), 32GB of RAM, running Ubuntu Linux.

6.1 Dual Bounds overview

In Table 3 the results concerning selected families of formulations are presented.
The table is divided into five vertical blocks. The second block, which are (Kδ∗,ρ∗) and
(Kδ∗,ρ∗,Γ∗), reports the results concerning the models obtained after convexifying the
objective function with the techniques introduced in Section 2, without DWR.

As explained in Section 3, to obtain a reformulation amenable to be solved by DWR,
the objective function in the Master Problem needs to be convex. For this reason
we need to use either fδ∗,ρ∗(x) or fδ∗,ρ∗,Γ∗(x, z) when dealing with Quadratic Master
Problems: the third and forth block, which are (Kδ∗,ρ∗-QM-kn,ca) and (Kδ∗,ρ∗,Γ∗-QM-
kn,ca), report the results concerning the models obtained after applying also DWR
as explained in Section 4. The results on the two remaining options of DWR with
a quadratic Master Problem (i.e., (Kδ∗,ρ∗,Γ∗-QM-kn) and (Kδ∗,ρ∗-QM-kn)) provide no
further insights:

Experimental Observation 1. No significant experimental difference is observed
between (Kδ∗,ρ∗,Γ∗-QM-kn) (resp. (Kδ∗,ρ∗-QM-kn)) and (Kδ∗,ρ∗,Γ∗-QM-kn,ca) (resp.
(Kδ∗,ρ∗-QM-kn,ca)) neither in terms of duality gap nor in terms of computing time.

These cases are therefore dropped from the Table.
In the case of Quadratic Pricing Problems, it is not mandatory to convexify the

objective function. However, the option of keeping a potentially non-convex objective
function is interesting only if ad-hoc algorithms are used for pricing, as otherwise
generic convexification techniques are employed by the general purpose MIP solver.
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For this reason we include in the table only (Kδ∗,ρ∗-QP-kn). We remind to Section 6.3
for an analysis of (K-QP-kn) as a special case of (Kδ∗,ρ∗-QP-kn) where multipliers
take value 0, and to [12] for a computational assessment of using ad-hoc procedures
for solving QPs which are potentially non-convex.

We remark that (Kδ∗,ρ∗) and (Kδ∗,ρ∗,Γ∗) can be solved in polynomial time, while
the remaining models in the table require to optimize a NP-hard subproblem, so they
are not directly comparable in terms of scalability. Nevertheless, we include them as
reference for comparing the dual bounds obtained.

The table shows horizontally the average of tests concerning the ten instances with
the same value of n and Dens. For each block using DWR we report the computing
(clock) time; relative results do not differ significantly when CPU time is considered
instead of clock time. We omit the computing time when DWR is not used: (Kδ∗,ρ∗)
appeared to be one order of magnitude faster than (Kδ∗,ρ∗,Γ∗), but each test took
less than 0.1s. We do not report the pre-processing time needed to compute optimal
multipliers because it is neglectable. For all blocks we also report the duality gap
(defined as the difference between the continuous relaxation bound and the optimal
value, divided by the optimal value). In the last line the total average is reported. An
outlook at the trend of computing times yields the following:

Experimental Observation 2. For all methods, computing times increase signif-
icantly as the size of the instance increases, and change only marginally with their
density.

Comparing the two columns of block 2, and blocks 3 with block 4, immediately
leads to the following observation:

Experimental Observation 3. The use of fδ∗,ρ∗,Γ∗(x, z) instead of fδ∗,ρ∗(x) improves
consistently the strength of the dual bound.

We remark that such a behavior is no longer present in the case of quadratic pricing,
for which Theorem 5 states the equivalence of both convexifications.

6.2 DWR with a quadratic Master Problem

As theoretically expected, the duality gaps reported in the third and fifth block
(resp. fourth block) are smaller than those in the first column (resp. second column)
of the first block, at the expense of higher computing time.

The following observation shows that DWR can be an appealing alternative to
complex convexification methods:

Experimental Observation 4. (Kδ∗,ρ∗,Γ∗) and (Kδ∗,ρ∗-QM-kn,ca) yield a similar ef-
fect in terms of dual bound improvement.

The first column (resp. second column) of block one and block three (resp. block
four) correspond to formulations which differ in terms of strengthening of the feasible
region. Nevertheless, the bound improvement is not as outstanding as expected, and
the computing time grows by one order of magnitude. The same applies between
blocks three and four, in which a more accurate convexification is performed. This
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(Kδ∗, ρ∗) (Kδ∗, ρ∗,Γ∗) (Kδ∗, ρ∗-QM-kn,ca) (Kδ∗, ρ∗,Γ∗-QM-kn,ca) (Kδ∗, ρ∗-QP-kn)
Dens n Gap Gap Time Gap Time Gap Time Gap

25% 50 38.5% 30.9% 1.1 38.4% 3.5 29.1% 0.3 0.0%
60 84.5% 72.0% 1.7 84.4% 3.5 69.2% 0.4 0.0%
70 42.4% 34.4% 2.5 42.2% 7.7 32.9% 1.0 0.0%
80 37.9% 30.7% 3.1 37.7% 15.1 29.6% 7.3 0.0%
90 76.7% 63.8% 3.1 76.7% 14.0 61.2% 15.2 0.0%
100 60.6% 53.1% 4.1 60.6% 24.9 52.3% 49.9 0.0%

50% 50 31.4% 25.3% 1.4 31.1% 3.3 23.7% 0.3 0.0%
60 19.8% 15.1% 1.8 19.5% 6.3 14.2% 0.5 0.0%
70 57.0% 50.9% 2.6 56.9% 11.4 48.9% 3.2 0.0%
80 64.1% 55.4% 3.0 64.1% 10.5 53.7% 9.6 0.0%
90 63.8% 57.0% 3.2 63.8% 22.0 55.9% 36.3 0.0%
100 18.5% 14.2% 4.5 18.5% 29.7 14.0% 107.4 0.0%

75% 50 70.9% 64.6% 1.5 70.9% 2.9 61.9% 0.2 0.0%
60 86.3% 79.8% 1.5 86.0% 4.1 76.8% 1.0 0.0%
70 58.2% 50.9% 2.1 58.2% 6.6 49.3% 4.8 0.0%
80 54.0% 48.7% 2.4 54.0% 14.8 47.7% 39.2 0.0%
90 42.1% 37.9% 3.6 42.1% 26.4 37.1% 353.5 0.0%
100 27.2% 21.7% 4.6 27.2% 35.1 21.5% 353.6 0.0%

100% 50 50.4% 45.8% 1.4 50.3% 3.5 44.0% 0.8 0.0%
60 48.8% 43.6% 1.9 48.8% 5.8 42.4% 1.0 0.0%
70 44.5% 39.6% 2.5 44.4% 11.7 38.7% 6.9 0.0%
80 49.2% 43.3% 2.7 49.2% 12.1 42.1% 66.4 0.0%
90 27.0% 23.9% 3.7 27.0% 24.3 23.4% 69.6 0.0%
100 59.8% 55.1% 3.5 59.8% 24.3 54.1% 319.8 0.0%

Avg. 50.6% 44.1% 2.6 50.5% 13.5 42.6% 60.3 0.0%

Table 3: DD instances, continuous relaxations of QCR and DWR with quadratic Master
and quadratic Pricing.

suggests that while using DWR strengthening, employing sophisticated convexification
mechanisms may not be worthwhile.

Among all our tests, the most surprising result is arising from the block related to
(Kδ∗,ρ∗,Γ∗-QM-kn,ca):

Experimental Observation 5. The duality gap obtained after applying (Kδ∗,ρ∗,Γ∗-
QM-kn,ca), compared to (Kδ∗,ρ∗,Γ∗), decreases only from 44% to 42.6%.

It is well known in combinatorial optimization that strenghtening a feasible region
usually helps significantly in improving the dual bound. For this reason, the modest
improvement of the duality gap obtained after strenghtening the knapsack and the
cardinality constraints (i.e. optimizing over the convex hull of the whole feasible
region) is, at first glance, counter-intuitive. In fact, if the objective function was
linear, such a reformulation would always fully close the duality gap.

A possible reason for this behaviour would be that the optimal solution is attained
in the interior of the convex hull of the feasible region. In this case, strengthening with
DWR yields no improvement. However, in a preliminary experiment, we found that
less than 10% of the instances have an optimal solution in the interior of the feasible
region.

An alternative explanation of the behaviour showed in Table 3 is related to the fact
that fδ∗,ρ∗(x) and fδ∗,ρ∗,Γ∗(x, z) are only “artificially” convex functions. Such functions
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are known to be “flatter” than a “real” convex function f(x) (see for example [3]).
Intuitively, an objective function is flat if it has descent directions, along which the
value of the objective function does not change significantly. For such a function,
its value does not change much on the feasible region, making it less interesting to
strengthen it with DWR.

6.3 DWR with a quadratic Pricing Problem

The results concerning (Kδ∗,ρ∗-QP-kn) are even more insightful.

Experimental Observation 6. (Kδ∗,ρ∗-QP-kn) closes 100% of the open gap of all
the instances in a reasonable amount of time.

This last striking result is coherent with the theoretical analysis showed in Sec-
tion 4, more precisely, with Proposition 1 and Theorem 3.

The design of an exact approach based on the relaxation proposed goes beyond
the scope of this work. However, the fact that with (Kδ∗,ρ∗-QP-kn) we are always able
to close the whole integrality gap suggests that a comparison with the overall solving
time of CPLEX is pertinent. In Appendix D we undertake such a comparison.

In an effort for understanding the extreme behaviour of (Kδ∗,ρ∗-QP-kn), we focus on
the objective function of the pricing problem. We recall that, according to Theorem 2
(Kδ∗,ρ∗-QP-kn) is in general a relaxation of the kQKP, while according to Theorem 3,
for a sufficiently large value of ρ, the pricing problem solves de facto a kQKP. So
an experimenal question arises, on the impact of choosing pertinent values for ρ.
Therefore, in a preliminary experiment we tested the following reformulation of (BK):

(BKρM ) max f(x) =
n

∑
i=1

n

∑
j=1
cijxixj − ρ

M (
n

∑
j=1
xj − k)

2

s.t.
n

∑
j=1
ajxj ≤ b

x ∈ {0,1}n

where ρM is a sufficiently large value (that we identified empirically). We do not report
the results in detail because, as expected, using (BKρM ) instead of (BK) turns out to
be, in terms of computing time, way worse.

Summarizing, such a big-M approach proves not to be viable, but at the same time
providing sufficiently high penalties for violating the cardinality constraint seems to
be a key ingredient for a tight relaxation. We therefore argue that a critical issue is
actually the choice of the multiplier ρ, that is by far non trivial. In the following,
we report a set of experiments aimed at obtaining a better understanding of such a
phenomenon.

Additional experiments on ρ. From a geometric point of view, the multiplier ρ
fully controls the convexity of the pricing objective function, as the dual variables act
only on its linear part. By setting ρ = 0, the pricing objective is convex in none of
the DD instances, while large values of ρ ensure it to be convex. Indeed, as explained
in Appendix A, setting ρ = ρ∗ is always sufficient (but not necessary) to make each
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Avg. Dual. Gap Avg. Time (s) Avg. Feasible Cols Avg. CG iter.
Dens n ρ = 0 ρ = ρ̄ ρ = ρ∗ ρ = 0 ρ = ρ̄ ρ = ρ∗ ρ = 0 ρ = ρ̄ ρ = ρ∗ ρ = 0 ρ = ρ̄ ρ = ρ∗
25% 50 19.43% 0.00% 0.00% 12.5 1.1 0.3 11.00% 46.14% 53.58% 6.1 7.6 5.2

60 35.08% 2.60% 0.00% 18.9 0.4 0.4 7.08% 34.78% 49.70% 6.3 7.2 6.1
70 14.85% 3.67% 0.00% 54.6 10.4 1.1 10.54% 41.56% 50.55% 7.0 6.5 5.8
80 9.42% 0.00% 0.00% 45.7 6.0 7.3 9.33% 41.41% 56.64% 4.8 7.2 6.6
90 26.81% 0.00% 0.00% 83.6 32.8 15.2 5.58% 43.19% 59.55% 6.4 9.1 5.6
100 21.79% 0.00% 0.00% 82.6 68.7 49.9 0.91% 35.30% 62.26% 4.5 10.1 6.7

50% 50 28.89% 0.00% 0.00% 39.4 2.0 0.3 11.06% 54.20% 66.85% 5.0 7.7 5.4
60 12.77% 0.00% 0.00% 47.1 0.5 0.5 22.86% 62.62% 56.83% 6.2 5.9 5.6
70 31.91% 0.00% 0.00% 47.9 13.3 3.2 4.44% 45.42% 58.17% 4.7 8.7 6.2
80 40.87% 2.79% 0.00% 71.9 142.5 9.6 0.00% 32.44% 64.96% 4.6 9.0 6.6
90 42.91% 0.00% 0.00% 57.6 81.8 36.3 6.67% 47.87% 69.04% 3.4 10.1 6.9
100 9.70% 0.00% 0.00% 70.0 228.7 107.5 19.44% 61.09% 85.95% 5.4 8.5 5.2

75% 50 73.97% 0.00% 0.00% 42.1 0.3 0.3 1.11% 39.99% 49.83% 5.0 6.7 5.0
60 81.22% 0.00% 0.00% 47.1 1.4 1.0 6.43% 45.43% 56.86% 4.1 7.5 5.4
70 57.25% 0.00% 0.00% 60.9 3022.7 4.9 7.50% 45.23% 80.31% 3.8 8.0 3.6
80 54.83% 0.66% 0.00% 81.2 12941.8 39.2 4.00% 39.11% 67.44% 4.2 10.1 5.8
90 57.37% 0.27% 0.00% 68.6 4574.8 353.5 0.00% 42.76% 68.24% 3.0 9.7 5.3
100 46.78% 0.13% 0.00% 63.7 530.7 353.6 0.00% 48.29% 81.21% 3.8 9.7 5.2

100% 50 76.16% 6.72% 0.00% 57.3 0.9 0.8 11.33% 42.79% 63.75% 4.0 9.4 5.2
60 56.90% 0.50% 0.00% 43.6 1.6 1.0 1.25% 46.90% 67.36% 4.1 7.5 5.6
70 79.59% 0.10% 0.00% 54.7 124.9 6.9 0.00% 40.52% 63.08% 3.4 7.6 6.6
80 74.20% 0.58% 0.00% 54.5 93.0 66.4 0.00% 36.94% 75.26% 3.5 8.8 5.9
90 54.48% 0.00% 0.00% 61.6 284.0 69.7 8.33% 59.27% 80.17% 4.2 7.9 5.0
100 81.84% 1.34% 0.00% 61.4 604.3 319.8 11.33% 56.40% 71.14% 3.4 7.8 6.8

Avg. 45.38% 0.81% 0.00% 55.35 948.69 60.35 6.68% 45.40% 64.95% 4.6 8.3 5.7

Table 4: DD set. Influence of ρ on the performances of (Kδ∗,ρ∗-QP-kn).

pricing objective function convex: a lower value is in principle enough. We also
remark that experimentally, ρ∗ is much lower than ρM .

We therefore perform the following experiment: we compare the bounds and CPU
times yielded by three versions of our algorithms, obtained by setting either ρ = 0,
ρ = ρ̄ or ρ = ρ∗, where ρ̄ is the minimum value of ρ such that the pricing objective
function remains convex. The latter is found by means of a simple bisection routine
in a preprocessing phase. The results on the DD set are reported in Table 4. The
table includes one row for each value of n and Dens, reporting average values over
the corresponding instances, and is composed by four blocks reporting, respectively,
the average duality gaps (the ratio of the difference between the dual bound obtained
and the optimal solution, to the optimal solution), the average CPU time spent in
the column generation process, the fraction of columns in the final master problem
for which the cardinality constraint is satisfied and the average number of column
generation iterations to reach convergence. Each block includes three columns, one for
each choice of the parameter ρ, as indicated in the leading row.

The results in Table 4 leads us to the following observations:

Experimental Observation 7. Ensuring the pricing objective to be convex improves
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the quality of the final dual bound, but it is not enough to ensure the same high quality
bounds achieved with ρ = ρ∗.

Indeed, setting ρ = 0 leaves a huge duality gap, but also setting ρ = ρ̄ still leaves an
average duality gap of 0.81%.

Experimental Observation 8. Choosing a high value of ρ tends to make the pricing
problem harder to solve.

In fact, the CPU time required after setting ρ = 0 is lower than by setting ρ = ρ̄ or
ρ = ρ∗.

Surprisingly, the strong bound obtained by setting ρ = ρ∗ can be obtained even
faster than by setting ρ = ρ̄.

Experimental Observation 9. Decreasing ρ from ρ∗ to ρ̄ yields an increase in the
total number of iterations needed to reach convergence, and therefore an overall increase
in CPU time.

Experimental Observation 10. The higher is the value of ρ, the higher is the
quantity of columns generated by the pricing algorithms that respect the cardinality
constraint.

The Experimental Observation 10 is implicitly supported by Lemma 1. However,
it is fundamental to notice the following:

Experimental Observation 11. Value ρ∗ is by far not a big-M value.

In fact when ρ = ρ∗ we have that, in about 35% of the times, the optimal column
found by the Pricing Problem does not respect the cardinality constraint. That is,
ρ∗ helps to drive towards the feasibility region of the cardinality constraint without
imposing to the columns generated to belong to it. This is, in our opinion, the main
rationale for the good computational behaviour of our method: to partially penalize
the violation of the cardinality constraint with a QCR convexification of the objective
function on one side, and to complete that penalization process with the feasible region
strengthening provided by DWR on the other side. This choice allows to obtain strong
dual bounds without falling into the numerical troubles given by big-M penalization
mechanisms.

6.4 Convexity analysis

As already mentioned, the convexification of the objective function is not needed
when the instance to be solved is convex. This observation suggests that the convexity
of the objective function is an aspect that should be analyzed more in detail.

In the following, we use the fraction of positive eigenvalues (κ) of the matrix rep-
resenting the objective function to measure the convexity of an instance of (kQKP).
Since we deal with problems in maximization form, an instance with a value of κ = 0
has an objective function with only negative eigenvalues and hence solving the corre-
sponding continuous relaxation is a convex optimization problem. Instead, instances
with values of κ > 0 have a nonconcave objective function, yielding to nonconvex
optimization problems.
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All instances of the DD set have, by construction, a value of κ approximately equal
to 0.5. To better understand the impact of convexity on the performance of our
algorithms, we create the following second set of instances:

� Convexity-Dependent (CD) instances.
This set takes the 40 DD instances with n = 50 and modifies their objective
function to obtain a set of instances with controlled values of κ. More precisely,
for each original instance, we generate 11 new instances with the same values of
a, b and k and with κ = 0.0,0.1,0.2, . . . ,0.9,1.0. The procedure (similar to the
one described in [10]) used to obtain an objective function with a given convexity
κ∗ is the following:

– We define a n×n matrix B′ of real values randomly generated in the range
[−1,1], and we orthonormalize it. The vectors composing B′ are then used
as eigenvectors of a matrix B′′.

– We randomly draw ⌈κ∗n⌉ values in the range [−1,0] and (n− ⌈κ∗n⌉) values
in the range [0,1], to be set as eigenvalues of B′′.

– We rebuild the matrix B′′ using the spectral decomposition theorem.

– We set L = IB′′ and Q = B′′ −L

– We sort the diagonal values of L according to the order induced by the
values aj. This last reordering is done in order to have the linear objective
terms correlated with the item weights.

This procedure leads to a total of 440 instances.

In Figure 2 we synthesize the results of tests on CD instances. The values of κ
are reported on the horizontal axis, while the distribution of computing times (on
logarithmic scale) of the corresponding 40 instances is synthesized with a boxplot on
the vertical axis. The tests led to one out of memory run for κ = 0.0 and κ = 0.9, and
four for κ = 1.0; these tests are included in the plot as well.

The results in Figure 2 clearly lead to the following statement:

Experimental Observation 12. The problem complexity tends to increase as the κ
value increases.

7 Conclusion

We presented a first comprehensive methodological and experimental study on a
new family of reformulations for Binary Quadratic Problems (BQPs) based on Dantzig-
Wolfe Reformulation (DWR) and Quadratic Convex Reformulation (QCR) of the ob-
jective function. In particular, we framed the new family of reformulations in a hier-
archy of dominance, based on the theoretical strength of their continuous relaxation.
We also tested the computational behaviour of the proposed reformulations on a large
set of instances of the cardinality constrained Quadratic Knapsack Problem (kQKP)
from the literature.

We were able to theoretically show that one of the new reformulation (namely
(Kδ∗,ρ∗-QP-kn)) is able to provide the strongest dual bound. This result is experi-
mentaly validated by the fact that such reformulation presents an integrality gap of
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Figure 2: Distribution of computing time (log scale) of (Kδ∗,ρ∗-QP-kn) on CD instances.

0% for all the instances from the literature, and all the additional instances that we
have created for further analyses. Moreover, such impressive bound allows to solve
instances to proven integer optimality with a computing time that is lower than the
computing time of a state-of-the-art commercial solver.

Our analysis of reformulations revealed that DWR and QCR are complementary
in effectively handling the constraints of (K).

In particular, the set of equations used in the convexification of the objective
function is of key importance because, when the convexification is applied to DWR,
it implicitly increases the likelihood of generating columns respecting also such a set
of equations.

In principle, our family of reformulations could be used to solve any class of BQPs.
In practice, we expect them to be more effective when embeded in algorithms exploit-
ing specific structures of the problem to solve. A promising example are mathematical
formulations where equations and inequalities form blocks of well-defined substruc-
tures. Our future research will therefore focus on exploring such extensions.
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(BK) (BKδ∗,ρ∗). (Kδ∗,ρ∗ -QP-kn)
Dens(%) n Time N. Timeout Time Time

25 50 0.75 0 0.31 0.28
60 0.42 0 0.19 0.36
70 3.92 0 0.63 1.05
80 22.92 0 1.71 7.28
90 151.95 1 7.99 15.21
100 280.83 0 21.49 49.89

50 50 17.03 0 0.26 0.34
60 39.71 0 0.32 0.47
70 33.08 4 1.73 3.16
80 128.69 2 4.80 9.59
90 1414.28 4 14.93 36.30
100 1286.97 3 90.14 107.45

75 50 12.49 0 0.22 0.25
60 14.19 1 0.59 1.04
70 133.40 2 2.22 4.85
80 66.53 5 9.18 39.18
90 243.56 8 164.97 353.53
100 145.37 8 245.92 353.63

100 50 167.46 1 0.35 0.78
60 35.92 2 0.64 0.96
70 11.46 6 3.52 6.92
80 211.94 4 23.29 66.39
90 2214.66 6 36.76 69.65
100 116.34 5 212.84 319.84

Overall 217.58 62 35.21 60.35

Table 5: DD instances, DWR vs CPLEX

A Details on the QCR method

A.1 Semidefinite model providing δ∗ and ρ∗

Let us consider (BQδ,ρ) (the convexified formulation of a Binary Quadratic Prob-
lem, introduced in Section 4):

(BQδ,ρ) min fδ,ρ(x) = x
⊺Qx +L⊺x +∑

j∈J
δj(x

2
j − xj)+

+ ρ(A=x − b=)
2

s.t. Gx ≤ g

Hx ≤ h

x ∈ {0,1}n .
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The SDP used to obtain the optimal parameters δ∗, ρ∗ (see [8, 35]) is the following:

(SDPBQδ,ρ
) max

n

∑
i=1

n

∑
j=1
QijXij

s.t. Xii = xi i = 1, . . . , n [δi]

⟨A=A
⊺
=,X⟩ − 2b

⊺
=A=x = −b

2
= [ρ]

Gx ≤ g

Hx ≤ h

(
1 xt

x X
) ⪰ 0

x ∈ Rn, X ∈ Rn×n .

Namely, the optimal values δ∗ and ρ∗ of problem (BQδ,ρ) are simply given by the
optimal values of the dual variables of (SDPBQδ,ρ

).

A.2 Semidefinite model providing δ∗, ρ∗ and Γ∗

Let us consider (BQδ,ρ,Γ):

(BQδ,ρ,Γ) min fδ,ρ,Γ(x, z) = x
⊺Qx +L⊺x +∑

j∈J
δj(x

2
j − xj) + ρ(A=x − b=)

2+

+∑
i∈J
∑
j∈J

Γij(zij − xixj)

s.t. Gx ≤ g

Hx ≤ h

zij ≤ xi, zij ≤ xj i, j = 1, . . . , n

zij ≥ 0, zij ≥ xi + xj − 1 i, j = 1, . . . , n

x ∈ {0,1}n .

The SDP used to obtain the optimal parameters δ∗, ρ∗,Γ∗ (see [7]) is the following:

(SDPBQδ,ρ,Γ
) max

n

∑
i=1

n

∑
j=1
QijXij

s.t. Xii = xi i = 1, . . . , n [δi]

⟨A=A
⊺
=,X⟩ − 2b

⊺
=A=x = −b

2
= [ρ]

Gx ≤ g

Hx ≤ h

Xij ≤ xi, Xij ≤ xj i, j = 1, . . . , n [Γ+ij]

Xij ≥ xi + xj − 1, Xij ≥ 0 i, j = 1, . . . , n [Γ−ij]

(
1 xt

x X
) ⪰ 0

x ∈ Rn, X ∈ Rn×n .

Namely, the optimal values δ∗, ρ∗ and Γ∗ of problem (BQδ,ρ,Γ) are simply given by the
optimal values of the dual variables of (SDPBQδ,ρ,Γ

), with Γ∗ = Γ+∗ + Γ−∗.
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B Dual of a nonlinear model reformulated with

DWR

Let us consider the following formulation

(F-NLM) min f(x)

s.t. gi(x) ≤ 0 i ∈ I [µi]

x −∑
p∈P

xpy
p = 0 [π]

∑
p∈P

yp − 1 = 0 [π0]

yp ≥ 0 ∀p ∈ P [νp]

(we recall that the constraints x ∈ [0,1]n are included in the constraints gi(x) ≤ 0).
The formulation of its Wolfe dual is

max L(x, y, µ, π, π0, ν)

s.t. ∇xL(x, y, µ, π, π0, ν) = 0

∇yL(x, y, µ, π, π0, ν) = 0

yp ≥ 0 ∀p ∈ P

µi ≥ 0 i ∈ I

νp ≤ 0 ∀p ∈ P

with

L(x, y, µ, π, π0, ν) = f(x) +∑
i∈I
µigi(x) + π

⊺(x −∑
p∈P

xpyp) + π0(∑
p∈P

yp − 1) +∑
p∈P

νpyp

which leads to

max L(x, y, µ, π, π0, ν)

s.t. ∇xf(x) +∑
i∈I
µi∇xgi(x) + π = 0

− π⊺xp + π0 + νp = 0 ∀p ∈ P

yp ≥ 0 ∀p ∈ P

µi ≥ 0 i ∈ I

νp ≤ 0 ∀p ∈ P

If we substituting the definition of νp = π⊺xp − π0 in L(x, y, µ, π, π0, ν) we have:

L(x, y, µ, π, π0, ν) = f(x) +∑
i∈I
µigi(x) + π

⊺(x −∑
p∈P

xpyp) + π0(∑
p∈P

yp − 1) +∑
p∈P

νpyp

= f(x) +∑
i∈I
µigi(x) + π

⊺(x −∑
p∈P

xpyp) + π0(∑
p∈P

yp − 1) +∑
p∈P
(π⊺xp − π0)yp

= f(x) +∑
i∈I
µigi(x) + π

⊺(x −∑
p∈P

xpyp) − π0 +∑
p∈P
(π⊺xp)yp

= f(x) +∑
i∈I
µigi(x) + π

⊺x − π0
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leading to the following dual:

max f(x) +∑
i∈I
µigi(x) + π

⊺x − π0

s.t. ∇xf(x) +∑
i∈I
µi∇xgi(x) + π = 0

− π⊺xp + π0 ≥ 0 ∀p ∈ P

yp ≥ 0 ∀p ∈ P

µi ≥ 0 i ∈ I .

C Reinterpretation of the new reformulations for

(BQP) with Lagrangian Duality

Let us consider the following reformulation of (BQP):

(Q′) min w⊺Sw +L⊺w

s.t. xi −wi = 0 i = 1, . . . , n [ϕi]

Gw ≤ g [µ]

Hx ≤ h [ψ]

x2i − xi = 0 i = 1, . . . , n [δi]

(A=x − δb)
2 = 0 [ρ]

zij ≤ xi, zij ≤ xj i, j = 1, . . . , n [Ξij]

zij ≥ 0, zij ≥ xi + xj − 1 i, j = 1, . . . , n [Υij]

zij − xixj = 0 i, j = 1, . . . , n [Γij]

where for each constraint we indicate in squared brakets the corresponding Lagrangian
multiplier.

Sections 3 and 4 show that the continuous relaxations of the reformulations showed
in Table 1 can be viewed as a specific Lagrangian Dual of (Q′) where some of the
constraints are relaxed in the Lagrangian Function, some are kept in the Lagrangian
subproblem and other are dropped. For simplicitly, each constraint is represented by
its Lagrangian multiplier. For example, (Qδ,ρ-QM) is obtained by relaxing constraints
[ϕ],[µ],[δ],[ρ], keeping constraints [ψ],[δ] and dropping constraints [Ξ],[Υ],[Γ]:

(Qδ,ρ-QM) max
ϕ,µ,δ,ρ

θ(ϕ,µ, δ, ρ) = max
ϕ,µ,δ,ρ

min
x,w∈Rn∶ Hx≤h

x2
i−xi=0, i=1,...,n

L(x,w,ϕ,µ, δ, ρ)

with L(x,w,ϕ,µ, δ, ρ) = w⊺Qw+L⊺w+ϕ⊺(x−w)+µ⊺(Gw−g)+δ⊺(x2−x)+ρ(A=x−b=)2.

D Comparing (Kδ∗,ρ∗-QP-kn) with CPLEX

In Table 5 we compare the time needed for computing the root node of (Kδ∗,ρ∗-
QP-kn) (that in each test corresponds to the time needed to solve the problem to
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global integer optimality) with the overall time needed by CPLEX to solve the original
formulation with general purpose techniques (BK) and (BKδ∗,ρ∗). For (BK) the number
of instances yielding timeout is also reported: the average computing time does not
include them.

The results of Table 5 provide the following observation:

Experimental Observation 13. With (Kδ∗,ρ∗-QP-kn) we are able to close the whole
integrality gap faster than the time needed by CPLEX to solve to optimality the same
instance. The time needed by (Kδ∗,ρ∗-QP-kn) is similar to that of (BKδ∗,ρ∗), that is
CPLEX after applying an ad-hoc convexification of the objective function.

We remark that none of these techniques uses problem specific algorithms. In this
regard, (Kδ∗,ρ∗-QP-kn) has some additional potential, as the column generation scheme
can strongly benefit from the use of ad-hoc pricing algorithms.
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