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Abstract

Precision medicine holds the potential to revolutionize healthcare by providing ev-
ery patient with personalized treatments and decisions tailored to his or her individual
needs. This might be enabled by the large influx of potentially diagnostic information
from new sources such as genetics and modern imaging techniques, provided the rel-
evant information can be extracted. One such framework that has started to demon-
strate promise in radiology, especially in the assessment of cancer, is radiomics; the
practice of characterizing images by extracting a substantial amount of quantitative
mathematical descriptors. This success has largely been enabled by artificial intelligence
(AI) and machine learning developments that are capable of handling the big data ar-
rays. Using radiomics, researchers have been able to build prediction models capable
of assisting and informing doctors in important decisions such as risk assessment or
the choice of treatment. But even though radiomics has shown promise in preliminary
studies, there is still a long way to go before radiomics and related AI applications can
become routine tools in clinics. The road from patient admission to release is long, and
all its intricate steps need to be studied in detail to establish the AI models’ benefits
and safety.

Deep learning is an incredibly powerful AI technique that has revolutionized many
areas of science and industry such as recommender systems and protein folding. The
technique has demonstrated particular capabilities in image analysis, such as the ability
to drive cars autonomously and generate realistic-looking images from scratch. How-
ever, the recent advances in deep learning have largely been segregated from the ra-
diomics domain, even though they can synergize with radiomics by performing com-
plementary tasks such as image segmentation and denoising. There is considerable po-
tential for DL and radiomics to cooperatively reinforce each other that so far has been
majorly unexplored.

This thesis investigates the application of radiomics and deep learning in the con-
text of prostate cancer. It focuses on the clinical perspective of where machine learn-
ing implementations are most likely to have a beneficial real-world impact. A key con-
tribution is the deployment aspect: the models are not simply proofs of concept but

iii



Thesis advisor: Professor Barbara-Alicja Jereczek-Fossa Lars Johannes Isaksson

are conceived and applied in a practical scenario, from patient admission to treatment
decision. The specific areas studied include automatic organ segmentation in medical
images, automatic quality assurance of segmentations, image processing, and radiomic
feature analysis. Finally, a comprehensive study is performed on predicting essential
pathological variables with AI, which so far has not been studied previously. Taken to-
gether, the methods outlined in this thesis constitute a concrete pathway of how AI
can be used to bolster the steps along the patient’s clinical trajectory. Successful appli-
cations of these methods hold the potential to reduce the workload of clinicians and
improve patient outcomes.
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It is now conceivable that our children’s children will

know the term cancer only as a constellation of stars.

William Jefferson “Bill” Clinton, 2000

1
Introduction

1.1 Prostate cancer

1.1.1 Prostate cancer & precision medicine

Prostate cancer is the second most common cancer (second to breast cancer) and the fifth

leading cause of cancer-related deaths in men according to the world health organization66.

The American National Cancer Institute estimates a total of 268,490 new cases in 2022
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in the United States, with a fatality rate of almost 13 % (34,500 deaths)105. Traditionally,

the detection and diagnosis of prostate cancer have been done through the testing for

the blood serum prostate-specific antigen (PSA) biomarker and histology results from

ultrasound-guided prostate biopsy. Although biopsies have led to an increased prostate

cancer detection rate, the technique still suffers from a high false negative rate since small

tumors are unlikely to be detected44. New developments in imaging technologies, partic-

ularly magnetic resonance imaging (MRI), have made it possible to assess patients more

accurately due to the additional information these images provide. In addition to the stan-

dard anatomical T2-weightedMRI sequences, multiparametric MRI (mp-MRI) can give

complementary physiological insights into metabolic and extracellular activity via dynamic

contrast-enhanced (DCE) perfusion and diffusion-weighted imaging (DWI). With this

increased staging and risk stratification accuracy, better treatment decisions can be made

which can lead to a significant decrease in over- and undertreatment of patients74,88,99,108.

The influx of new and better diagnostic information leads to an increased diversity be-

tween patients in terms of their data profiles. A potential future can be envisioned where

the treatment decisions are not based on staging, but on the complex network of patient

data—this is the promising potential of personalized/precision medicine. In personalized

medicine, all of your relevant data is considered when making a decision so as to tailor the

outcome perfectly to what your body is most likely to respond to positively. Of course, this

will require a great deal of knowledge about the subject matter and comprehension of the

large body of data, which is why artificial intelligence (AI) is seen as a great tool to aid in

this endeavor. In contrast to humans, AI systems are known to handle vast arrays of data

with ease. In fact, AI is already underway to assist doctors in real clinical situations, for in-
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Figure 1.1: The different steps in the prostate cancer pathway that a typical patient goes through and what type of
practitioners are involved.

stance as decision support systems and image analysis tools. But there is still a large amount

of work to be done and questions to be answered before AI can be reliably immersed into

clinical practice.

1.1.2 The patient pathway

Before digging into the weeds of artificial intelligence (AI) and machine learning, it will

be useful to conceptualize how the current practices look from the patient’s perspective.

How does one detect prostate cancer? What happens after treatment? Etc. This section

will cover just that. An overview of the different steps a typical prostate cancer patient goes

through, from admission to release, can be seen in Figure 1.1. This will be a useful frame of

reference for discussing the applications of AI that will ensue in the following section.

A patient’s first visit is typically with a general practitioner (GP). If prostate cancer

symptoms like urination difficulties, weak urine stream, or blood in the urine are ascer-

tained, the GPmay initiate a blood test to measure PSA and a digital rectal exam to check

for enlargement of the prostate. If there is sufficient reason to suspect prostate cancer, the

patient is referred for diagnosis.

At the diagnosis stage, the patient goes through prostate biopsy, from which the pathol-

ogist infers the ISUP (International Society of Urological Pathology) grade group, and if

suspect, prostate MRI imaging, which leads to the PI-RADS (Prostate Imaging Report-
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ing &Data System) score from a radiologist. The improvement of prostate MRI over the

past decade has seen an inversion of this order, with the radiological examination now rec-

ommended first, and biopsy being limited to those cases where there is sufficient suspicion

of tumor, ideally using the MRI data to guide needle placement in the biopsy procedure.

These staging evaluations, along with the related information such as the age, prostate

volume, and PSA level, go into the radiology and pathology report, which is then used to

diagnose the patient and ultimately guide the treatment decision, sometimes in a multidis-

ciplinary consultation with all involved clinicians.

If the cancer is in early development and the risk related to the patient is thought to be

low, active surveillance (e.g. no treatment, but regular re-staging visits) is a common op-

tion. When treatment is warranted for more advanced disease, the options include hor-

mone therapy, chemotherapy, prostatectomy, and radiotherapy, the most common of

which being external beam radiation therapy. After the treatment has been decided, the

delivery plan and tracking schedule need to be set. A common practice for radiotherapy is

to divide the total dose delivery over a number of sessions, usually over multiple weeks, in

what is called fractionated radiotherapy. A key component in this path is to decide the dose

distribution, both in terms of its spatial location and temporal spacing.

After the treatment has finished, a follow-up visit is scheduled where the clinicians assess

how successful the treatment was, if the cancer is in remission, and the future prognosis of

the patient. In case of disease progression, further treatment is proposed.
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Figure 1.2: An overview of some of the potential applications of AI in clinics.

1.1.3 The promising potential of AI in prostate cancer

An illustrative overview of some of the ways AI can be integrated into and help with the

clinical workflow described in the previous section can be seen in Figure 1.2. Not all of

the applications mentioned in this section are equally relevant in real-world scenarios and

some of them are further away than others, but it is clear that the number of possible AI

applications in the prostate cancer journey is enormous.

At the first meeting with the GP or urologist, the interaction is fairly basic, but AI could

still help with deciding whether a biopsy is relevant. In this context, an AI could assess all
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of the symptoms the patient is experiencing and combine them with the digital rectal exam

and PSA level to come up with a recommendation. It could even cross-reference the symp-

toms and blood levels with other conditions to see if there are other potential pathologies

worth examining further.

If prostate cancer is suspected and the patient goes on to imaging, AI can be used to im-

prove the images in various ways. Improving the image quality by increasing the resolu-

tion and decreasing the noise are two straightforward examples. Depending on the imaging

modality, there may also be technical applications in the acquisition process, such as the re-

construction algorithm for MRI images (the raw data in MRI is in Fourier space, and must

therefore be transformed into an understandable 2D image).

There are a lot of applications for AI in the image analysis step since this is where most

of the clinical assessments are grounded. AI can locate and segment organs and lesions and

thus also accurately measure their volumes and potentially perform classification (e.g. give

the PI-RADS score that is later used to determine the patient’s overall status). Organ seg-

mentation is also essential to estimate the damages to surrounding tissues if radiotherapy

is prescribed. AI can coregister the different images acquired as part of the multiparamet-

ric PI-RADS compliant MRI examination such that they align perfectly, which simplifies

their comparison and prevents the need to segment the organs in multiple images. If the

patient has been scanned previously on earlier visits, AI can help with accessing these and

compare them to the new scans, e.g. by highlighting important differences or providing

high-level conclusions.

In the diagnosis stage, AI can effortlessly integrate all the collected information and pro-

vide estimates of the interesting endpoints such as the ISUP grade group (directly from the
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pathology images), tumor stage, or risk class. If the AI is powerful enough to predict the

pathology results from the other data accurately, a biopsy could even be prevented, which

would prevent potential complications from the surgery.

The first and most straightforward role of AI in the treatment stage is of course to assist

in the treatment decision by recommending different treatments and ideally providing pros

and cons of the different options. The treatment delivery can also be assisted by AI, for in-

stance by providing treatment plans and dose recommendations. Another application is to

estimate the potential side effects and other complications such as damage to surrounding

organs in the case of radiation therapy.

If prostatectomy is the preferred treatment, AI could help in the operation e.g. through

augmented reality. In such a case, the AI could display MRI images in the surgeon’s periph-

eral vision to provide information on critical structures like the location of lymph nodes. It

could even help in training an inexperienced surgeon by providing visual cues to guide the

incisions.

After treatment, or if active surveillance is determined to be the best course of action, it

is useful to schedule a new appointment to establish if the condition has improved and if

additional treatment should be pursued. AI can of course assist with this task as well. It is

also useful to provide a survival analysis to estimate the life span of the patient, which is al-

ready a vital part of the treatment decision. If the patient is very old, for example, long-term

effects are unlikely to be a concern since the patient is more likely to die of other causes,

which can influence the decision.

There is a long list of other potential uses of AI: educating new personnel, automatic

database lookup & organization, summarizing prior patient data or knowledge about the
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condition, writing reports, communicating with and consolidating patients and relatives,

triage, etc. The examples provided here are just some of the most pertinent ones.

1.2 Mathematical modeling & machine learning in healthcare

1.2.1 What is AI?

AI is the general term adopted to describe essentially everything computer-related that has

to do with things we normally associate with intelligence: performing a complex task, play-

ing a game, drawing conclusions, etc. Machine learning (ML) is a subset of AI that refers to

the branch of artificial intelligence that concerns the study of giving computers the ability

to learn rather than being explicitly programmed. The term “learning” should however be

considered colloquially since the procedure is very different from how we imagine human

agents learn. Notably, anMLmodel’s parameters are fixed after they have been learned,

which means that a deployed model is unable to learn from its mistakes unless it is explic-

itly updated. Deep learning (DL) is, in turn, a subset of ML that refers to a specific strategy

for building MLmodels, namely with so-called artificial neural networks (to be discussed

below). As the name suggests, these models were inspired by the neurons in the brain; the

idea being to connect simple artificial neurons together to make a more powerful network,

much like the brain does. The phrase “deep” simply refers to networks with many layers of

artificial neurons in them.

This section will briefly introduce some of the basic concepts within the ML field and

a few of the more advanced notions that will be recurrent throughout the discussions in

this thesis. In particular, it covers model training and model validation, what constitutes a

learning algorithm, overfitting & underfitting, and regularization.
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1.2.2 Building a mathematical prediction model

There are many different ML algorithms and models, but let us start with a simple illustra-

tive example. The task is to build a model that predicts the outcome variable y as close as

possible given some input parametersX. Consider y as a vector of numbers that represents

some characteristic (e.g. whether a patient has a disease or not) in a set of samples (patients)

andX as a matrix storing the available data for the samples. For a modelM, we can denote

the predicted vector as ŷ and thusM(X) = ŷ. In linear regression, the outcome is modeled

as a linear combination of the input variables: ŷ = Xb. The “learning” here amounts to

finding the parameters b that minimize the (squared) difference between the predicted ŷ

and the real y, or in other words:

argmin
b

||y− Xb||22 (1.1)

Recalling that the derivative of a function is zero at the point of its minimum (or max-

imum) allows us to find these parameters (the b-values) by differentiating the above ex-

pression with respect to b and equating the resulting expression with 0. This results in

(y − Xb)⊤X = 0, or equivalently, b = (X⊤X)−1X⊤y55. This is called the ordinary least

squares (OLS) estimator, and the parameters can generally be acquired easily because there

is a simple unique solution. However, in most real-world cases, there is no exact solution

(ŷ ̸= y) because the outcomes are not perfectly predictable from the variables.

When the parameters b have been found, the model is said to have been learned. In gen-

eral, learning simply constitutes finding appropriate internal parameters. For more complex

models, e.g. ones that can model non-linear relationships between variables, it is generally
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not possible to set up a simple analytical expression like (1.1). In such cases, one must resort

to other learning algorithms, the most popular being the gradient descent algorithm, which

iteratively finds better and better parameters.

The difference y − ŷmeasures how far our model is from the real outputs, and since we

obtain the ŷ estimates from the samples the model was trained on, this is called the training

error. As an estimate of how good the model is in practice, however, the training error is

not a good measure, since it is biased towards performing well on that particular set of data

(which may or may not be representative of the general population). To estimate how good

the model is in reality, we need to collect new samples and measure its error on them. This

is called the test error—it is a measure of how good the model is at generalizing to unseen

data.

Accurately measuring a model’s generalization performance can be tricky because it re-

quires new data that the model has not seen before. To circumvent this, the data is usually

split into one training set, on which the model is trained, and one test set, on which the

model is tested. However, this raises a major problem because we would like the model to

use as much training data as possible in order to achieve high performance, and we would

like the test data to be as large as possible in order for it to accurately represent the true

data distribution. These problems are exacerbated when there is a limited amount of data

available, which is a particularly pressing concern in medical research. How, then, does

one properly split the data into training and test sets? The standard procedure is cross-

validation, where the data is repeatedly split into different train/test splits and the model

is retrained and reevaluated on each split. An especially popular cross-validation strategy is

K-fold cross-validation, where the data is divided into K equally sized folds, and only one
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fold is the test set at a time. Five-fold cross-validation thus uses one-fifth of the data for test-

ing and four-fifths for training, then retrains the model five times on the five different (but

overlapping) training sets. An obvious downside of this is that K models have to be trained,

which entails additional computational costs and time investments. Another thing to note

is that the K parameter strongly influences the learned parameters and the produced error

estimates. An optimal K cannot be known, but both five- and ten-fold cross-validation are

commonly accepted.

What happens if the test error is much larger than the training error? In this case, the

model performs poorly at predicting the outcome of unseen samples, which probably

means that it will be useless in practice. This often happens when the training set is very

small or when too much noisy or irrelevant data is used in building the predictions. The

terms used to collectively describe these scenarios are overfitting and underfitting, respec-

tively. More generally, underfitting is when a model fails to adequately capture the struc-

ture of the data, and overfitting is when a model fits a particular set of data so closely that it

fails to capture a general representation of the underlying data mechanisms (see Figure 1.3).

Striking a good balance between overfitting and underfitting is arguably the single most

important problem in machine learning.

To combat overfitting, researchers and developers make use of regularization techniques,

which is a collective term for strategies that reduce the complexity of a proposed solution

or generally decrease its generalization error. One of the motivations behind reducing the

complexity lies in the fact that more predictor variables and higher order polynomials have

a stronger ability to “curve around” individual data points as demonstrated in Figure 1.3.

Two common regularization techniques are L1 and L2 regularization, in which a penalty
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Figure 1.3: A simple illustration of the overfitting and underfitting problem on a classification task where the objective
is to separate green dots from purple stars. An underfit model (left) is so simple that it fails to capture the interesting
behavior in the data. An overfit model (right) has very low training error, but will likely produce a high error on unseen
data because it follows the spurious and random behavior in the data too closely. A good fit (middle) captures the true
data distribution fairly well. Image modified from IBM cloud (accessed Aug 2022).

term is added to the objective function in (1.1) that penalizes large values in the b parame-

ters: +λ|b| for L1 or+λb2 for L2 (λ is a hyperparameter). This leads the model to not rely

on individual variables too much (the penalty is higher for higher values of bi) and at the

same time not include variables with too small a contribution (bi will approach zero when

|yi − Xibi| < λbi).

Various forms of randomness in the training procedure can also have a regularizing ef-

fect. In artificial neural networks, an exceptionally important regularization technique is

called dropout. When using this technique, a random subset of the nodes in the network

is disregarded at the beginning of each new training step, which makes the network rely

less on outputs from individual neurons. There are, of course, many other regularization

techniques as well, and multiple regularization techniques can even be used together.
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1.3 Deep learning

1.3.1 Basic principles of deep learning

Let us first conceptualize the basic principles behind deep learning (DL). At a very basic

level, a DLmodel can be thought of as a system that takes in a particular input and pro-

duces an output of desired shape and form, such as a simple scalar or a vector. For exam-

ple, if we want to build a model that can estimate a person’s age by looking at a picture, we

would set up the model such that it takes the image as input, and produces a single num-

ber as output. The key principle is that if we know the true output for a given input (e.g.

the real age of a person in a picture), and let the model produce its own output, we can cal-

culate how far apart the model’s estimate is from the real value. If we then let the model

update its internal parameters by taking a small step in the direction of the true output, the

error of the model will be smaller. Repeating this process many times for many different

inputs eventually results in a model that produces outputs that are very close to the desired

outputs. This iterative process of minor improvement lies at the heart of supervised DL

modeling.

The idealized training procedure mentioned above requires a few properties and features

to work properly:

1. A model architecture (the “black box”): the architecture should be such that the

output of the model will be of the desired type, which is ensured by building the

model (especially the output layer) in a particular way. Notice that the above de-

scription of the learning procedure can be realized in many different models and not

just DLmodels—the criterion for being a DLmodel is the particular building blocks
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that are used, namely artificial neurons. After building a model and defining its in-

ternal parameters, the mathematical operations that the model performs are in fact

precisely determined, which means that we know exactly how the model computes

its output. The term “black box” comes from the fact that these mathematical op-

erations are often too abstract to interpret in a semantically meaningful way, which

adds a layer of unintelligibility.

2. A loss function is what makes it possible to calculate the distance between the model’s

output and the real output. The choice of loss function depends heavily on the

problem at hand, and there are often standard loss functions to use for common

problems (although, you are free to use or create your own). For example, when the

problem is to predict a real number, the mean squared error is a natural choice. The

only constraint on the loss function is that it has to be differentiable because this is

what makes it possible to know the direction in which to take the step (that is, to

update the model’s parameters).

3. Labelled data: if we don’t know the true value of the output for the data we train

our model on, we cannot compute the loss function. This type of training, where

the true labels are known a priori, is called supervised learning because it’s akin to a

supervisor telling the model what the right and wrong answers are.

4. A training algorithm that updates the model’s parameters, coupled with an opti-

mizer that decides how big a step it should take. The standard training algorithm in

supervised learning is called backpropagation (or simply backprop). This algorithm

is so called because it starts by computing the gradients with respect to the error for
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the final layer, then iteratively propagates the error backward to compute the gradi-

ents for earlier layers. The optimizer is different and there are many to choose from.

In practice, however, it is very common to start with the Adam optimizer because it

has historically performed well on a wide variety of tasks and also possesses attractive

properties in terms of its speed and memory consumption.

The above description portends what may be called the central dogma of deep learning:

large DLmodels are data-hungry and require large amounts of data to work well. If only

a few samples are given, the step variety will be low, which will limit the model’s ability

to cover the parameter space. The fundamental assumption of the training procedure is

that the model will generalize to unseen data just from learning to minimize the error in

the training set. It turns out that this is often the case in practice, so long as the new data

comes from a similar distribution. Exactly howmuch data is needed for a model to work

well is impossible to say a priori because it is heavily dependent on both the problem and

the quality of the data.

1.3.2 Advanced principles of deep learning

With the conceptual principles out of the way, we can dig deeper into how the DL com-

ponents work and howmodels are constructed. The fundament of the original artificial

neural network is the perceptron (Figure 1.4)119. Loosely inspired by the biological neuron,

the perceptron takes in a set of inputs (analogous to the dendrites) and “decides” whether

or not it should produce an output based on the cumulative input signal (analogous to the

action potential). This output signal may then be the input to one or more other percep-

trons (analogous to the axonal connections), and so on. Mathematically, the output oj for
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Figure 1.4: The perceptron—the basic building block of the standard artificial neural networks, proposed by Rosenblatt
in 1958 119. A set of inputs x1, ..., xn are multiplied by their respective weights w1j, ...,wnj and then summed into a net
input netj. The output, oj, of the perceptron is calculated by passing the net input netj together with the bias term θj
through the activation function φ. The output is also described in (1.2).

neuron j can be formalized by

oj = φ(θj +
∑
i

xiwij) (1.2)

where x are the different inputs, wij is the weight associated with output i, and θj is the

perceptron’s so-called bias term. The weights and biases are the primary parameters that

are learned in the training procedure. Note that we can choose whichever activation func-

tion we want and are not limited to the (mostly) binary activation patterns of real neurons,

but in practice, simple activation functions are preferred because the derivative of the func-

tion needs to be computed during training, which can be computationally expensive for

advanced functions.

The simplest architecture one can build in this way is the multilayer perceptron (MLP)120,

where a set of layers, each containing a predefined number of perceptrons, are stacked on

top of one another. Each node in a layer is typically connected to every node in the previ-

ous layer, which is to say that the network is densely connected. The weights determine the

strengths a node assigns to different input signals, which means that it can effectively learn
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to ignore some of its inputs by setting the corresponding weights to zero. The final layer,

which computes the ultimate output of the model, varies in size and shape depending on

the problem: if the problem is regression, the output is a single node and if the problem is

multiclass classification, the output layer has one node for each class (each representing the

probability for the corresponding class), and so on. A consequence of the denseness prop-

erty of the MLP, which is inherited by virtually all modern DL architectures (save for sparse

networks), is that the number of parameters grows polynomially with the number of nodes

and layers. This means that most DLmodels are vastly overparameterized; it is not uncom-

mon to see networks with hundreds of billions of parameters in the current literature.

The objective of the training algorithm is to update the weights and biases in such a way

that the error of the next iteration will be less. If we know the gradients of the loss function

with respect to the weights, this can be achieved by taking a small step in the negative gradi-

ent direction (since the gradient of a function indicates the direction in which the function

increases). A step in this context simply means updating the parameter’s value. There are

two problems here: 1) the gradients are not directly accessible—only the gradient with re-

spect to the output can be directly calculated (assuming the loss function is differentiable),

and 2) the layered structure of the network means that only the last layer’s derivative is di-

rectly dependent on the loss—the other layers’ gradients are dependent on the values of

their superseding layers. Both of these problems can be solved by applying the chain rule:

instead of calculating ∂L
∂w , we can rewrite it as

∂L
∂w = ∂L

∂oj
∂oj
∂w for the output neuron j and

its weightsw (the bias term can be considered as a part ofwwhose input is always 1). But

from (1.2) and Figure 1.4, we can see that ∂oj
∂w =

∂φ(
∑

xiwij)

∂x
∂x
∂w =

∂φ(
∑

xiwij)

∂x w and hence
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∂L
∂w

=
∂L
∂oj

∂φ
∂xj

wj. (1.3)

Since all the factors above can be calculated from the input xj and output oj of the j’th

layer, we can calculate ∂L
∂w and hence know the direction we should update the weights in.

Finally, by noting that every element in xj = oj−1 is the output of a previous neuron (pro-

vided layer j is not the first layer), we can calculate this quantity for every weight in the net-

work. This is what constitutes the backpropagation algorithm. When training a network

in practice, one multiplies ∂L
∂w with a step size parameter called the learning rate, which con-

trols how fast/stringent the learning should be.

1.3.3 Computer visionwith deep learning

When images are to be analyzed with computers, it is convenient to think of them as arrays

of numbers; a 256-by-256-pixel image is simply a matrix with 256 rows and 256 columns.

If there are colors in the image, each different color is represented in a separate channel—

standard convention uses just three channels, since most colors can be mixed with different

proportions of red, green, and blue—so a normal color image would be a simple 3Dmatrix.

Analyzing matrices like this is perfectly feasible with MLPs, but a few obvious issues arise:

1. In a standard fully connectedMLP layer, each of its nodes/neurons is connected

to every input, meaning that a single neuron in the example above will have 256 ×

256 = 64, 536 connections for a relatively small 256-by-256 greyscale image. It is

easy to see that the number of connections grows rapidly for larger images and wider

layers.
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Figure 1.5: A functional illustration of a 3 × 3 convolutional filter. Each element in the filter is multiplied by the cor‐
responding element in the local patch in the input image. The final intensity value of the output image is calculated by
adding all the resulting elements together; in this case 2 · 4+ 1 · 1+ 4 · 1+ 1 · 1+ 1 · 1+ 1 · 1 = 16. The next pixel
value in the output image is calculated by sliding the filter one step to the right and performing the same multiplication
on the new local patch. The values in the filter are learned through training.*

2. The connections are static, so a specific weight will always be connected to a specific

location in the image. This means that the activation patterns will depend on where

in the image objects are located, which is often not a desired property. If we build

a network to detect cats, we want the detection to work regardless of where in the

image the cat is located.

3. There is often a tremendous number of local correlations in images. Most of the

pixels in a black cat tend to be black, most of the pixels in a blue sky tend to be blue,

etc. Fully connected layers disregard these correlations completely since neighboring

weights don’t communicate with one another.

Convolutional neural networks circumvent these problems by using convolution filters

that slide across the image and calculate output values by applying the convolution to local

patches (see Figure 1.5). Notably, the output is also a matrix, which makes sequential ap-

plication of convolutional layers straightforward. As an example of what this can look like,
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Figure 1.6: When applied to an image (left), the Schaar convolutional filter produces an image where the edges are
highlighted (right). This filter has a clear intuitive interpretation (edge detection), but a general convolution is typically
more abstract.

consider the Schaar filter shown in Figure 1.6. The output of this filter is high when there

are large variations in the local patch, which effectively makes it detect edges in the image.

In CNNs, the filter parameters are learned through gradient descent and backpropagation

which enables the network to automatically extract useful information for the task at hand.

The beauty of this approach lies in the fact that sequential filter applications act as a succes-

sive abstraction mechanism, where early layers extract low-level abstractions (edges, shapes,

textures, etc.) and deeper layers extract high-level abstractions (objects, animals, emotions,

etc.). Thus, a well-built and properly trained CNN can learn to do everything from object

detection to sentiment analysis (e.g. detect if a person looks sad or happy).

1.4 Radiomics

1.4.1 The hope and history of radiomics

The discipline of radiomics has recently emerged as an attempt to improve the quality and

reliability of the current clinical workflow, particularly in radiation oncology where multi-
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parametric MRI images are nowadays routinely acquired. The fundamental hypothesis in

radiomics is that useful information that is not readily apparent to human observers can be

mined directly frommedical images. This information can then be used to build predictive

MLmodels and inform doctors. Information is extracted by calculating many predefined

quantitative features from the image matrix, such as the entropy, energy, or standard devia-

tion of the pixel intensities, and even more features can be extracted by calculating features

on various image derivatives, such as co-occurrence and size zone matrices, 3D representa-

tions of organs, or filtered versions of the original image, leading to the collection of large

amounts of data. The initial successes of radiomics in retrospective studies have established

the field as one of the most promising approaches to quantitative imaging in radiology and

oncology.

The purpose of the radiomic features is to extract useful and ideally complementary

information from the images with the potential to provide diagnostic power. For example,

it is conceivable that some features could reflect underlying characteristics of the physiology

of the tumor such as genomic and proteomic expression patterns. This hope is partially

supported by evidence: it has been demonstrated that MRI findings can be associated with

protein expression in brain glioblastoma59, that CT-imaging traits can be correlated with

histopathologic markers and gene expression in liver cancer85,121, and that MRI phenotype

of breast cancer can be associated with multiple genetic mechanisms161. If true, clinicians

could gather proxies of these types of biomarkers without the need for conducting complex

genomics or proteomics assays. It is also likely that radiomic features could consolidate

the radiologists’ assessments since the images they are extracted from already constitute a

significant part of the clinical evaluation—it is for example well known that morphological
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tumor characteristics and intensities in diffusion-imaging are highly relevant to the clinical

prognosis.

Although radiomics started to emerge as a tool for clinical radiology in 201287,84, the us-

age of quantitative features to analyze images is far from new. Similar methods have long

been used for industrial applications in agriculture, mining, industrial inspection, security,

image retrieval, aerial photography, and satellite image analysis115. In fact, texture-based

mathematical image analysis date back all the way to the 1970s53,41. But the data-driven

nature of radiomics offers no inherent insight into the biological underpinnings of the ob-

served relationships between image characteristics and disease status38, and, as such, the

models and relationships must be very thoroughly validated before they can be formally es-

tablished. Thus, there is a long way to go before radiomic models can be reliably deployed

in real-world clinical applications.

1.4.2 A look at the radiomic features

The standard radiomic features can be divided into different groups based on what they

attempt to describe: first-order statistics, shape-based (2D and 3D), and different gray-level

matrix categories. In this section, we describe the categories further and give a few examples

of their features. It is worth noting that different extraction programs and packages may

support different features and their implementations may differ even for the exact same fea-

ture. To combat this, a large community-wide effort called the Image Biomarker Standard-

ization Initiative (IBSI) was started in 2020 with the goal of standardizing the definition

and extraction of the features and related procedures162. It is fair to say that every serious

radiomics extraction software today strives to comply with the IBSI standard.
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The first and arguably most intuitive group of features is the first-order statistics features,

which encompass statistical properties of the intensities in the image such as the minimum,

mean, standard deviation, and interquartile range. Some other examples include (lettingX

be the set ofN voxels, P the first order histogram,Nh the number of non-empty bins in P,

p = P/N, and ε an arbitrary small value):

energy =
N∑
i

x2i (1.4)

entropy = −
Nh∑
i

pilog(pi + ε) (1.5)

mean absolute deviation =
1
N

N∑
i

|xi − X̄| (1.6)

Generally speaking, these do not have any simple interpretations over and above the sta-

tistical ones, but some may be straightforwardly related to important features in the image.

For instance, high-intensity values in a diffusion image are associated with higher metabolic

activity, which will be indirectly reflected by a high mean intensity within the tumor.

The shape features describe properties of the morphology of the region of interest and

are therefore independent of the intensity values in the image. Some simple examples in-

clude the volumeV, surface area A, and maximum diameter. Other examples include:

sphericity =
3
√
36πV2

A
(1.7)

compactness =
V√
πA3

(1.8)
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flatness =

√
λ1
λn

(1.9)

where λ1 and λn are the first and last principal components of the shape of the region,

respectively. The first principal component is simply the vector from the center of the re-

gion to its furthest point, and the last component is the shortest radial vector orthogonal

to it. As such, flatness measures how flat a region is by taking the ratio between these two; a

flat object (e.g. a single-slice region) will have a large flatness, and a round object will have a

flatness close to one* 143. Likewise, sphericity measures the region’s resemblance to a sphere,

and compactness can be interpreted as a measure of how compact a region is.

Gray-level matrix features are features calculated from different matrices constructed

from the gray levels of the histogram (a gray level in this context is a non-empty bin in the

histogram). The matrices differ in the way that their values are determined. Most of the

time, these can be interpreted as quantifying various characteristics of the texture in the im-

ages6, although exactly how they relate to semantically meaningful concepts is not generally

known. This thesis will not delve deeper into their interpretations or how these matrices

differ in practice, but additional information can be found in the IBSI manual or in the

documentation of various radiomics software packages (e.g. PyRadiomics143). Five differ-

ent matrices are commonly constructed:

• Gray Level Co-occurrence Matrix (GLCM). The values are determined by the num-

ber of times different gray levels occur together in close vicinity.

• Gray Level Run LengthMatrix (GLRLM). The values are determined by the num-

ber of times connected regions of a specific grey level and length occur.

*To prevent division by 0, the inverse flatness is often computed instead, which ranges between 1 and 0.
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• The Gray Level Size ZoneMatrix (GLSZM) counts the number of zones in which

all spatially connected voxels share a common grey level. The (i, j)th element in the

matrix equals the number of times a zone with gray level i and size j appears in the

image.

• Neighbouring Gray Tone Difference Matrix (NGTDM). Describes the average dif-

ference between pixels of a specific grey level and their mean neighborhoods.

• Gray Level Dependence Matrix (GLDM). The values are determined by the num-

ber of voxels within a certain vicinity that are dependent on the center voxel of the

vicinity (dependence is defined as being within a certain predefined threshold value).

All features above are routinely extracted from the original images, but it is conceivable

that features calculated from processed images (e.g. with the Schaar filter shown in Figure

1.6) could also reflect diagnostic information. Software packages thus provide the option to

calculate features from various image derivatives. Common options include:

• Wavelet images. For 3D images like MRI and CT, these filters can be applied inde-

pendently in the three directions, which means that there are eight different combi-

nations of high- (H) and low- (L) pass filters: HHH, HHL, HLL, etc.

• Laplacian of Gaussian. This is effectively an edge detection filter similar to that of

Figure 1.6. The image is acquired by first applying the Gaussian filter and then the

Laplacian filter to the same image.

• Square. All intensity values are squared.

• Root. All intensity values are passed through the square root function.
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• Logarithm. All intensity values are passed through the natural logarithm function.

• Exponential. All intensity values are passed through the exponential function (ex).

• Gradient. Intensity values are replaced with the local gradients in the corresponding

pixel positions.

• Local binary pattern (in 2D and 3D). Intensity values are replaced by the local binary

pattern as calculated by different levels of spherical harmonics.

1.4.3 Radiomics in the clinical domain

The typical radiomic workflow is consists of a series of steps that can be roughly divided

into three main groups: image preparation, radiomic feature extraction, and analysis (see

Figure 1.7). This section will go through the steps in detail and cover some of the core con-

siderations that go into them.

The first step after acquiring the images is to delineate the tumor such that the radiomic

features can be calculated within the pathological tissue. This may be done routinely in

medical practice in order to e.g. arrive at reasonable dose distributions for the treatment,

which means that there is not necessarily any additional clinical segmentation workload for

conducting retrospective radiomic trials. If not, a medical expert is recruited to segment the

tissue which is usually done with a computer mouse in some proprietary software.

The last step in the image preparation group is to process the images such that quanti-

tative analysis can be carried out robustly. This differs depending on the imaging modality

and what part of the body is being examined. For instance, MRI images can have very dif-

ferent intensity value ranges even for the same scanner and protocol, which means that
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Figure 1.7: The workflow of radiomics starts with the medical images. After the images have been acquired, segmenta‐
tion is performed such that the radiomic features can later be extracted from the tissue of interest. It can sometimes be
desirable (particularly in MRI) to process the images such that the intensity values are consistent within the population.
After the features have been extracted, the feature set is pruned, e.g. by removal of identical and low‐variance features.
The feature set is often further reduced by some form of feature selection (e.g. clustering). The final step is the analysis
part, where ML models are built and validated.
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different patients need to have their intensity values normalized to a homogeneous distri-

bution (if not, this may introduce unnecessary variation). CT and PET images tend to be

more similar, but there may be other reasons to perform preprocessing, especially if the

dataset contains images from different sites. Differences in scanner type and scanning set-

tings typically introduce an array of variations that need to be taken care of. Furthermore, it

is often desirable to standardize all images, e.g. to zero mean and unit variance, if they are to

be analyzed with a DLmodel.

Extracting the features is tantamount to deciding what type of features to extract and

what type of images to calculate features from (i.e. the different processed images men-

tioned in the previous section). In some cases, e.g. when using a simple linear prediction

model or when the purpose is to analyze the impact of individual features, it may be use-

ful to only extract a small subset of features, but another common approach is to extract

as many features as possible and rely on feature selection to simplify the analysis. It is not

uncommon to end up with 1000-2000 features in total.

When a large set of features are extracted from a single image, it is not surprising that

some features show a high degree of similarity to one another. Feature elimination aims to

eliminate some of those features in order to simplify the subsequent mathematical analysis.

This can be done in a variety of different ways, but since the features are similar by assump-

tion, the choice of which one of the similar features to keep and which to discard tends to

not be very impactful. A straightforward approach is to remove all features that have a cor-

relation above a specific threshold value with at least one of the non-eliminated features.

Feature selection refers to selecting the features to use in the mathematical analysis,

which is essential to combat the curse of dimensionality, and also leads to faster training
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times and more robust models. A very common type of dimensionality reduction tech-

nique used for feature selection is any type of clustering algorithm, particularly k-means or

hierarchical clustering. By clustering the data into a smaller set of internally similar clusters,

one can select one representative feature from each cluster instead using the full features

set. This procedure also implicitly eliminates features that are very similar to each other.

When clustering the data, one needs to select the parameter that determines the number of

clusters.

The analysis part of the workflow usually starts with model selection. Researchers some-

times start with a specific model in mind suitable for the problem at hand, in which case

model selection refers to selecting the best hyperparameters for it, but model selection also

refers to selecting the best type of model from a set of candidates. For instance, there is a

vast array of different classification models to choose from, and it is not possible to know

which one will perform the best a priori. The standard way of selecting a model is to train

and validate the candidates on the available data and simply select the one with the lowest

validation error, which means that the selection, training, and validation steps are effec-

tively merged into a single pipeline. This can be done fairly straightforwardly with some

type of cross-validation.

1.4.4 Limitations of radiomics

Since the dawn of radiomics in 2012, the number of yearly radiomic studies has grown to

roughly 10,000 in 2021 according to Google scholar. Crucially, the field is still in its in-

fancy, and much work remains to be done before practical deployment and testing can

become a reality. An important step in this direction will be the conduction of prospective
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trials, but such studies are much harder to organize and perform and require an elevated

level of rigor in their study design. In order to perform reliable prospective studies (as well

as retrospective studies for that matter), radiomics researchers need to establish the founda-

tions needed to build, train, and evaluate reliable radiomic models.

One of the primary concerns surrounding radiomics has long been the issue of repro-

ducibility and repeatability issue of the radiomic features141,160,9,154. In practice, this has

become somewhat of an umbrella term for a number of underlying issues relating to re-

producibility, where numerous sources of errors are sometimes conflated. The foremost

problem is that many features are known to be irreproducible in the sense that features

calculated from repeated scans of the same patient can return different values. This phe-

nomenon has even been demonstrated in so-called phantom studies, where a toy-like inan-

imate test subject is scanned multiple times. Another source of variation lies in the seg-

mentation procedure since different experts will produce (hopefully slightly) different

segmentations on the same image, which will inevitably lead to differences in the feature

calculations. But even in cases when some features have been shown to possess predictive

power in one set of patients, the same features do not necessarily need to be predictive in

another population. This type of dissimilarity is more akin to the reproducibility crisis that

has been a known phenomenon in sociology for decades.

The reproducibility issues mentioned above are a legitimate cause for concern, but vari-

ous strategies exist to alleviate the problems. Even though many features are irreproducible,

some features are not. One can then either explicitly select reproducible features (e.g. those

who have been shown to be stable in prior studies) or perform a similar analysis oneself. It

is also possible to make the calculation of features more robust by performing image ho-
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mogenization, e.g. by normalizing the intensities with respect to the intensities in relatively

well-behaved tissues. In principle, a well-constructed model validation pipeline will also

diminish the problems since the models will need to perform well on the validation set in

order to be selected.

The next major limitation is the size of the data sets. It is not surprising that radiomics

studies suffer from small datasets given that sharing patient data is generally disincentivized

and collecting high-quality data can be hard, even if done internally. This severely hinders

the conclusions that can be drawn. According to a recent review investigating 57 differ-

ent studies in prostate cancer radiomics, the median sample size was just 102 patients (132

mean and 498 max)37. To put this in perspective, the median sample size in Wikipedia’s list

of datasets for machine-learning research for human biological data is 1176 (81,163 mean

1,223,009 max). In image analysis, the famous ImageNet33 dataset, which has been crit-

icized for being too narrow (albeit for very different reasons), has 1,281,167 images. The

small sample size and large number of predictor variables lead to a related problem some-

times called the “small n large p problem”. The problem this refers to is that, when the ratio
p
n is large enough, the probability of finding a spurious relationship (e.g. one that is due

to chance rather than an underlying causality) between a predictor variable and the target

approaches 1.

1.4.5 Why is radiomics hard?

With the widespread success of ML in other areas and the wide range of potential appli-

cations for AI in clinics as we saw in Figure 1.2, one might wonder why hospitals are not

currently crawling with AI algorithms and prediction models. It would seem that the med-
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ical community has not yet started to widely deployML algorithms and methods to aid

doctors and nurses in their everyday work. This section will cover some of the factors that

contribute to these circumstances and what can and should be done to suppress them as

well as possible. Three key interconnected factors play a large role: data, validation, and

approval. Broadly speaking, it is not possible to thoroughly validate the models without

large high-quality data sets, and without thorough validation, it is not possible to obtain

approval from administrators and regulators. Without approval, it is very hard to deploy

models and collect new high-quality data.

The tendency of the radiomics field to conduct studies on small data sets brings along

a host of different problems. As noted earlier, it severely limits the conclusions that can

be drawn, since small data sets are unlikely to be representative of the general population

they are drawn from. But small data sets also make it easier for researchers to build overly

optimistic models, e.g. by overfitting. They make it so that the variance of the model fit-

ting procedure becomes very large, which in turn increases the bias in the model selection

procedure.

A conceivable solution to the small data problem is to collect data from external public

sources (if available) but even this poses its own limitations. It is not strictly clear that exter-

nal data would actually help, since they may be sufficiently different from the internal data

that it could hamper the overall performance on the internal data set. Even small differ-

ences in the acquisition protocol and scanner settings could lead to significant downstream

effects, even if the qualitative differences are invisible to human observers.

Dataset differences also render black-and-white comparisons of different studies vir-

tually meaningless, because there may be large variations in the distributions and diffi-
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culties within them. In fact, it is often not even possible to determine whether the results

from a study are good or bad due to a lack of detailed descriptions of the code implemen-

tation. Even if the report describes a perfect training procedure, it is possible that the im-

plementation suffers from fatal mistakes such as information leakage. The lack of large

public benchmark databases of test samples, ideally with concealed labels so as to prevent

“training-on-the-test-set”, further exacerbates the problem.

Some researchers have also raised concerns about the clinical utility of some radiomics

studies. When conducting research for the healthcare domain, the foremost question al-

ways ought to be whether the findings would be helpful. It is no use to build a prediction

model for shoe size, for example, if this would not be interesting for the clinicians. Further-

more, shoe size can be easily obtained simply by asking the patient or, in extreme cases, by

measuring the feet. In addition, even if a prediction model is good, it doesn’t necessarily

follow that it is better than what is currently used in practice. It is always useful to compare

MLmodels with clinical practices if possible.

With the above issues in mind, there is no silver bullet that solves all problems. Ideally,

studies and models should be designed while considering and being open about their limi-

tations. A few main take-home messages can be devised:

• Putting effort into collecting more data and improving its quality is more likely to

yield positive outcomes than conducting small proof-of-concept studies, especially

for datasets smaller than a few hundred samples.

• The focus should be on implementing and using more stringent and rigorous valida-

tion procedures, such as nested and repeated cross-validation, rather than achieving

high AUC or accuracies. The performance in a study has no inherent value unless its
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robustness can be guaranteed and compared with other models on the same data.

• The clinical utility should be established before models are trained. It doesn’t matter

how good a model is if it is not something that could help or inform clinicians.

• For clinical implementation to become a reality there needs to be good communica-

tion between researchers, administrators, doctors, and policymakers. The decision

to start practical trials is not usually on those who know the most about the models,

but it is up to the model developers to be truthful about the promises and limita-

tions.

1.5 Thesis structure

This thesis is divided into three main chapters, each tackling a separate part of a patient’s

path: (I) Image acquisition & segmentation, (II) Image processing & radiomic feature vari-

ability, and (III) Computer-aided cancer assessment. A detailed description of the chapters

follows:

• Chapter 2: Image acquisition & segmentation. This chapter tackles various aspects

of organ segmentation in medical images, which is one of the first challenges that

clinicians face when a patient is admitted for prostate cancer care. The defining ques-

tion of this chapter is whether we can automate the segmentation process, and how

to do this in the best way possible.

• Chapter 3: Image processing & radiomic feature variability. In this chapter, the is-

sue of image normalization and its effects on the radiomic features is studied. This
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critical step is often disregarded in medical imaging literature but is necessary for

performing robust analyses.

• Chapter 4: Computer-aided cancer assessment. This chapter focuses on building

and comparing prediction models for the assessment of the pathological status of

prostate cancer patients. A deep dive into the predictions and behavior of the models

is presented in a way that is relevant for both clinicians and model developers.

The thesis ends with a concluding chapter where the main findings are summarized and

contextualized in terms of how they fit into the current clinical practice.
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2
Image acquisition & segmentation

2.1 Background

Segmentation of anatomical structures in medical images is a vital step in many clinical do-

mains including radiology, pathology, ophthalmology, dermatology, and microscopy114,127,107,136.

For instance, accurate delineations of neighboring organs are crucial for calculating dose

and estimating the risk of normal tissue complications in radiotherapeutic treatment plan-
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ning. Typically, the regions of interest (ROIs) are manually or semi-automatically hand-

drawn by trained medical personnel in treatment planning systems, but there is a tremen-

dous incentive for streamlining or automating this process since it is incredibly time-consuming

(especially for less strictly defined regions such as tumors) and requires trained experts. Fur-

thermore, segmentations from human experts suffer from poor reproducibility and/or

accuracy11,126,131,147. The emerging discipline of radiomics and other computer-aided pre-

diction frameworks has further increased the need for accurate and consistent segmenta-

tions since the calculation of the radiomic features requires ROIs. This begs the question

of whether we can use AI to segment organs and ROIs instead.

Computer-assisted segmentation is nothing new: atlas-based algorithms with applica-

tions in segmentation have been around since 200432, and the concept of fuzzy connected-

ness which creates fuzzily-connected regions in images existed even before that142 (1996).

Atlas-based segmentation is currently implemented as an option in clinical treatment plan-

ning software such as Raystation from RaySearch Laboratories. An atlas in this context

refers to a reference image (or multiple images in the case of a multi-atlas) that can be used

as a basis to distort similar images to align with it. If a segmentation map is known for the

atlas, one can then apply the segmentation to the distorted image, then revert the distortion

for both the image and the segmentation map to achieve a final segmentation. More re-

cently, ML engineers have focused on segmentation with DLmodels, with a major driving

force being its application to self-driving cars.

The current state-of-the-art models for automatic image segmentation are all DL-based.

These are typically characterized by the heavy use of convolutional operations, which en-

able the models to successively and automatically extract relevant features at different reso-
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lutions and locations in the images. Since its introduction in 2015, the U-net DL segmen-

tation model has become the most widely used model for medical both image segmenta-

tion118 and other domains. At present, virtually all current high-performing DL-based

models are evolutions of the U-net that have incorporated various modifications, such as

flattened operations75, bottleneck convolutions57, or attention mechanisms90. However,

instead of common trends appearing, increasingly different approaches and models are see-

ing use. Moreover, even for a given segmentation task, reports on different segmentation

techniques are hard to compare, since they typically use different data sets, and suitable

public benchmark medical image data sets are often not available or readily accessible. A

foreseeable problem is thus that engineers in clinical institutions will become perplexed

when faced with the choice of which segmentation model to implement because the space

of possibilities is simply too large.

Even though DLmodels have become the de facto ruler of automatic segmentation

models, the data size problem remains an issue. As discussed previously, in what may be

called the central dogma of DL, DLmodels tend to require huge amounts of data to work

well*. In the original U-net publication, the authors used the “EM stacks” segmentation

challenge dataset of ISBI 2012, which contains just 30 images (512× 512 pixels) from serial

section transmission electron microscopy. But each such image contains hundreds of cells

to be segmented, which translates to some ~6000 signal-generating structures. Comparing

this to a typical dataset of about 100 prostate MRI scans (each with roughly five slices of

prostate tissue), the difference in the signal-per-image ratio is clear. In principle, it is con-

*It is still not well understood why DLmodels are so data-hungry. Some researchers have suggested that
the overparameterization of DLmodels is the key factor that enables them to interpolate smoothly, which
in turn leads to their superior performance. Learning this many parameters, as the argument goes, is the
ingredient that demands such large amounts of data.
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ceivable that traditional models like atlas-based segmentations could be more effective for

the simple prostate geometry in the small-data regime, but the magnitude of such an effect

has not been studied.

One of the key methods in the seminal U-net paper was the extensive use of data aug-

mentation, which is a term used to describe techniques that artificially enlarge the data set

by transforming the input into novel-looking samples. Common techniques in image anal-

ysis include rotation, flipping images up/down/left/right, zooming images in or out, color

adjustments, and elastic deformation. The aim when augmenting the images in the train-

ing set of the model is to reduce its generalization error. Although the augmented images

are normally obviously just slight variations of the original, the technique is surprisingly

effective for AI models, presumably because they are not learning concepts in a semanti-

cally meaningful way as humans do. Since medical datasets are extraordinarily small com-

pared to other applications such as urban scenes used for autonomous driving (the popular

cityscapes dataset contains 25,000 annotated images27), data augmentation may play a de-

cisive role in clinical scenarios. To achieve clinically acceptable segmentation performance

with few data samples, it will be critical to explore the possible ways to enhance the training

procedure, e.g. by effective use of data augmentation.

Most contemporary research in medical image segmentation focuses on developing and

applying automatic segmentation procedures to reduce the workload of clinicians, speed

up the delineation process, and improve the segmentation quality. As the performance

of these models has improved, institutions are looking to start experimenting with these

models in clinical practice. In the course of research focused on developing and validating

the models, however, several aspects of model deployment have been left unaddressed, in-
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cluding model drift, underspecification (that is, when pipelines can return many predictors

with equivalent training performance, but with very different deployment performance)30,

dataset & model biases, and quality assurance. Indeed, the authors of a recent survey of AI

in radiation oncology61 argued that there is an unmet need for guidance on the implemen-

tation and use of AI models in clinical practice.

Quality assurance (QA) stands out as one of the key steps in the deployment of AI algo-

rithms that so far has been largely left out in contemporary medical imaging research28,147,17,122,62.

In general, it refers to the practice of monitoring the output, performance, and user expe-

rience of a deployed method or model to ensure that it is working as intended. This is of

particular importance in medical contexts, where patient outcomes may be jeopardized.

Previously, the role of humans in this step has been mostly subsumed, but there appears to

be no principled reason why this cannot be carried out by AI algorithms as well. Despite

the potential benefit of AI andML for QA being recognized145, there is surprisingly little

literature on the topic, particularly in the field of image segmentation.

If automatic segmentation can reduce the workload of clinicians and improve both

the speed and accuracy of segmentations, why is manual segmentation still the method

of choice in clinical institutions? This chapter delves deeper into what it takes to train au-

tosegmentation models and how to best do this with a limited amount of data. Our contri-

bution can be roughly divided into three parts:

1. Data augmentation: How can limited data best be leveraged to train segmentation

models to an acceptable standard? Can data augmentation be leveraged in a particu-

lar way suitable for small clinical datasets?

To this end, we will investigate whether we can use a new data augmentation tech-
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nique called mixup in conjunction with standard augmentation methods to improve

the segmentation performance of deep learning models. The work presented in this

section is based on results published in Isaksson 202270.

2. Automatic segmentation: How do the most common DL architectures and training

strategies compare against one another and atlas-based segmentation when it comes

to prostate segmentation? Is it possible to solve the auto segmentation problem to a

clinically accepted degree in the low data regime?

To answer these questions, we will train and compare the most common DL seg-

mentation strategies and atlas-based segmentation on a set of 100MRI images from

prostate cancer patients. Most of the material in this section is based on Isaksson

202267 and is currently under review.

3. Quality assurance: How do we ensure that automatic segmentation delivers proper

delineations? Can we monitor the quality in such a way that we would be aware of

when human intervention is required?

For this purpose, we will design and train a new type of DLmodel to specifically

predict the quality of automatically generated contours. This section is based on

material published in Insights Into Imaging (see Isaksson 202269).

2.2 Dataset

For the work in this chapter, a data set of 100 T2-weightedMRI prostate scans from pa-

tients at IEO European Institute of Oncology IRCCS, Milan, Italy was used. All patients

gave their consent for use of their data for research and educational purposes, and the use
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of the data was approved by the local Ethical Committee, which waived the requirement

for further consent specific to this study. The images were acquired using a 1.5 T scan-

ner (slice thickness 3.0-3.6 mm, slice gap 0.3 mm, pixel spacing 0.59×0.59 mm, echo time

118 ms, and repetition time 3780 ms). For every image, a ground truth segmentation was

established by consensus from two experienced radiologists with more than five years of

experience.

TheMRI volumes were resampled to a common size of 320 × 320 × 28 using bi-

linear interpolation in the three cases where the image was larger than 320 × 320, and zero

padding where there were fewer than 28 slices. Each image was corrected with the N4 bias

field correction algorithm using the SimpleITK 2.0.2 python package with default parame-

ters. Within each image, the intensities were clipped to the 0th and 99th percentile interval,

and subsequently standardized to the [0, 4033] range*. For the DL-based applications, each

image was also normalized to zero mean and unit variance.

2.3 Mixup data augmentation for segmentation models

Researchers address the generalization problem of deep image processing networks mainly

through extensive use of data augmentation techniques such as random flips, rotations,

and deformations. This section investigates whether a novel data augmentation technique

called mixup, which constructs virtual training samples from convex combinations of in-

puts, can be used to improve the performance of DL segmentation models. The technique

was recently proposed for deep classification networks, where it improved the performance

on a variety of datasets, but so far it has not been evaluated for image segmentation tasks.

*4033 was the maximum intensity in our data set.
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Figure 2.1: Example of a simple linear combination of two images. The combination of the two may not be very help‐
ful for teaching humans how to distinguish between cats and dogs, but it may be beneficial for teaching machines to
generalize well.†

Accordingly, we will train a variant of the U-net architecture to segment the prostate,

and compare the results with and without mixup in terms of Dice similarity coefficient and

mean surface distance from the reference ground truth segmentation.

2.3.1 The mixup algorithm

The mixup algorithm156 involves constructing new samples x̂ from different training sam-

ples xi and xj according to x̂ = λxi + (1 − λ)xj. For an illustrative example of how this

looks, see Figure 2.1. The λ parameter is drawn from a symmetric beta distribution, i.e.

λ ∼ β(α, α), where α is a hyperparameter of the transformation. As such, one can draw

λ from different distributions by selecting different α-values: for α = 1, λ will be drawn

from a uniform distribution, and for α → ∞, λ will approach a delta function centered at

λ = 0.5.
†Images designed by Freepik.com
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2.3.2 Methods

Hyperparameter search

A hyperparameter exploration was first conducted in order to select the best value for the

mixup parameter α. For this experiment, we randomly split the data into two equally sized

(N=50) training and hold-out test sets. After splitting, the clinical variable distributions of

the two sets were tested to be similar (Wilcoxon signed rank test), which allowed us to con-

trol for adverse effects stemming from different clinical traits between the two groups. For

each value of α (including α = 0 for no mixup), the network was trained until convergence

eight times with different initializations (see sections below for training and implementa-

tion details). The best value of α was selected for the remainder of our experiments.

Quantifying segmentation performance

We performed a random five-fold cross-validation procedure comparing the best value of

the mixup parameter α with no mixup. In addition to mixup, the samples were augmented

with a standard scheme of random horizontal flips, random zoom and translation (with

a scale factor in [0.5, 1.5]), and random rotations in the [− π
4 ,

π
4 ] range. This enabled us to

gauge how well mixup works in conjunction with other data augmentation techniques,

similar to how one would do it in practice.

Segmentation performance was quantified by the Sørensen–Dice similarity coefficient

(Dice) and mean surface distance (MSD) between the network outputs and the ground

truths. In addition, we included the absolute relative volume difference (ARVD), 95th per-

centile Hausdorff distance (HD95), and sensitivity, which are other commonmetrics seen
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in segmentation studies.

TheDice coefficient is defined by

Dice =
2|A ∩ B|
|A|+ |B|

(2.1)

where A and B are the sets of pixels of the structures being compared. As such, the Dice

coefficients ranges from 0 to 1, where 1 corresponds to perfectly overlapping objects, and 0

corresponds to any configuration where their intersection is zero.

TheMSD (measured in pixels) between the surfaces As and Bs of A and B, is defined as

MSD(A,B) =
∑

a∈As
d(a,Bs) +

∑
b∈Bs d(b,As)

|As|+ |Bs|
(2.2)

using the Euclidean distance from pixel a ∈ As to surface Bs given by d(a,Bs) = minb∈Bs ||a−

b||. Since manual segmentations are drawn and evaluated on a slice-by-slice basis (and since

the pixel spacing is spatially anisotropic), we calculated this quantity in 2D (within-slice).

This means, however, that the distance will be undefined in slices with at least one empty

contour set. To avoid this, we redefine the empty contour as a single pixel in the center of

the image.

ARVD is the absolute volume difference calculated relative to the volume of the ground

truth (in this case B), defined by:

ARVD(A,B) = |VA − VB

VB
|. (2.3)

An ARVD of 0.3, therefore, means that the predicted prostate is either 30% larger or 30%
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smaller than the ground truth. A perfect score of 0 indicates that the objects have identical

volume, but does not necessarily mean that the prostates are well aligned spatially.

HD95: the 95th percentile Hausdorff distance between two geometrical objects A and B

is defined by:

HD95(A,B) = max
{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

(2.4)

where the supremum functions in this case return the 95th percentile values, making the

metric more robust to irregularities*. As with the MSD, we calculated this quantity on a

slice-by-slice basis (i.e. in 2D).

Network architecture

The architecture used for the segmentation network was a variant of the classic U-net as il-

lustrated in Figure 2.2 with various modifications inspired by high-performing submissions

to the PROMISE12 online prostate segmentation challenge48. The main features of the

network are:

1. All convolutions were applied with 3D 3× 3× 3 kernels.

2. Fewer filters were used, and the number of filters at deeper levels of the network was

increased by a constant amount (+14) instead of a multiplying factor (typically×2).

3. Each level performs a single convolutional operation instead of two or more in series.

*For an intuitive understanding of the HD, consider the following algorithm: 1) for every point in A, take
the minimum euclidean distance to B; 2) take the maximum from among such distances; 3) repeat steps one
and two for object B and its distance to A; 4) the HD between A and B (and, equivalently, B and A) is the
maximum of the two values obtained from step two.
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Figure 2.2: Network architecture used for analyzing the effectiveness of mixup data augmentation. The numbers out‐
side the boxes display the tensor size at different levels, where the last number indicates the number of channels.

4. The first operation is strided instead of a normal convolution in order to downsam-

ple the images such that the computational resources could be managed more effi-

ciently.

5. A PReLU56 activation function was used instead of the more common ReLU func-

tion.

6. Dropout with a rate of 0.5 was applied in the encoding part of the network.

These design choices were motivated by heuristic comparisons, favoring simplicity and

speed over minor performance gains.
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Model training

As the loss function, we used the top-k cross entropy152, which calculates the pixel-wise

cross-entropy, but only considers the top k pixels as contributing to the final loss. This al-

lows the network to focus training on hard-to-classify pixels (likely within the edges of the

prostate) and also speeds up training. The parameter kwas set to 5% of the number of pix-

els in the images (in this case k = 143 360) times the batch size, which was set to 8.

The models were trained for 350 epochs with the Adam optimizer81 with default learn-

ing parameters (β1 = 0.9, β2 = 0.999), a learning rate of 0.0005, and extended with the

lookahead mechanism158 (sync period = 6, step size = 0.5) to reduce its variance. The best

weights were restored prior to evaluation. The implementation was done in Python 3.7

with TensorFlow 2.3 running on an Nvidia Tesla K80 GPU (16 GB).

2.3.3 Results

A visualization of the mixup technique for two samples in our data set is presented in Fig-

ure 2.3. It is clear that the mixup image does not depict a realistic appearance for a prostate

MRI, and the target mask of the augmented sample is no longer binary.

The mixup implementation did not introduce any significant computational overhead;

less than 0.04 s per batch of 8 images (roughly 0.1% increase).

The parameter search concluded that the best choice for α was α = 0.5 in terms of

both Dice andMSD (see Figure 2.4). Both α = 0.5 and α = 0.7 were significant im-

provements (Mann-Whitney U-test) compared to non-mixup training for both evaluation

metrics. Other α values also outperformed non-mixup training, albeit without statistical

significance. The mean performance of α = 0.5 resulted in a 1.46% increase in Dice and a
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Figure 2.3: Examples of prostate MRI scans (a, b) from two patients with accompanying prostate masks (d, e). The right
images (c, f) show the results of the mixup data augmentation technique (λ = 0.5) for the two patients. Note that
mixup renders the target mask non‐binary.
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Figure 2.4: Test results of the α parameter search on the holdout test set. Results are aggregated from eight different
initializations. A good performance is characterized by a high Dice and low surface distance. p‐values indicate the signif‐
icance of the Mann–Whitney U‐test.

10.9% decrease in MSD over non-mixup training.

In the cross-validation experiment with α = 0.5, mixup training increased mean Dice by

1.91% (p = 0.005) and decreased meanMSD by 10.7% (p = 0.054) over non-mixup train-

ing (see Figure 2.5). The analysis of the other metrics (absolute relative volume difference,

95th percentile Hausdorff distance, and sensitivity) revealed that mixup training is superior

in every case. The differences were significant in every case apart fromMSD and absolute

relative volume difference (see Table 2.1).

Training curves from the k-fold cross validation are displayed in Figure 2.6. The time to

convergence seems to be largely unaffected by the use of mixup, and mixup training seems

to generalize better and with lower variance compared to non-mixup training, even though

the training loss is very similar.

50



Figure 2.5: Cross‐validation results from training without mixup and training with mixup with α = 0.5. p‐values
indicate the significance of the pair‐wise Wilcoxon signed‐rank test. The mean pairwise differences of Dice and MSD
were 0.016 (3.15%) and ‐0.207 (‐13.9%), respectively.

Table 2.1: Mean values of different commonly used performance metrics for the cross‐validated test performance.
Parentheses indicate the 95% CI and p‐values show the significance of the Wilcoxon signed‐rank test. ARVD: absolute
relative volume difference, HD95: 95th percentile Hausdorff distance, Sen: sensitivity.

Nomixup mixup p-value
Dice 0.839 (±0.03) 0.855 (±0.02) 0.005
MSD 1.93 (±0.57) 1.73 (±0.49) 0.054
ARVD 0.088 (±0.04) 0.066 (±0.03) 0.155
HD95 6.46 (±1.41) 5.78 (±1.45) 0.011
Sen 0.812 (±0.03) 0.832 (±0.03) 0.036
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Figure 2.6: Training curves from the five‐fold cross‐validation without mixup and mixup with α = 0.5. The large Dice
variance in the early stages of training is a feature of the loss function: the time it takes for top‐k pixel loss to generalize
globally varies strongly between runs.

2.4 Comparing automatic segmentation models

In this section, we compare four automatic DL segmentation models on a single data set

consisting of 100 prostate cancer patients. We also benchmark the DLmodels against

multi-atlas segmentation and a proprietary segmentation algorithm in the Syngo.via clin-

ical imaging software developed by Siemens Healthineers. The models were chosen to cover

some of the most essential training strategies (2D vs. 3D, training from scratch vs. transfer

learning) and architectures (V-net, GANs, EfficientNet). The following DL architectures

were included in the comparison:

• V-net: a 3D evolution of the U-net that uses 3D convolutions instead of 2D. The

V-net architecture also incorporated residual connections and replaced the pooling

operations (used for up-sampling and down-sampling) with convolutions.
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• Transfer-learned U-net: a U-net with encoder weights pre-trained on the ImageNet33

dataset.

• GAN (generative adversarial network): a GAN extension of the transfer-learned U-

net.

• EfficientDet: a version of the EfficientDet object detection architecture modified for

segmentation purposes.

2.4.1 Methods

Atlas segmentation

Multi-atlas segmentation is a common automatic segmentation method built on ideas

from deformable registration and coordinate transformation103,26,31. Even though they

have recently fallen out of favor since the introduction of DL, they are still central to many

treatment planning software packages, which makes them relatively accessible. The atlas

method used herein is embedded in the RayStation 9B treatment planning system com-

monly used in radiation oncology. The implementation is based on the anatomically con-

strained deformation algorithm (ANACONDA), which combines image intensity data

with anatomical information using contoured image sets. This solution requires the user

to define atlases of images and contours, which the algorithm then uses to find a coordinate

transform between the new image and the already segmented images in the atlas. If the atlas

contains images similar to the new image, the coordinate registration will be more accurate,

which will result in a more credible segmentation.
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Siemens (Syngo.Via software)

The Syngo.Via medical image reading and post-processing software offers a built-in auto-

matic segmentation method based on DL130. Partial details on its implementation have

been published in relation to liver segmentation, but further information remains undis-

closed to the public. Much of the appeal of this approach is that it is implemented in soft-

ware that many clinicians are already familiar with and use in their existing clinical routine,

which increases its potential for integration and decreases the learning curve.

V-net

The basis of the U-net segmentation model and its successors (including the V-net104) is its

encoder-decoder architecture: an encoder first distills relevant information about the input

image into representative features, then a decoder extracts useful information from these

features into a desired structure—in this case, a binary segmentation matrix. The encoder

and decoder are in turn built up from serially connected convolution blocks that operate

at different resolutions by using intermediate upsampling and downsampling operations.

The encoder and decoder are also connected horizontally by skip connections between each

resolution. The primary modifications in the V-net design were to use 3D convolutions

for volumetric medical images and to incorporate residual convolution blocks. The pool-

ing operations that were used for up- and down-sampling were also replaced with strided

convolutions and transposed convolutions (colloquially often called de-convolutions), re-

spectively.

Our V-net implementation is summarized in Figure 2.7. The residual convolutional
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blocks we used can be formalized as

ResConv(x) = PReLU(Dropout(BatchNorm(Conv3D(x)))) + x (2.5)

where PReLU is the parameterized rectified linear unit activation function56. We use non-

spatial dropout with a rate of 0.5 and only apply it in the encoder. All the 3D convolutions

used a 3 × 3 × 3 kernel size apart form the transposed convolutions (used for upsampling)

which used 2 × 2 × 2. The first convolution is a single strided convolution (e.g. not a

residual block) with 48 filters that downscales the resolution from 320 × 320 × 28 to

160 × 160 × 28. Every successive level adds (or subtracts in the decoder stage) another

48 filters apart from the last transposed convolution, which uses two filters. We also use

concatenations for the horizontal connections. The output layer is a single 1 × 1 × 1 3D

convolution with a sigmoid activation function.

Transfer learning

Transfer learning (TL) is a common learning approach when data or resources are scarce or

otherwise tainted (e.g. by poor quality). The idea is to apply pre-trained weights obtained

on a much larger dataset and/or a broader task in order to save computing resources and

leverage the robustness of previously learned features. Hence, it’s a convenient choice in

medical image analysis where data is often sparse.

Our TL approach consisted of a U-net decoder stacked on top of an EfficientNetB0

encoder (Figure 2.8) pre-trained on the 2012 ILSVRC ImageNet33 dataset for images clas-

sification. We chose the EfficientNetB0 backbone for its performance and efficiency; its

authors demonstrated state-of-the-art performance on ImageNet while being up to 8.4x
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Figure 2.7: Architecture of our V‐net segmentation network. Each block represents a residual convolution block (see
(2.5)); strided convolutions (downsampling) are blue and transposed convolutions (upsampling) are purple. The output
resolution at each level is displayed and the number of filters/channels is displayed with the ‘f’ suffix. Green spheres
represent concatenation. The last block performs 1x1x1 convolution with a sigmoid activation function.

smaller and 6.1x faster than previous models. A key aspect of the EfficientNet architecture

is that it processes the images and intermediate features with mobile inverted bottleneck

convolution (MBConvs) blocks (see Figure 2.9 for details). Since the ImageNet samples

are 2D images, this architecture can also only process 2D inputs, which means that the

implementation operates on a slice-by-slice basis. To implement this model, we used the

SegmentationModels155 python package.

To transform the 320×320×28MRI scans into the 224×224×3 images required of the

ImageNet weights, an initial 3 × 3 × 3 convolution maps each slice into three-channelled

images. They were then center-cropped into 224 × 224. The final network output was

constructed by concatenating and zero-padding them back to their original 320× 320×28

resolution. The number of filters in the decoder was set to {360, 288, 216, 144, 72} for

levels {P7, P6, P5, P4, P3}, and their kernel size was set to 4 × 4. Other parameters were
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Figure 2.8: Architecture of the EfficientNetB0 backbone used in our transfer learning model. Blue and red blocks repre‐
sent mobile inverted bottleneck convolution (MBConv) blocks (see Fig. 2.9), with a kernel size of 3x3 and 5x5, respec‐
tively. The light gray block represents a strided convolution followed by batch norm and a swish activation, while the
dark gray block represents an MBConv block with expansion factor 1 and kernel size 3. The resolution at each level is
displayed in bold and the number of filters (output channels) is displayed with the ‘f’ suffix.

configured to match our U-net implementation.

Generative Adversarial Network (GAN)

GANs are a family of models where two network agents—one generator and one adversar-

ial/critic/ discriminator—compete against each other with a shared objective function. The

generator is trained to generate “fake” samples (in our case segmentation masks) with the

aim of trying to fool the discriminator into thinking they are real, while the discriminator

is trained to distinguish fake/generated samples from real ones. As the generator gets better

at generating realistic-looking samples, the discriminator has a harder time identifying them

as fake. And when the discriminator improves its discrimination performance, the gener-

ator needs to generate more realistic-looking samples in order to keep up, ideally leading

to a self-improving feedback loop. One compelling feature of GANs is that their objective

function is implicit in the architecture, leading to a type of qualitative optimization.

Our GAN implementation was based on the pix2pix71 framework for image-to-image
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Figure 2.9: The mobile inverted bottleneck convolution (MBConv) block. (a) An initial 1x1 conv block expands the num‐
ber of input channels according to the expansion factor hyper‐parameter. (b) Depth‐wise 3x3 conv block over channels.
(c) Global average pooling shrinks the tensor along its spatial dimensions. (d, e) A squeeze conv (1x1 conv + swish) and
an excitation conv (1x1 conv + sigmoid) first squeeze the channel dimension by a factor of 0.25, then expand it back
to its original shape. The output is multiplied by the output tensor from step (b). (f) A final 1x1 conv block with a linear
activation maps the tensor to the desired number of output channels, followed by a dropout layer for stochastic depth
(dropout rate 0.2)

generation. The model was created by adding a binary classifier (see Figure 2.10) on top

of a generating network, for which we chose the same architecture as our TLmodel. This

model was chosen because its fixed encoder weights provide more stability during training

(which is one of the primary challenges with GAN training). As in the pix2pix implemen-

tation, all convolutions in our discriminator are applied with a 4 × 4 × 4 kernel, and no

batch normalization is applied in the first convolutional layer. The dropout ratio was set to

0.5.

Segmentation-adapted 3D EfficientDet

EfficientDet138 is an architecture intended for object detection that is an extension of the

popular EfficientNet137 model for object classification developed by researchers at Google.

While neither architecture is intended for segmentation, the design is innovative and popu-

lar enough to warrant exploration in the segmentation regime as well. One of the defining

factors of the “Efficient”-models is their relatively high speed, efficiency, and small size,
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Figure 2.10: Architecture of the GAN discriminator. The ground truth and generated masks are first concatenated, then
passed through consecutive strided convolution blocks (blue) and one regular convolution block. All blocks are non‐
residual Convolution blocks with 4 × 4 × 4 kernels followed by batch norm (apart from the first strided block) and a
PReLU activation. The final dense layer uses a linear activation.

which may prove useful in clinical contexts since hospitals usually need to train and de-

ploy their models in-house without access to data centers or powerful GPUs. The original

models were reportedly up to 8.4x smaller, 6.1x faster, and used 13x – 42x fewer FLOPs

compared to their competition while still maintaining state-of-the-art performance (at the

time).

The standard EfficientDet model consists of an EfficientNet backbone (see Figure 2.8)

and a series of sequential bidirectional feature pyramid (BiFPN)-layers. The BiFPN lay-

ers aggregate features at different resolutions by applying the novel fast normalized fusion

technique, which allows the network to attend to individual input features according to a

learned relative importance, defined by

O =
∑
i

ReLU(ωi)

ε+
∑

j ωj
· Ii (2.6)

where ωi are the learned weights, I is the input, and ε is a small value that prevents numer-

ical instability. The shape of ω determines the type of attention: feature/input attention
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if it’s a scalar, channel attention if it’s a vector, or pixel attention if it’s a multidimensional

tensor. The architecture also incorporates depthwise separable convolution to speed up the

network and reduces its memory requirement.

The EfficientDet architecture can be modified for segmentation with just minor changes.

While the original model applied multiple BiFPN layers in succession, we noticed that

stacking BiFPNs deteriorated the performance in the focused and relatively simple task

of prostate segmentation. Instead, our implementation applies the fast normalized fusion

technique from the BiFPN layer directly to the outputs of the EfficientNet backbone (see

Figure 2.11). This greatly improves both speed and memory requirements further. To fur-

ther accommodate the network for segmentation and our computational resources, we

applied the following changes:

• To adapt the network to 3D, theN×N convolutions were replaced withN×N× 3

convolutions in cases whereN ̸= 1

• The number of filters in the P1 to P7 levels were set to {32, 24, 48, 48, 64, 80, 96} (as

opposed to {32, 16, 24, 40, 80, 112, 192}).

• The fast normalized fusion was applied over channels and inputs (instead of just

inputs).

• The expansion factor in the MBConvs was set to 2.0 (instead of 6.0).

• The upscaling was done by a nearest-neighbor resizing followed by a 3 × 3 × 1 anti-

aliasing convolution (instead of only nearest-neighbor upscaling)
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Figure 2.11: Architecture of the segmentation head in the 3D EfficientDet network. The P3‐P7 output features from
the EfficientNetB0 backbone (see Figure 2.8) are first convolved to a common channel dimension of 48 with 1 × 1 × 1
filters (in white), then iteratively added with outputs from lower levels by fast normalized feature fusion (Eq. 2.6). The
upscaling (purple blocks) is done by a nearest‐neighbor resize followed by a 3 × 3 × 1 anti‐aliasing convolution. All
convolutions are performed depth‐wise and are followed by batch norm and a swish activation function, apart from the
last block, which is a single convolution with a 1× 1× 1 kernel and a sigmoid activation function.

Experiments

The images were randomly divided into two different training and testing sets on which the

models were evaluated: a 70/30 split and a 50/50 split. This allowed us to validate our re-

sults with repeated measurements and to test the reliability of the models in terms of train-

ing set size. In order to not let particular clinical characteristics confound the results of the

study, we checked that the distribution of prostate volume and extraprostatic extension

were similar within the training and test sets using the Mann-Whitney U-test.

Each model was trained and evaluated once on the 70/30 train/test-set split and once

on the 50/50 split. The evaluation was based on the Dice score, absolute relative volume

difference (ARVD), mean surface distance (MSD), and 95th-percentile Hausdorff distance
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(HD95) to the reference standard (ground truth), which are all defined in Section 2.3.2.

The following analyses were performed on the segmentation results:

1. We tested howmuch better the best performing model was compared to the others,

and analyzed how significant the differences were (Wilcoxon signed-rank test).

2. We analyzed the performance of the methods in terms of the most poorly segmented

patients. Since the segmentations are made on images from real patients, it is of great

importance to not jeopardize any downstream implications resulting from unaccept-

able segmentations.

3. In order to find potential confounding factors that may have a significant impact on

the quality of the automatically generated contours, we looked at associations be-

tween the results and different clinical variables (age, prostate volume, iPSA, ISUP

grade, EPE score, and PI-RADS category). If found, this could serve to indicate

whether a given prostate is suitable for automatic segmentation. It may also be use-

ful for constructing better segmentation algorithms in the future. This analysis was

made with the Kruskal-Wallis tests (for categorical variables), and Spearman corre-

lation (for continuous variables). This analysis was only performed on the Dice and

MSD performance metrics.

4. Lastly, we tested whether the increased training size in the 70/30 split significantly

improved the performance of the best model compared to the 50/50 split. This

can indicate whether datasets of this size are adequate to train a model, or if larger

datasets are needed. The performance increase resulting from adding data will di-

minish at some point, and understanding this interplay will be important for future
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studies, especially because good-quality clinical data is hard to collect. This analysis

was done with the Kruskal-Wallis test (since samples were of different size). As an

extension of this analysis, we also performed a pair-wise Wilcoxon signed rank test

on all patients in the intersection of the 70/30 and 50/50 test sets (a total of 20 pa-

tients).

No false discovery rate corrections were applied in the above analyses since we prioritized

low type 2 errors (to not discard any potential associations).

Model training

The models were trained with a modified pixel-wise top-k cross-entropy loss function with

k = 143, 360 (5% of the pixels in the 320 × 320 × 28 images), which only considers

contributions from the kmost poorly segmented pixels. The batch size was set to 2 in all

cases due to memory constraints. To fully leverage the available data, we heavily augmented

the samples with the following augmentation methods (listed in order of application):

• Mixup156,70 with α = 0.5 (that is, randomly sampling the mixing proportion from a

beta distribution with β = 0.5 for both distribution parameters).

• Horizontal flips with 50% probability.

• Uniform random rotation in the [− π
4 ,

π
4 ] range about the depth axis.

• Random bilinear resize and translation with a uniformly distributed scale factor in

the [0.7, 1.3] range.

• Elastic deformation.
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Since the target mask is not binary after applying mixup, we modified the loss function

to penalize the distance from the target (as opposed to the distance from the binary label

encoding), i.e. toL = − log(1 − |Y − Ŷ|) fromL = −
∑

i p(yi) log(p(ŷi)), where

y ∈ [0, 1] are the target labels and ŷ ∈ (0, 1) are the predicted values.*

We used the Adam optimizer with default learning parameters (β1 = 0.9, β2 = 0.999) to

train all our models (apart from the GAN). The learning rate was decreased on loss plateaus

following an annealing schedule of 0.001→0.0005→0.0001.

For the GAN, which uses separate optimizers for the generator and the discriminator, we

instead set the parameters to β1 = 0.5 and β2 = 0.999, with learning rate 0.0001 for the

generator and 0.001 for the discriminator. In addition, we used the relativistic GAN loss76,

defined on the discriminator outputsD(x) byLD = − log(sigmoid(D(x) − D(x̂))) for

the discriminator andLG = − log(sigmoid(D(x̂) − D(x))) for the generator, where x and

x̂ denote the real and generated images, respectively. Since each fake image in this case had

a corresponding real image, we did not need to sample (x, x̂) pairs in order to implement

the relativistic loss (this is not the case for GANs in general, since the fake images are often

generated from a latent distribution). To stabilize the GAN training, we added a Dice-loss

term (see (2.1)) toLG with a relative weight of 5 : 1 in favor of Dice.

All models were implemented with TensorFlow 2.4 in Python 3.7 and trained on an

NVIDIA Tesla V100-SXM2 (16 GB).

*Without this modification, the loss for intermediate values would not be minimized when y = ŷ. For ex-
ample,−0.5 log(1) < −0.5 log(0.5).
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2.4.2 Results

Segmentation performance

The segmentation scores (Dice, ARVD,MSD, and HD95) of the different methods are

displayed in Figure 2.12. In all cases, EfficientDet3D was the highest-performing model on

average (except in terms of ARVD in the 70/30 split, where it came second after the V-net).

The total mean ranks across all scores were: 1.25 for the EfficientDet3D, 2.9 for both TL

and V-net, 3.5 for GAN, 4.6 for Atlas, and 6.0 for Siemens. The superior performance of

the EfficientDet3Dmodel was significant in most cases (see Figure 2.13) with the exception

of ARVD, according to which all DL-based models performed similarly. In terms of Dice,

the TLmodel was the only one to perform at a similar level. For MSD, the GAN and the

TL approach (in the 50/50 split) achieved similar performance, and for HD95, only the TL

approach (in the 70/30 split) was statistically similar to the EfficientDet3Dmodel.

In terms of performance of the most poorly segmented patients (Figure 2.12), the Effi-

cientDet3Dmodel was generally the best, failing to take first place only in terms of MSD

and HD95 in the 70/30 split (where it was second to the TL approach), and in terms of

ARVD in the 50/50 split (where it ended up in fourth place). Segmentation masks made by

the EfficientDet3Dmodel for its worst-case patient in terms of Dice are compared against

the ground truth in Figure 2.14. Each performance metric had a different worst-case pa-

tient for the EfficientDet3D. The mean ranks in terms of worst-case performance for the

remaining four methods were: 2.5 for V-net, 2.6 for TL, 3.8 for GAN, 4.9 for Atlas, and

5.6 for Siemens.

We further note that:
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Figure 2.12: Performance of the different segmentation models in terms of Dice, absolute relative volume difference,
mean surface distance, and Hausdorff (95 percentile) distance. Numbers represent the mean value, colors represent the
dataset split (blue: 70/30, orange: 50/50), black lines represent the standard deviations, and black diamonds represent
the result of the worst case. Note that, apart from Dice (top left panel), a lower value means better performance.

• the variance of the models’ performance decreased as the mean performance in-

creased

• the mean performances were always higher in the 70/30 split compared to the 50/50

split (with three exceptions), but the differences were not statistically significant

• the DL-based models were less sensitive to performance outliers
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Figure 2.13: Statistical analysis of the segmentation performance resulting from the Wilcoxon signed rank test. Hor‐
izontal lines indicate all methods that did not differ significantly from the EfficientDet3D model, which was the best
performing model on average. Blue and orange colors represent runs from the 70/30 and 50/50 dataset splits, respec‐
tively.
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Figure 2.14: Automatic segmentation from the EfficientDet3D model (bottom) compared against the ground‐truth seg‐
mentation (top) of the worst case patient in terms of the Dice coefficient. The left panels display a slice from the center
of the prostate, and the right panels display a slice just outside the base of the prostate, where the model erroneously
believes there is prostate tissue.

Association between clinical variables and segmentation results

The full association analysis is presented in Appendix A.1. The only significant relation-

ship was between prostate volume andMSD, and age andMSD, but both relationships

were weak (ρ=0.33 and ρ=0.29, respectively). No relationship was consistent between both

MSD and Dice.

Effects of dataset size

The comparison between the results from the 70/30 and 50/50 dataset split is presented in

Fig. 2.15. Neither test (paired samples Wilcoxon signed rank test and Kruskal-Wallis test)

found any significant differences for any of the performance metrics. This analysis was only

done for the EfficientDet3Dmodel.
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Figure 2.15: Statistical analysis of the differences in segmentation performance between the 70/30 and 50/50 dataset
splits of the EfficientDet3D model. Top: Wilcoxon signed rank test on the intersection of the test sets (20 patients).
Bottom: Kruskal‐Wallis test between the full test sets (30 and 50 patients). Blue and orange colors represent the 70/30
and 50/50 dataset splits, respectively.

2.5 Quality assurance with deep learning

Deploying an automatic segmentation model in practice should require rigorous quality

assurance (QA) and continuous monitoring of the model’s use and performance, particu-

larly in high-stakes scenarios such as healthcare. Currently, however, tools to assist with QA

for such models are not available to AI researchers. In this section, we build a deep learning

model that estimates the quality of automatically generated contours and explore some of

its clinical implications.

One of the problems with estimating the quality of a segmentation mask is that the

output is essentially a collection of predictions—one for each pixel—which invalidates

many of the standard certainty approaches for individual predictions. In ordinary classifi-

cation tasks, the output of the model is typically a vector of probabilities that represents the

69



model’s certainty for a given sample. This vector can be used to give users a measure of how

confident the model is for a given prediction (although the reliability of this confidence

estimation is debated—see the so-called calibration problem). For segmentation models,

on the other hand, the output is a pixel-wise collection of probabilities, which makes its

direct use ambiguous. For example, it is not obvious whether all pixels should have equal

importance, or if perhaps pixels closer to the prostate boundary (where most of the less

well-defined pixels are) should be considered more significant. One way to overcome this

is to use an ensemble of multiple segmentation models to build an uncertainty prediction

model based upon the variance of their predictions, as suggested in101. However, model en-

sembles require drastically more time and resources, particularly in the case of DL. Another

approach is to use a Bayesian framework, which inherently models uncertainty14. Men et

al.102 tried to solve the problem by studying a binary definition of quality (e.g. errors are

present/absent), while other researchers have suggested using rule-based models derived

from geometric attributes5,18, or texture-based159, volumetric-based60, and/or shape- and

intensity-based100 features with ML and statistical models. While these methods can im-

prove the quality evaluation of contours, they suffer from the inherent limitations of hand-

crafted models, which are often coarse-grained and typically produce inferior results. In

this context, DL models, whose superior feature extraction and inference capabilities have

been demonstrated in a multitude of other image-analysis domains, may provide invaluable

advantages.

Research relating to QA of segmentation models with DL is very limited. Chen et al.20

conducted a QA study on 680 breast cancer patient CT images based on a ResNet-101.

Their approach achieved good performance but used a discrete classification rather than
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a continuous regression method, which may not be desired in clinical contexts because of

its limited flexibility. Two other related approaches are the fields of uncertainty prediction

and out-of-bounds detection. In uncertainty prediction problems, the task is to estimate

the uncertainty of the network given an input-prediction pair (this is typically studied in

regression problems where network outputs are not represented as certainties). Traditional

approaches in this field model the uncertainty with a Bayesian framework and typically re-

quire either explicit models of the ground truth distribution63,40,79 or joint training with an

uncertainty network51. While joint training can be an effective and well-versed approach,

it stands to reason that it can not be implemented after training. Instead, out-of-bounds

detection simply tries to detect samples that differ greatly from the training distribution.

These detectors often rely on artificially created out-of-distribution samples (possibly with

a generator neural network89)92, which is a difficult problem in itself that introduces an-

other dimension of bias. Due to the scarcity of research directly related to QA, it can be

useful to draw inspiration from other domains that predict (continuous) outcomes directly

from images. One example is age estimation, where the task is to predict a person’s age

from pictures of their face (see e.g. Cao 202016, Gao 202042, Liu 202094, or Berg 202112).

Notably, all state-of-the-art models in this field are DL architectures. However, a key thing

that distinguishes segmentation QA from age estimation is the presumed in-sample interac-

tion between images and contours: it is impossible to tell the quality of a segmentation just

by purely looking at the segmentation (or image).

There are three main ways to predict the performance of automatically generated con-

tours: regressing the performance metric directly, predicting some discrete or qualitative

measure of performance (e.g. good/moderate/bad), or predicting the ranking of samples
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ordered by quality (i.e. ordinal regression/classification). The second method is useful

when precise ground truth segmentations are not available, or when time constraints limit

the annotation quality of the training data since clinicians can allocate samples to qualita-

tive categories faster and more easily than they can produce reliable ground truth segmenta-

tions. The third method can be beneficial when only the ordering of samples is important,

but the downside is that single-sample inference is not straightforward, particularly for out-

of-distribution samples. We opted for the first method, as it is good when many training

samples are available, preferably over a wide distribution of ground truth segmentation

scores. It allows for the use of distance-based loss metrics, which penalize poor predictions

more than good ones.

In this section, we will:

• Build a convolutional DLmodel to predict the quality of automatically generated

contours. This model can be used in QA to give automatic segmentation models a

greater sense of transparency.

• Compare the model to a naïve baseline that predicts the segmentation performance

from patient characteristics only. If poor performance can be estimated from clinical

variables alone, clinicians may be able to leverage this information to exclude subsets

of patients on which automatic segmentation methods produce poor results.

• Investigate when the model is able to correctly handle likely failure cases with noisy,

empty, or misaligned predictions. Identifying failure cases is a crucial step in QA and

analyzing this behavior may provide insights into potential model biases and model

behaviors.
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2.5.1 Methods

Predicting contour quality

We framed the problem of quality assurance as a regression problem, where the input to

the model is an image-contour pair and the output is a measure of quality (see Figure 2.16

for an illustrative overview). The specific quality metric we chose was the Dice coefficient

(2.1) because it is mathematically well-defined, easily interpreted, bounded, and widely

used within the medical imaging community.

To measure the performance of the quality prediction models we used mean absolute

error (MAE) between the predicted Dice and the target Dice values, as well as the Spearman

rank correlation between them. The Spearman correlation measures how correct the or-

der of an ordered set is, and ranges from 1 (all samples are placed in correct order) to -1 (all

samples are placed in the opposite order). A random placement has an expected rank cor-

relation of zero. As such, it gives an intuitive understanding of how well the algorithm can

tell good contours from bad ones. Here, the use of rank correlation will be implied when-

ever correlations are mentioned.

Baseline quality prediction model

The baseline model tries to predict how well an arbitrary segmentation algorithm would

perform on a patient given only the clinical variables for that patient. The rationale for this

is to examine whether any clinical variables are predictive of how hard it is to segment a

given prostate. Because this model makes no use of images, it cannot distinguish between

different segmentations of the same patient, but it can still be useful as an analytical tool
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Figure 2.16: Overview of the problem of predicting the quality of organ segmentations. First, a segmentation model
takes images as input and produces segmentation maps. Then, our quality prediction model takes both the images and
the segmentation maps as input and produces an estimate of the quality of the segmentation—in this case the Dice
similarity coefficient. Good contours have a high Dice value and poor contours have a low Dice value. Note that we
need ground truth segmentations in order to calculate the true Dice value and train the quality prediction model with
supervised learning. In this study, we used 60 ground truth segmentations and 80 automatically generated masks along
with heavy data augmentation to train the quality prediction model.

and a benchmark. As the baseline model architecture, we chose a gradient boosted decision

tree model implemented in CatBoost117 v.1.0.3 with Python 3.7. For the 20 images with

two different segmentations, we used the mean value of the Dice coefficients as the target

value. The following clinical characteristics were available for each patient for use in the this

model: age, prostate volume, ISUP grade, PI-RADS score, iPSA, and risk class

To train this model, we first perform a 64-step parameter search with the Optuna3 Python

package with default settings to find suitable parameters. The search space is displayed in

Table 2.2. Each parameter set was evaluated by its mean absolute error after eight repeated

random 5-fold cross-validations. The best model was then further evaluated with 64 re-

peated random 5-fold cross-validations.

In order to gauge the usefulness of the baseline model, we compared its performance
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Table 2.2: Parameter space searched by the Optuna parameter search for the baseline CatBoost model.

Parameter Values
n_estimators {1, 256}
max_depth {1, 6}
l2_leaf_reg [10−3, 10]*
random_strength [0.1, 3]
*log-uniform prior
[]: continuous interval
{}: integer interval

against a naïve baseline that predicts the mean Dice value for all samples.

Quality prediction network

Since this network was trained to predict contour quality, it needs not only an image and

a ground truth segmentation but also a generated segmentation mask for which to predict

the quality (alternatively, it needs an image, a contour, and a target Dice value). As such,

it was trained on the test sets from the previously trained segmentation models for a total

of 50+30=80 training samples. This means that the patients in the overlap of the two test

sets (20 patients, to be precise) are included twice and considered independent samples (i.e.

each of these 20 patients has one image-contour sample from the 70/30 test set and one

image-contour sample from the 50/50 test set, but the images in both samples are identi-

cal).

The DLmodel we trained to predict segmentation quality was a modified Efficient-

Det138 architecture (see Figure 2.17). Our modifications included adaptation to 3D con-

volutions as well as an expansion-factor reduction (from 6 to 2) and a custom regression
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head. The regression head consisted of serially connected fast normalized fusion nodes (see

(2.6)) followed by batch normalization, PReLU, a single-channel convolution, and a final

sigmoid activation function. The EfficientNetB0 backbone used the default filter param-

eters of 32, 16, 24, 40, 80, 112, and 192 channels for the P1 to P7 levels, respectively. Our

BiFPN blocks were repeated three times and used 64 filters each.

To reduce the memory consumption of the model, the images were center-cropped from

320×320×28 to 160×160×28 voxels. The images were also normalized by linearly mapping

the 0th and 99th percentiles to the [0, 255] range, after which the 100th percentile values

were appended. TheMRI images and segmentation maps were concatenated on the chan-

nel dimension to form 4D tensors of shape 160×160×28×2 for each sample. These 4D

tensors were used as the input to the model.

The network was trained for 200 epochs withMSE loss and batch size 2. We used the

Adam optimizer with a learning rate of 0.002, which was reduced to 0.0002 after 120

epochs. Validation of the model was done with a random 5-fold cross-validation.

To give the network the ability to interpolate outside the narrow range of target Dice

values typical of prostate segmentation, we used an elaborate data augmentation scheme

to generate novel contours. At each epoch, one of the two samples had its corresponding

contour switched with another contour randomly chosen from the training set such that

each batch consisted of one real and one “fake” image-contour pair. The fake contour was

then scaled by a random factor in [0.55, 1.8]. After this procedure, we also applied standard

data augmentation two both samples (in order): horizontal flips, uniform in-plane rotation

(in± π
12 ) uniform 2D x and y translation (in ±10%), uniform zoom (in ±10%), and elastic

deformation. This procedure also eliminates bias that could be introduced by only using
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Figure 2.17: Quality assurance network architecture. An EffcientNetB0 backbone is connected to three repeated bidi‐
rectional feature pyramid blocks (BiFPNs). The regression head consists of serially connected fast normalized fusion
nodes and finally BatchNorm (BN), PReLU, a single‐channel convolution, and a sigmoid activation. Numbers indicate the
resolution at each level relative to the input.

contours from a single segmentation model.

Failure case studies

We evaluated how well the model predicts the quality of different variations of failed con-

tours, for which the predicted Dice score ought to be low. The following failure modes

were investigated (see Figure 2.21 for illustrations):

1. empty contours (every pixel in the array is zero—no prostate tissue has been identi-

fied),

2. uniform binary noise (each pixel in the array is randomly assigned a value of zero or

one),

3. filled matrix of ones (every pixel in the array is one—the whole image has been iden-

tified as prostate tissue),
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4. shifted ground truth masks (the ground truth segmentation is randomly shifted uni-

formly by ±50% in the x- and y-direction).

These cases were constructed from the 16 patients in the test set at each validation fold,

such that each failure case generated 80 independent samples in the course of the cross-

validation procedure.

In addition, we evaluated the predictions on the 16 unseen ground truth segmentations

at each validation fold (for a total of 80 ground truth images). This allowed us to test the

model performance on the opposite end of the domain, where all target values are 1.

We also defined a global accuracy score to indicate how well the model performed across

all test samples (80 from the standard test set, 320 failure case samples, and 80 ground

truth samples). This is useful because the MAE is not always indicative of how helpful the

model’s predictions are. For example, if there is a segmentation with a true Dice value of

0.0, and the model predicts a Dice value of 0.5, the contour would still be flagged as “poor

quality”, because both 0.0 and 0.5 Dice are considered bad. This means that the prediction

is qualitatively correct, even though the MAE of 0.5 is very large. For a predicted Dice value

ŷ and target Dice value y, we defined a failed prediction as either:

• (ŷ < 0.75)∧(y > 0.8), i.e. a predicted Dice value of less than 0.75 when the target Dice

value is larger than 0.8, or

• (ŷ > 0.8)∧(y < 0.75), i.e. a predicted Dice value larger than 0.8 when the target Dice

value is less than 0.75.
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Table 2.3: Average mean absolute error (MAE) and rank correlation of the baseline CatBoost and naïve models, which
only utilize clinical variables to predict segmentation quality. The naïve method predicts the mean target value for all
samples. Parentheses indicate standard deviation. The values are aggregated from 64 repeated 5‐fold cross‐validations.

MAE Corr
CatBoost 0.016 (±3 · 10−4) -0.16 (±0.02)
Naïve 0.016 (±0) n/a

Figure 2.18: Predicted vs. target Dice values of the deep network shown in Figure 2.17. The dotted line indicates per‐
fect x = y predictions

2.5.2 Results

The performance of the CatBoost and naïve baseline models are summarized in Table 2.3.

TheMAEs were 0.016 for both models, and the prediction-target correlation for the Cat-

Boost model was -0.155 (p = 0.55). A deeper analysis of the relationship between the

clinical variables and segmentation performance is presented in Appendix A.1.

The mean absolute error of the Dice value predictions was 0.020 ±0.026 (2.2% mean

absolute percentage error), and their correlation with the target values was 0.423 (Figures

2.18 and 2.19). The maximum absolute error was 0.066 (equivalent to a 7.3% deviation

from the target). The time required to generate predictions was 0.02s per patient on an

RTX 3090 GPU. Characteristic training curves of the network are shown in Figure 2.20.
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Figure 2.19: Predicted Dice values, targets, and the respective absolute error of the quality prediction deep learning
network. The mean absolute error is 0.02 and the correlation between the predicted and target values is 0.42

Figure 2.20: Characteristic training curves of the deep quality prediction network. The plot is an aggregate of all five
validation folds. The validation loss often spikes in early training, which then disappears after the learning rate reduction
at 120 epochs

80



Figure 2.21: Performance of the quality prediction model (MAE and rank correlation of predicted Dice scores, including
the 95% confidence intervals) on different cases of failed segmentations: completely empty contours, pure noise, ma‐
trices full of ones, and shifted ground truths (GTs). The performance on real GT segmentation maps is also shown. All
results are aggregated over 5 different validation splits for a total of 80 samples each

The results of the predictions on the constructed failure cases are shown in Figure 2.21

together with an example segmentation from each type of failure. The least successful cases

were the empty contours (0.317MAE), followed by the shifted GT segmentations (0.233

MAE), the all-ones segmentations (0.182MAE), and the binary noise (0.126MAE). The

shifted GT cases, which had the second-worst MAE, had the best correlation with the tar-

get values: 0.522. The empty and GT contours have undefined correlations since their tar-

get values are all zeros and all ones, respectively.

In terms of overall accuracy, only two out of the 480 cases were misclassified, amounting

to a 99.6% accuracy. The first case was a segmentation full of ones with a predicted Dice

value of 0.81 and target Dice value of 0.11, and the second case was a shifted GTmask with

a predicted Dice value of 0.82 and target Dice value of 0.72.
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2.6 Discussion

Overview

The automatic segmentation methods evaluated here reached Dice scores of up to 0.914,

which is on par with, if not better than, that for human agents, for which studies have re-

ported Dice coefficients of 0.9093, 0.83150, 0.85911, and 0.82126. Even our worst-performing

DL-based model achieved an average Dice score of 0.900, which indicates that the tech-

nique is relatively robust regardless of the underlying architecture. On the other hand, the

performance of the medical software algorithms yielded significantly inferior performance

with notable obvious mistakes. An exceptionally thorough recent review80 covering 100

different papers on prostate cancer segmentation confirms that our performance is simi-

lar to that of the best performing algorithms on other similar-sized datasets (although care

should be taken when comparing studies involving different data sets). This review further

demonstrates the width of the different models that can achieve these performances.

Even with a dataset of just 50 patients, the Dice performance of the best and worst DL

models were 0.907 and 0.900, respectively. This can be partially attributed to the mixup

augmentation, which improved the Dice performance by 0.016 or 3.15% (p = 0.005). This

indicates that segmentation models might be trainable up to a clinically acceptable degree

with very little data, contrary to the widespread assumption that DLmodels need enor-

mous datasets. It should be noted, however, that the average test score is not the quintessen-

tial metric of model performance. For a model to be useful in clinics, it is equally important

to not instill false confidence when the segmentation is bad, which might happen if the

model is given an atypical sample (e.g. outside of the training distribution). This is why
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quality assurance of deployed DLmodels is essential.

The DL quality prediction model for QA accurately predicted the Dice scores of auto-

matically generated prostate contours with a MAE of 0.020. This amounts to a mean de-

viation from the true Dice values of only 2.2%. In particular, none of the errors were larger

than 0.066 (7.3% deviation from the target), which indicates a high degree of robustness

and reliability. The moderate correlation of 0.42 between the predicted and target values

suggests that the model is also able to correctly infer quality differences (i.e. which ones are

better/worse) between contours, even when the differences are minor. These results pro-

vide a solid framework for a practically useful segmentation pipeline, but more conclusive

results with bigger data need to be produced before automatic segmentation can become a

reality in clinics.

Ablation studies and unsuccessful experiments

Due to the vast landscape of possible design choices when building DLmodels, it is practi-

cally impossible to explore most of the design space, particularly in low-recourse scenarios.

Our general approach in this project was to favor simplicity and ease of implementation

over minor performance gains while taking cues from top-performing submissions in seg-

mentation challenges (e.g. the PROMISE12 prostate segmentation challenge93) and other

computer-vision areas (e.g. classification and object detection). This is not a substitution

for rigorous experiments, but it provided direction when resources were scarce. Several dif-

ferent architectures and parameters were explored initially, but were abandoned when their

results were not promising or interesting.

For the segmentation architecture, this included residual refinement blocks, group di-
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lated convolutions, decomposed convolutions, and pyramid attention. We also experi-

mented with mixed precision training and alternative loss functions such as intersection-

over-union loss, boundary distance loss, and hybrid losses as well as various learning rate

schedules. For preprocessing and augmentation, Gaussian smoothing, noise addition (uni-

form, Gaussian, salt and pepper), label smoothing, cropping, and bias-field addition were

experimented with but did not consistently influence the results in a meaningful way. Most

of the parameter choices were selected similarly, but special attention was devoted to the

number of convolutional filters and the dropout rates.

Overall, the segmentation performances of the less performant DL-based models (U-net,

TL, and GAN) were similar (total mean ranks of 2.69, 2.75, and 3.63, respectively). Since

GANs are notoriously hard to train and stabilize, it is likely that the GANmodel could

be improved further by a more careful and thorough exploration. A similar argument can

be made regarding the TLmodel’s performance: it is likely that it could be improved by

a more careful investigation into the possible backbones and structures (e.g. PSPNet or

Linknet). We briefly experimented with ResNet and InceptionV3 as backbones but con-

cluded that EfficientNet was the most appropriate choice. In this project, we tried to com-

mit roughly equal amounts of effort to all models such that the results would reflect the

underlying differences and not just tuning variability.

One promising architecture we tested for the QA network used a confidence branch,

which is an extension that can be made to arbitrary networks34. The confidence branch is

trained to output an estimate of how confident the network is in its predictions. This can

be achieved by letting the network “peak” at the correct answers (with a penalty) during

training in order to output more correct answers. The intuition behind this is that peak-
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ing is only profitable for inherently uncertain predictions. Thus, the network’s desire to

peak can be seen as a proxy for uncertainty. We did not manage to get this branch to output

useful values—the confidence always converged to either 0 or 1 for all samples, even after

introducing a budget parameter.

Another DL network we experimented with for the QAmodel used a regression head

added directly to the EfficientNet backbone, which requires much less memory and train-

ing time. This worked well in terms of trainingMSE but was incredibly noisy. A similar

scenario occurred when we trained the final network architecture with fewer BiFPN layers

and/or filters.

Generalization and mixup

The generalization improvement frommixup may be dependent on the network archi-

tecture, but there is reason to believe that networks of the U-net family behave similarly

since they all follow the same fundamental principle of systematic feature extraction with

convolutions. The network that was used to study mixup was designed to be as simple and

general as possible while maintaining a respectable level of performance, such that the re-

sults could be generalized to more specialized network topologies as well. Therefore, it did

not incorporate specialized structures like attention blocks, residual refinement blocks,

squeeze and excitation blocks, depth-wise convolutions, etc., which are utilized in many

state-of-the-art architectures today. The generalization improvement attributed to mixup

for classification has been demonstrated to be greater for larger networks (i.e. networks

with more parameters)156 and it is plausible that this holds even for segmentation. As a re-

sult, the segmentation performance gained frommixup could be greater for more complex
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anatomical structures requiring larger networks, such as bone or blood vessels, than the

relatively simple prostate geometry.

Since the mixup procedure renders the target mask non-binary, caution needs to be

taken when designing the desired loss function. For example, the standard definition of

the Dice coefficient in (2.1) may be extended to continuous cases by simply defining the

intersection as the product betweenX and Y, but such an implementation is not always

maximized whenX = Y because
∑

i xiyi ≤
∑

i xi for xi, yi ∈ [0, 1]. Here we used top-k

cross entropy because of the previously demonstrated success of standard cross entropy in

combination with mixup for classification156, and because it outperformed Dice in prelim-

inary testing. Further exploration in the interest of optimizing the loss function for mixup

segmentation is warranted but is outside the scope of this thesis. Currently, there appear to

be no obvious reasons why the generalization improvement frommixup should be exclu-

sive to the cross entropy loss.

The value of mixup may extend even beyond performance gains: it has been suggested

that mixup training significantly improves calibration and uncertainty estimation of deep

convolutional networks139. From our results, it is also apparent that mixup reduces the

prevalence of outliers (see Figure 2.5). This could be an additional incentive to use mixup

for medical image segmentation, even if the performance itself is not improved, since uncer-

tainty in patient decisions is much more detrimental.

Additional theoretical explorations as to why and how the mixup procedure leads to bet-

ter generalization performance are also warranted since this is still not well-understood156,91,65.

Two principally distinct intuitive explanations have been proposed. First, it can be viewed

as regularizing the network by simply increasing the sample size. Secondly, it can be viewed
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as simultaneously learning multiple samples such that the network learns to better distin-

guish between their corresponding labels. The original mixup paper suggested that the

between-class samples simply help the network interpolate smoothly instead of using hard

decision boundaries. It has also been suggested that mixing promotes more robust detec-

tion of low-level features such as lines or edges. If this is indeed the case, the strategy ought

to be less effective for transfer-learned networks, where the low-level feature weights are

typically frozen.

Commentary on the segmentation results

From the analysis of the relationship between clinical variables and segmentation perfor-

mance, we conclude that exceptionally large prostate volume and old age may lead to poor

segmentation performance, although this result was only significant for the MSDmetric.

In principle, a positive linear correlation betweenMSD and Volume also implies a good

performance (i.e. lowMSD) for patients with small volumes, although exceptionally small

prostates are likely to cause poor performance due to other effects. Since there was only one

observed significant relationship out of four performance metrics, it is likely that clinical

variables are not strong predictors of segmentation performance.

The comparison between the different dataset splits (70/30 and 50/50) indicates no

significant performance increase when expanding the training set by 40% from 50 to 70

images. However, in 13 out of the 16 combinations of DL-based models and metrics, the

performance was better in the 70/30 split on average. It is likely that this dataset was sim-

ply too small to reveal the difference with significance. Increasing the dataset’s size does not

only improve the average performance, but also the models’ resistance to outliers; the scores
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of the 50/50 split generally exhibit higher variances and more severe outliers.

An interesting observation about the results is that the variance of the performance is

very low: EfficientDet’s standard deviation is just 2.1% from the mean value (0.04% for the

variance). This is contrary to what one would expect from such a small dataset. The worst

Dice coefficient andMSD in the best performing model were 0.854/0.847 and 4.16/4.02

(70-30 split/50-50 split), respectively. The scores then increase rapidly; the same values for

the 5th worst patients are 0.897/0.876 and 3.25/3.25. This could indicate that prostate

segmentation models need much less data than those intended for other regions and ap-

plications. A possible direction to improve the worst-case performance further is to weigh

these samples more heavily during training. We briefly experimented with various weighted

loss functions but found that this led to worse average performance.

Commentary on the quality assurance results

The performance in the failure cases might seem alarming when looking at their MAE val-

ues, which range from 0.126MAE on binary noise to 0.317 on empty contours. However,

this would likely not be a major problem in practice since the overall accuracy of the model

was 99.6%. For example, a large MAE does not necessarily indicate a failure of the model

when both the target and predicted Dice values are low. Our QAmodel was not trained on

any contours with target Dice values of 0.0, and as such had no way to interpolate to this

regime. Anticipating failure cases and including such cases in the training set is one way to

boost the model’s reliability. Furthermore, a well-built segmentation model being deployed

in practice ought to not output obviously poor segmentations (assuming no model/data

drift), and such failures are easy to spot by simple inspection without the need for an exter-
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nal quality assurance model. If drift is an issue, one can use a surrogate model in addition to

the QAmodel to detect out-of-distribution cases.

The naïve model that predicts the mean of the target Dice values for every patient achieved

a MAE of 0.016, which is lower than the DLmodel’s MAE of 0.02. However, the naïve

model would not be able to identify failure cases and qualitative differences between con-

tours, since all its predictions are identical. Similarly, the baseline CatBoost model, which

only used clinical characteristics to predict the quality of automatically generated contours,

also had aMAE of 0.016. The low variance along with the negative correlation of the Cat-

Boost predictions (Figure A.3 and Table 2.3) suggests that this model has no merit over the

naïve model, effectively rendering it useless in practice. This indicates that the performance

of automatic segmentation models cannot be inferred from clinical characteristics alone.

This is not too surprising given that the model is not able to distinguish different segmenta-

tions on the same patient.

An obvious question to raise is; if we need a deep network to safeguard the performance

of the segmentation network, should we then not need a deep network to safeguard the

performance of the safeguard network? The predicament is that, if the performance of the

first network could be guaranteed, we wouldn’t need a safeguard network in the first place,

and if not, we would potentially need an infinite chain of networks. It is likely, however,

that the utility of such networks diminishes the further down the chain you go because the

error is necessarily reduced by a nonzero amount each step. An analogy can be drawn to

gradient-boosted machines, which are chains of prediction models trained on a propagated

error signal. These models are usually trained with decision trees because decision trees

are extremely fast to train. On the other hand, for DLmodels in computer vision where
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training times often exceed hours or even days, it should be clear that using more than a few

chained safeguard networks is practically infeasible.

While similar studies in the litterature have focused on either binary error detection or

discretized ordinal regression, our model performs continuous regression. In general, this

should be preferred, since it is more general and often enables better performance. This

approach also enables a dynamic definition of error detection that can be changed on-the-

fly, which may be valuable in a medical context. The only other study we found that re-

gresses Dice scores directly achieved a MAE of 0.0621 on breast cancer segmentation, which

is three times higher than our MAE of 0.020.

One interesting thing to note is that, if the Dice prediction network is accurate enough,

the original segmentation network could utilize the predicted Dice values to inform its own

gradients, for instance by using the Dice prediction network as a discriminator in a GAN

training scheme. This could improve the segmentation performance further. While this is a

potential direction for future research, it was out of scope for this study.

It can be discussed whether it is wise to use an AI algorithm to assess the output of an-

other AI algorithm in clinical practice, and when human supervision should be requested.

At the very least, it seems natural to demand human supervision in early applications of AI

in healthcare. One benefit of QAmodels like ours is that they can easily be deployed along-

side human professionals in order to alleviate the workload and improve their judgment.

Dataset

The images used in this study all came from a homogeneous population, and all patients

had relatively severe cancer (Gleason score 6 or above). While it is crucial to know that the
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methods work well for these cases, it would be helpful to also add data from healthy pa-

tients so that the performance on their images also can be ensured. If the intention of the

algorithms is to exclusively handle patients within this population, a relatively small data set

(albeit ideally larger than the one included here) may suffice. But as soon as results on exter-

nal samples are of interest (other parameter settings of the MRI scanner, different quality

of scans, and so on), it will be critical to add additional data to represent these. For the same

reason, it is not surprising that the Siemens’ segmentation model in the Syngo.via software

had the worst performance by far (it is trained on a different training set). It should also be

noted that, although the experiments here focused exclusively on T2-weightedMRI im-

ages, it is likely that the methods transfer to other modalities such as CT and PET images

as well since they are all represented in the same way in the software. Moreover, as DWI

images of the patients are usually acquired as part of the prostate MRI examination, trans-

lating these models to and using them with the DWI data is important.

While this project demonstrates promising results in the various tasks, it is important

to note that external and rigorous validation is needed before the methods can be reliably

applied in practice. With the limited dataset of 100 patients, the results herein can only be

considered as a proof of concept. Ideally, a test set of unseen data should be used to assess

real out-of-sample performance and reproducibility, but we opted to not use a held-out set

in order to give the training and validation sets more coverage. Data sets that are too small

risk being overly dominated by random effects, which can compromise the learned rep-

resentations and the performance estimation. At present, there is no universally accepted

solution to these tradeoffs, especially in small data scenarios.

91



3
Image normalization & radiomic feature

variability

3.1 Background

A peculiar property of MRI images is that their intensity values are not measured on an

absolute scale, meaning that the values have no consistent physical interpretation. As a
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consequence, one can not straightforwardly compare intensities between different MRI

scans—it is for instance not possible to say that the intensities corresponding to fat tissue

in image A should also correspond to fat in image B. The reason for this behavior lies deep

within the physics of the machine. While the signal in a regular camera is generated by de-

tectors picking up photons, the signal in MR images is, very roughly speaking, generated

by tiny frequency variations in magnetic fields which, in turn, are generated by the relax-

ation of hydrogen atoms. This arbitrary nature of the intensities introduces additional

uncertainty in the analysis of the images, which further necessitates the need for normal-

ization/standardization techniques.

The goal of normalization is to standardize the intensity distributions both within and

across patients. Formally, normalization should: 1) make intensities have similar distribu-

tions for the same tissue types within and across patients and 2) make intensities have a

common interpretation across locations within the same tissue type, according to the seven

principles of image normalization (SPIN)128, which was proposed as an impetus to stan-

dardize research in quantitative imaging. This not only helps to alleviate the problems of

MRI mentioned above but also problems resulting from variations of scanner parameters

and vendors. The condition, of course, is that no information should be lost (SPIN princi-

ple three)—it is not enough to set all muscle intensities to 50, for example. There may also

be variations that are worth preserving. For instance, tumors may differ physiologically, in

which case the intensity difference could reflect a real medically relevant phenomenon. The

remaining principles say that normalization should be replicable, minimally sensitive to

artifacts, not be influenced by abnormality or heterogeneity, and preserve the rank of inten-

sities (these conditions, as we will see later, are generally met by the normalization methods
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considered in this chapter).

An intuitive solution to the problem of intensity standardization might be to adjust

contrast, brightness, or the intensity range, but in practice, this does not actually lead to

a tissue-specific association of the intensities109,97. Similarly, normalizing the intensities

to zero mean and unit variance is not enough since the shape of the distributions can dif-

fer between patients (consider for example a bimodal distribution; the transformation will

look qualitatively different depending on which of the two peaks is dominating). To com-

bat this, a method called histogram normalization was developed by Nyúl and Udupa in

1999 and 2000109,110, and various alternatives have been suggested since, especially for brain

scans.

The implementation and significance of image normalization vary between the differ-

ent body regions. In lung imaging, where CT images are the primary source of informa-

tion, normalization is typically not a significant concern since CT image distributions are

much more consistent. In the brain, specific methods have been developed that exploit the

smoothness of different types of tissue (it is very easy to tell apart white matter, grey matter,

and spinal fluid, for instance), such as g-scale and gb-scale normalization98. For the prostate,

on the other hand, normalization has been somewhat disregarded, as is evident from ob-

serving the differences within the literature (see e.g. Schwier 2019123 or Isaksson 202068).

At present, it is not well known what normalization methods work well or if the methods

developed for brain MRI can be successfully applied to the prostate.

In this chapter, we will investigate how normalization affects the intensity distributions

and the calculations of radiomic features, and discuss how this might affect downstream

analyses. To do this, we will compare four different normalization techniques:
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1. Method I: histogram normalization

2. Method II: g-scale normalization

3. Method III: gb-scale normalization

4. Method IV: and a custom normalization technique based on using healthy prostate

tissue as a reference.

The work presented in this chapter is largely based on Isaksson 202068.

3.2 Methods

3.2.1 Histogram normalization

The idea of the histogram normalization method is to match quantile landmarks of the

intensity histograms with each other via a nonlinear transformation. As a result, the qth

quantile of every image will coincide on the same intensity value (for a specific selection of

q-values). The algorithm can be divided into four consecutive steps:

1. Optional: identify the foreground pixels in the image, e.g. by considering all pixels

whose intensity is higher than the mean value. The purpose of this step is to isolate

pixels corresponding to tissue. The mean heuristic works well because pixels in the

background (e.g. air outside the patient) have intensities very close to zero.

2. Define a set of landmark quantile pointsQ and a standard scale. The standard scale

will determine the intensity range onto which all intensities will be mapped, and the

quantiles inQwill determine what quantile values the mapping will use. Let ik be

the intensity value corresponding to qk for every qk ∈ Q in a given image.
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3. Create a benchmark histogram:

• Let p1 and p2 be the intensity values of a given pair of lower and upper per-

centiles of the image intensities and let s1 and s2 be the minimum and maxi-

mum intensities on the standard scale.

• In this process, every intensity xwithin the interval [p1, p2] is linearly mapped

onto x′ ∈ [s1, s2]. The functional form of this first mapping is

x′ = s1 +
x− p1
p2 − p1

(s2 − s1). (3.1)

• In the resulting image, calculate the new intensity values ik of all landmark

points qk ∈ Q

• Define i′k as the mean of all ik-values across images after the transformation.

• Define the benchmark histogram asH = [s1, i′1, ..., i′n, s2]

4. In the normalization process, the intensity values of each image are mapped onto

the standard scale by utilizing n separate linear maps—one between each interval in

H. For a single landmark point, there are two mappings: one from x ∈ [p1, i1] to

x′ ∈ [s1, i′1] and one from x ∈ (i1, p2] to x′ ∈ (i′1, s2]. The explicit mapping is

x′ =

 i′k +
s1−i′k
p1k−ik

(x− ik), if x ≤ ik

i′k +
s2−i′k
p2k−ik

(x− ik), if ik < x
(3.2)

The function is illustrated in Figure 3.1.
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Figure 3.1: Illustration of the piece‐wise linear mapping used in the different normalization methods. The landmark
intensities (qi) for the different images on the original image scale are all mapped to the same value, q′i , on the standard
scale. Different linear functions map the intensities less than the landmark value and greater than the landmark value
(see (3.2)).

This map ensures that the different quantile landmarks qk ∈ Q are mapped onto the

same value (i′k) in the standard scale regardless of the initial value (ik). Furthermore, the

ranks are preserved since the function is monotonic. The result is new images in which the

variation of intensities of the different tissue types are reduced across patients43 (see Fig-

ure 3.2). Since every qk-quantile in the different images corresponds to the same intensity

after the transformation, it is generally of interest to have these correspond to something

physically meaningful, like a specific tissue type.

Even though it is possible to use many q-values to match multiple landmark intensities,

the current standard, and what we will do in this study, is to only use one point with the

median as the landmark. As for the other parameters, p1 and p2 are normally set to the 2nd

and 98th intensity percentiles to screen off outlier values, but the choice should take the

character of the images in mind. In our experiments, where the majority of intensities are

very close to zero, we chose the 0th and 99th percentiles.
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Figure 3.2: Demonstration of the change in variability between images of the pelvis region prior to normalization (top)
and the same images post normalization (bottom) clearly showing the better intensity agreement in the latter. Intensities
in the upper right image have been artificially altered in order to increase variability.

The benchmark histogram is simply a set of values that are used as landmark points in

the transformation. In principle, one could choose an arbitrary set of increasing values

without having to go through a cumbersome selection procedure. When the algorithm

was proposed, the image standards used solely integers, in which case one had to be careful

not to let the transformation truncate values such that information is lost. However, this

problem is largely solved with modern floating point precision.

3.2.2 Generalized scale & generalized ball-scale normalization

Generalized scale (g-scale)98,97 and generalized ball-scale (gb-scale)98,97 normalization are

two normalization methods developed for brain MRI normalization. They both use the

same piece-wise linear transformation as histogram normalization but they differ in the

way the landmark points are chosen. The basic idea is to choose the points such that they

more frequently correspond to the modes of different tissues, e.g. the mean of gray matter

or white matter distributions. The methods are based on concepts in scale-space theory and
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fuzzy connectedness, which sprang out of the areas of computer vision and signal theory

due to the fact that important information is present at different scales in real-world sys-

tems. By incorporating such methods, the models can become semi-locally adaptive, which

has certain advantages over both local and global scale formulations individually.

The g-scale method partitions an image into different regions based on the degree of

“hanging-togetherness”, which is to say regions that are locally homogeneous. The g-scale

at any voxel p in an image I is defined as the largest fuzzily connected subset of I contain-

ing p, such that all voxels in the g-scale satisfy a predetermined homogeneity criterion. The

criterion can be thought of as a threshold hyperparameter that controls the inclusiveness

of pixels—a lower threshold means that pixels are more likely to be included in the sub-

set, which leads to fewer regions globally. The result after applying this calculation to the

whole image is a new array defining the fuzzily connected regions in the image. The actual

transformation is done by (3.2) after letting q be the mean intensity within the largest g-

scale region.

The gb-scale differs from the g-scale method in the way the image is partitioned into re-

gions. Instead of using the original image, the gb-scale method uses the so-called ball-scale

(b-scale) scene when determining the connectivity. This b-scale scene is an image where

each voxel value is determined by its b-scale value, which is defined as the radius of the

largest ball, centered at the voxel, that contains only similar voxels (for some predefined sim-

ilarity condition). The gb-scale at any voxel p in an image I is then defined as the largest con-

nected subset of I containing p such that the b-scale of voxels within the gb-scale is greater

than a predetermined threshold value. Thus, the difference between the gb- and g-scale

methods is that the gb-scale uses a homogeneity criterion on the b-scale scene of a given
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image, whereas the g-scale uses a homogeneity criterion based on fuzzily connected areas

calculated directly on the original image. The transformation is again done by (3.2), but the

q value is set to the mean intensity within the largest gb-scale region. One of the advantages

of the gb-scale method over g-scale was shown to be increased resistance to noise artifacts in

the images.

3.2.3 Prostate-specific normalization

The prostate-specific normalization method relies on matching the intensities within the

prostate region itself rather than finding landmarks within the foreground image (as in

method I) or the largest connected sub-region (as in methods II and III). The method uses

the median intensity within healthy prostate tissue as the landmark point q. However, this

requires segmentation maps of the prostate, the lesions, and preferably also the urethra.

The rationale for this approach is to ensure that the landmark points of different patients

correspond to healthy prostate tissue for all patients. Thus, the healthy prostate intensity

distributions should co-align post normalization, and, as such, intensity deviations from

the healthy prostate tissue, which is typical for cancerous lesions, ought to be more consis-

tently identified.

3.2.4 Dataset

The experiments in this chapter were conducted on axial T2-w pre-radiotherapyMRI scans

of 49 patients with low- to intermediate-risk organ-confined prostate cancer in a phase II

prospective, single-arm, single-center clinical trial. A summary of the patient characteris-

tics is presented in Table 3.1. All images were acquired using a 1.5 T scanner (AvantoFit,
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Table 3.1: Summary of prostate cancer characteristics for the study cohort.

Characteristic Number of patients
PSA 6.47 (3.07)*
T-stage cT1 7 (14%)

cT2 42 (86%)
Gleason Score 3+3 26 (53%)

3+4 17 (35%)
4+3 6 (12%)

EPE score 1 3 (6%)
2 12 (24%)
3 15 (31%)
4 19 (39%)

PI-RADS score 2 1 (2%)
3 4 (8%)
4 27 (55%)
5 17 (35%)

Risk class High 8 (16%)
Low 41 (84%)

*Mean (standard deviation)

Siemens Healthineers) with a slice thickness of 3 mm, pixel spacing 0.59×0.59 mm, echo

time 118 ms, and repetition time 3780 ms. The prostate, urethra, and dominant intrapro-

static lesion (DIL) were identified and manually contoured on each image slice by one of

three radiologists with 4 to 8 years of experience.

3.2.5 Evaluation criteria

The four different normalization methods were applied to the 49 3D images, resulting in

five different image sets including the raw images. To evaluate the methods, we analyzed

the resulting images based on their intensity distributions and the corresponding radiomic
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features.

Intensity-based evaluation

To quantify the similarity within tissue types across images we used two measures: the stan-

dard deviation of the normalized mean intensity (NMI), a quantity that has been used in

image normalization comparisons previously109, and the coefficient of variation (cv) among

all healthy and cancerous voxel intensities. The NMI for a patient p and tissue type t (here

either healthy or cancerous prostate tissue) is defined on the MRI volume as

NMIp,t =
μp,t

s2,p − s1,p
(3.3)

where μ is the mean intensity, and s1 and s2 are the 2nd and 98th percentile intensity values.

The coefficient of variation is defined over the collection of all intensity values for a specific

tissue type t among all patients by cvt = σt/μt where σ and μ are the standard deviation and

the mean, respectively.

We also compared the difference between distributions of healthy and cancerous tissue.

It is reasonable to suspect that downstream analyses like radiomics calculations, segmenta-

tion models, or computer vision models would benefit from a greater separation between

healthy and cancerous tissue since they all operate directly on the intensities. This separa-

tion was quantified in three ways: the normalized difference of means (NDM) between

healthy and cancerous intensities, the Jeffreys’ divergence (J-divergence; not to be confused

with the Jensen-Shannon or JS-divergence), and theWilcoxon signed rank test of the differ-

ences between the pre- and post-normalization distances.

If we let I i
h be the multiset of all healthy intensity values and I i

c be the multiset of all
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cancerous intensity values for a patient i, then the mean NDM can be calculated as

⟨NDM⟩ = 1
N

N∑
i

|⟨I i
h⟩ − ⟨I i

c⟩|
⟨I i

h ⊎ I i
c⟩

(3.4)

The J-divergence between the healthy and cancerous tissue distributions were computed

over all MRI volumes considered together (similar to Shah 2011125). It is defined for two

probability distributions p and q by the sum of their relative entropy (also termed Kullback-

Lieber divergence) to each other:

J(p, q) =
∞∫

−∞

p(x) log
p(x)
q(x)

dx+
∞∫

−∞

q(x) log
q(x)
p(x)

dx. (3.5)

In contrast to the relative entropy, this measure is symmetric, which makes it suitable as a

distance metric.

Radiomic-based evaluation

The extraction of radiomic features was performed on the whole prostate region (excluding

the urethra) using the IBEX157 software with parameters optimized for the data set*. All

available features were calculated for every image volume, resulting in 1702 features for each

patient. Any feature with identical values to one already included was removed from the

feature set, leaving 1058 features for the analysis.

*The following parameters were modified: Neighbour Intensity Difference 2.5: RangeMax=8000,
Nbins=100. Intensity Histogram Gauss Fit: RangeMin=1, RangeMax=60000, RangeFix=1. Intensity His-
togram: RangeFix=0, Nbins=100. Intensity Direct: ThresholdHigh=8000. Gray Level Run LengthMatrix
2.5: GrayLimits=[], NumLevels=100. Gray Level Cooccurence Matrix 2.5: GrayLimits=[], NumLevels=100.
Gray Level Cooccurrence Matrix 3: GrayLimits=[], NumLevels=100. Empty brackets (”[]”) indicate the
input to be left empty.

103



To investigate how feature behaviour depends on normalization, the concordance corre-

lation coefficient (CCC) between the pre-norm and post-norm values for each feature was

analyzed. The CCC between two sets x and ymeasures their agreement and is often seen as

a measure of reproducibility. It is defined as

CCC =
2sxy

σ2x + σ2y + (μx − μy)2
(3.6)

for standard deviations σ, means μ and covariance sxy. The features were assumed to be un-

changed if their CCCwas above an absolute threshold of 0.8, indicating a very strong cor-

relation4.

3.3 Results

3.3.1 Qualitative assessment

Intensity histograms of the different normalization methods are shown in Figure 3.3. Each

row represents a different normalization technique, with unnormalized images at the top,

and columns corresponding to histograms for the whole image, healthy prostate tissue,

and cancer tissue, respectively. Normalization methods I and III are almost identical due to

very similar landmark values. Overall, normalization methods I and III appear to co-align

histogram peaks very well, whereas normalization methods II and IV instead tend to have

a larger variability at higher intensity values (as seen in the histograms of the full images).

Normalization method II seems to worsen the alignment altogether.

Apart from normalization method II, the healthy tissue looks similarly distributed be-

tween the methods, with slightly more co-aligned peaks after normalization. Cancerous
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Figure 3.3: Intensity histograms of the full images, healthy prostate tissue, and cancerous tissue from different normal‐
ization methods. The top row shows unnormalized images, and the following rows show normalization methods I to
IV, respectively. Vertical blue lines in the left column indicate the histogram landmark point (q). Intensities have been
grouped into 32 bins to smooth out the histograms. The vertical axes in the last two columns have been scaled to favor
visual comparison between columns.
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tissue intensity distributions are also very similar across different methods (excluding nor-

malization method II), but with much higher variation within methods as compared to

healthy tissue. Apart from normalization method II, it is hard to notice any difference at all

for cancerous tissue across methods.

In order to more readily visualize the difference in intensity distributions between healthy

and cancerous prostate tissue, Figure 3.4 shows the mean histogram of the collection of his-

tograms in the second and third columns of Figures 3.3. In this ensemble view, there is only

a minor skew between the healthy and cancerous intensities, and the difference is somewhat

larger prior to normalization.

3.3.2 Intensity-based evaluation

The results for both the standard deviation of the NMI and the coefficient of variation

from inter-tissue analysis (Table 3.2) follow the same pattern: prostate-specific normaliza-

tion (method IV) has the most consistent (the least varying) intensities for both healthy and

cancerous tissue, followed by normalization methods I and III which gave identical results.

Method II performed worse than no normalization at all.

In the comparison of the distance between healthy and cancerous tissue intensity dis-

tributions (Table 3.3), prostate-specific normalization (method IV) produced the largest

separation between healthy and cancerous tissue intensity populations, both in terms of

mean NDM and J-divergence. Normalization methods I and III, on the other hand, more

consistently produced an increased separation post normalization, as evident by the lower

p-value (36 out of the 49 normalized images had an increased difference after normalization

in method I and III, as opposed to 31 images in method IV). g-scale normalization (method
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Figure 3.4: Mean histograms of patients’ healthy and cancerous prostate tissue constructed from the collection of
histograms shown in the second and third column of Figure 3.3. Transparent bands indicate the 95% confidence interval
of the mean. (a) Unnormalized images (b) method I: Histogram normalized images (c) method II: g‐scale normalized
images (d) method III: gb‐scale normalization (e) method IV: prostate normalization.
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Table 3.2: Intensity variation within healthy and cancerous tissue, measured by the coefficient of variation (cv) and
standard deviation of the normalized mean intensity (NMI). A low variation indicates good agreement of intensity values
for the specific tissue. Parentheses represent rank (lower is better).

cv SD(NMI)
Healthy Cancer Healthy Cancer

Unnormalized 0.528 (4) 0.522 (4) 0.068 (4) 0.092 (4)
Method I 0.518 (2) 0.489 (2) 0.057 (2) 0.086 (2)
Method II 0.557 (5) 0.493 (5) 0.094 (5) 0.101 (5)
Method III 0.518 (2) 0.489 (2) 0.057 (2) 0.086 (2)
Method IV 0.510 (1) 0.464 (1) 0.032 (1) 0.078 (1)

Table 3.3: Metrics of separation between healthy and cancerous tissue intensity distributions, measured by the mean
normalized difference of means (NDM), and the J‐divergence. Large values indicate good separation of cancerous and
healthy tissue intensities. The p‐value of the Wilcoxon signed rank test indicates the significance of the NDM change
between unnormalized and normalized images.

Mean NDM Wilcoxon signed rank J-Divergence
test (p-value) (×1010)

Unnormalized 0.1998 705
Method I 0.2004 0.0027 1125
Method II 0.1835 0.0001 1165
Method III 0.2004 0.0027 1125
Method IV 0.2061 0.0518 2206

II) increased the similarity of tissues in terms of mean NDM, which in turn means that

its low p-value is largely irrelevant since the interest lies in decreasing the similarity. After

method IV, method II produced the greatest J-divergence, followed by methods I and III.

3.3.3 Radiomic-based evaluation

Figure 3.5 illustrates the CCC between features pre- and post-normalization. In general,

features are less impacted by the histogram and gb-scale normalizations. The number of
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Table 3.4: Numbers of unchanged features (CCC≥0.8) in different feature categories for the different normalization
methods. Percentages indicate the fraction of unchanged features within each category. GOH: gradient order his‐
togram, GLCM25/GLCM3: gray‐level run‐length matrix in 2.5/3 dimensions. Left‐out categories (GLRLM25, ID, IH,
IGGF, NID25, and NID3) had no unchanged features.

GOH Shape GLCM25 GLCM3 Total
Method I 39 (89%) 17 (94%) 24 (8%) 57 (10%) 137 (13%)
Method II 23 (52%) 17 (94%) 21 (7%) 44 (8%) 105 (10%)
Method III 39 (89%) 17 (94%) 24 (8%) 56 (10%) 136 (13%)
Method IV 38 (86%) 17 (94%) 21 (7%) 53 (9%) 129 (12%)

unchanged features (above 0.8 CCC) in the different methods are presented in Table 3.4.

Eighty-nine (89) features had a CCC very close to zero, which occurs if either variable has a

very small variance or if the linear correlation between them is close to zero. These features

were primarily in the IntensityDirect (44 features) and IntensityHistogram (17 features)

categories. The features in the Shape category are mostly unaffected since they measure

shape parameters (e.g. the radius of the ROI).

3.4 Discussion

Our results support the claim that image normalization is as important for prostate MRI

as it is for brain MRI, as demonstrated by the significant changes in intensity distributions

as well as the vast majority of radiomic features. In contrast to most other normalization-

oriented studies, we have focused on a single homogeneous data set acquired within a single

institution, which is more akin to the working situation in clinical practice. The results

demonstrate that image normalization is no less important in these cases.

The method that most often resulted in smaller coefficients of variation and standard

deviation of values within tissues (taken to be desirable in terms of indicating higher intra-
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Figure 3.5: Concordance correlation coefficients between radiomic features from unnormalized images and images
normalized by methods I, II, III, and IV. A single marker represents the concordance correlation of a single feature (each
feature has 49 different values—one for each patient). Marker symbol and color represent different groups of features
according to the legend, with the following abbreviations (in order): gradient orient histogram, gray level cooccurrence
matrix (2.5 and 3 dimensions), gray level run length matrix (2.5 dimensions), intensity direct, intensity histogram, inten‐
sity histogram Gauss fit, neighbor intensity difference (2.5 and 3 dimensions). This figure visualizes the huge changes in
feature values caused by normalization as well as the similarity between methods I and III.
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tissue similarity) was that of prostate normalization (method IV), which normalizes im-

ages according to pixel intensities within healthy prostate tissue. This method was followed

by a tie between histogram normalization (method I) and gb-scale normalization (method

III). While method IV also provided the greatest overall separation between distributions

of healthy and unhealthy prostate tissues, methods I and III resulted in more individual

subjects showing a statistically significant increase in the difference between healthy and

unhealthy prostate tissue intensity distributions. A significant reduction in the separation

of the distributions was found for method II, which would make the distinction between

healthy and cancerous prostate tissue harder.

Methods I and III had arguably the best performance by the measure of feature robust-

ness (assuming fewer drastic changes are to be preferred), although the differences between

the top three methods are minor (137, 136, and 129 unchanged features, respectively). It

should be noted, however, that comparing how features change is not intrinsically con-

clusive; it may be more appropriate to analyze the performance of the radiomic prediction

models in which they are to be included. But based on the fact that a purely random image

transformation would have very few features that are concordant, this analysis can still be

useful.

Normalization method II (g-scale normalization) had the worst performance of the

methods and was even worse than unnormalized images both in terms of tissue consistency

and healthy/cancerous tissue separation. This is most likely a consequence of the low inten-

sity of the landmark point within the largest g-scale region (after inspection, we found that

the region often corresponded to locally homogeneous regions of dark muscle mass). It

should be noted that this method is highly parameter-dependent and that other parameters
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may be able to produce results in line with the other methods. Our results for this method

make it clear that caution should be exercised when performing normalization, and that

blindly applying normalization algorithms without concern for their consequences and

applications may severely alter, and even invalidate one’s results or conclusions.

The large changes in the radiomic feature values due to normalization make it clear that

normalization alone is not sufficient to prevent the reproducibility and variability problems

within radiomics. To properly compare studies, one would most likely have to implement

normalization with the exact same method and landmark points in addition to having a

similar data set.

One of the problems with normalizing images from cancer patients is that the pathology

may influence the results. Lots of cancerous tissue may skew the intensity distribution, es-

pecially if it is not isolated from the healthy tissue (as was done in method IV here). More-

over, prostate cancer is often multifocal, meaning that there can be cancerous tissue even

outside of the dominant lesion, and there is often non-cancerous disease or inflammation

in surrounding areas. Therefore, what we consider healthy prostate tissue might include

some abnormalities, and, as a consequence, the similarity seen between healthy and cancer-

ous tissue could be deceptively small. In the current clinical workflow, there is no solution

to this issue since it would require results from prostatectomy specimens, which are not

usually collected.

A possible improvement to the normalization algorithms is to use multiple landmark

points, as was done in a follow-up study of the histogram normalization110. However, the

authors concluded that the performance is not significantly improved with more land-

marks, which has likely contributed to the popularity of the simpler one-point approach.
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Since the landmark points by construction match the intensity values of the quantiles, it

is likely that more landmarks would increase the overall similarity of the images. However,

it is not universally true that higher similarity is to be preferred. As noted earlier, it may be

more appropriate to analyze the performance of the radiomic prediction models in which

the images are included.

The foreground identification step in the histogrammethod (step one of the algorithm

as described above, which we labeled optional) was not thoroughly discussed in the original

publications. The original purpose of this step was to find the intensity of the first non-

background mode of the histograms, which by assumption corresponds to pixels of inter-

est. In effect, this increases the intensity values of the landmark points because it excludes

low-intensity background pixels. The procedure performs well on brain MRIs where rele-

vant tissues are dominated by hyperintense structures, but it may be less appropriate for the

prostate, where the tissue of interest is dominated by values fairly close to the mean value of

the full image (see the last row of Figure 3.3). Therefore, it may be more suitable to not use

foreground identification when analyzing pictures of the prostate and similar structures.

Image noise is a critical factor that may influence the outcome of normalization. Spa-

tially uniform Gaussian noise does not impact the quantile values, which leaves the his-

togram and prostate-specific method largely unaffected. For the Rician distribution of

noise in MRI images49, the effect depends on the parameters, but it is likely that normal

noise levels do not severely alter the outcome. For the g-scale and gb-scale algorithms, the

connectivity of the pixels can be impacted, but their authors concluded that the effects

were manageable98. The images analyzed in this study are likely representative of typical

noise levels that would be encountered in standard clinical settings. As for the effect of
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noise on the radiomic features themselves, we refer to studies addressing this issue sepa-

rately, such as Lafata 201786 or Pfaehler 2019113.

While the size of the patient cohort in this study is not comprehensive, we believe that it

is adequate to provide a good understanding of how the normalization methods behave for

typical clinical images. Indeed, cohorts of other prostate cancer radiomic studies typically

include similar numbers (e.g. 331, 54148, 6458, etc.), and have even gone as low as 23106.

On the other hand, increasing the normative cohort size of prostate cancer radiomic studies

should be a legitimate concern for future research in the field.
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4
Computer-aided prostate cancer assessment

4.1 Background

Prediction models for tabular data are a staple in machine learning research since consid-

erable amounts of real-world data are collected in the form of spreadsheets, from financial

movements in the stock market to the time and space variations of the weather. In medi-

cal research, traditional algorithms such as logistic regression or support vector machines
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are often preferred when building prediction models, in part because they naturally inte-

grate with statistical inference such as the likelihood ratio test. When performance is a more

pressing concern, as is the case when the goal is the actual deployment of a model, mod-

ern algorithms tend to be superior. One of the most popular types of models is gradient-

boosted decision trees (GBDTs), which use the gradient-boosting technique to iteratively

build an ensemble of decision trees (analogous to a gradient descent algorithm). A great

deal of research has also been devoted to developing DLmodels that can compete with GB-

DTs; some noteworthy efforts being TabNet7, NODE116, DNF-Net2, SNN82, GrowNet8,

DCNV2149, and AutoInt133. However, when evaluated on a wide range of different tasks,

many of these models have been shown to offer little to no improvement over simpler

baselines such as 1D convolutional neural networks (CNNs) or multilayer perceptrons

(MLPs)47,129,77,132,83. The question remains as to whether modern DLmodels have the po-

tential to compete with GBDTs in radiomics, where the datasets are characterized by few

samples, many variables, and a mix of categorical, ordinal, and continuous data.

In radiomics, a recurring problem is that it is difficult to predict a priori which features

will be useful for specific tasks. Moreover, many are known to be non-robust or irrepro-

ducible160,141,9,154,39. Therefore, a radiomic model or pipeline must identify the features to

use and those to ignore, which is a challenging task given the number of features involved.

Many modern prediction models have inherent attention mechanisms that allow them to

focus attention on useful features, for instance by weighting the inputs differently, but

these mechanisms can be hard to train when the input dimension is large. As a result, it is

customary to reduce the features further, e.g. by using a clustering method. A prediction

pipeline’s ability to focus on important features is directly reflected in its performance since
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non-relevant features usually make predictions worse. At present, it is not known how dif-

ferent models and feature selection strategies compare when it comes to finding and uti-

lizing the information from important radiomic features and simultaneously ignoring the

noise from useless features.

In clinical prostate oncology, it is recommended practice to characterize the tumor via

bothMR-image-related parameters (such as prostate volume, number of dominant lesions,

PI-RADS score, EPE value, and ADC value) and biopsy-related parameters (such as initial

PSA, ISUP grade group, tumor stage, lymph node status, and risk class) in order to select

an appropriate treatment and follow-up schedule. Surgery by radical prostatectomy (re-

moval of the prostate) and radiotherapy are the two most common treatments for localized

prostate cancer and have comparable oncological outcomes. In the latter case, the patholog-

ical assessment of the surgical specimen is unavailable, making accurate evaluation harder

for the clinicians, leading to an increased risk for over- or undertreatment. Thus, the infor-

mation from the imaging and biopsy can constitute an invaluable asset to the pre-treatment

evaluation of the patient. In this scenario, accurate non-invasive prediction of pathologi-

cal determinants of prostate cancer at the initial diagnosis or before surgery could improve

decision-making and patient prognosis, but so far this has not been studied. In this chapter,

we focus on predicting multiple endpoints from prostate cancer pathology which all hold

critical clinical value.

In most cases, radiomics studies have focused on deriving features from the dominant

cancerous lesion, but some studies have suggested that whole-prostate radiomics also can be

applied with some success36,45,151,50. This has the potential to circumvent the need for the

tedious and highly observer-dependent process of lesion segmentation, leading to reduced
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costs and time requirements. Moreover, this incorporates information from non-dominant

and heterogeneous lesions and other relevant conditions such as infections and benign le-

sions. At present, however, this approach needs to be further evaluated, particularly with

larger datasets, before it can be considered viable.

When developing radiomic models, an often overlooked aspect is the involvement of the

different features. Various features’ influence can act as both an interpretation tool and a

quality or security check. If researchers are not vigilant, results that appear to be a conse-

quence of radiomic features may in fact be a consequence of small implementation changes

or simply random variations, which can lead to dubious conclusions. Conversely, if we

observe a model relying on the same variables as clinicians for a well-known condition, it

incites trust and provides a sense of reliability that may be critical for its clinical integration.

In this context, clinicians might disregard the prediction of an algorithm when they notice

that it uses information from irrelevant sources, or update their own beliefs when they no-

tice that the algorithm took into account something they missed. Therefore, an analysis of

the different features’ impact should be carried out whenever possible.

In this chapter, we address the issue of building MLmodels with radiomics for the pre-

diction of pathological prostate cancer endpoints. It will be divided into two parts aiming

to approach the problem from two distinct viewpoints: one technical part, honing in on

the specifics of the implementation and the performance of the models, and one clinical

part, focusing on the clinical utility and the concrete behavior and tendencies of the mod-

els. The specifics of the two parts can be summarized as follows:

1. Building & comparing clinical prediction models: in this section, we focus on

constructing the best-performing models. To do this, we compare the performance
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of four commonMLmodels for tabular data, including both GBDT and variants of

different successful DLmodels. We evaluate the models in predicting nine different

pathology endpoints of clinical value in prostate cancer care. To combat the problem

of overfitting and overoptimistic estimates, we employ rigorous training, validation,

and test procedures in all experiments.

2. Evaluating predictions and model behavior: in this section, we further explore

the best-performing model. We will analyze the role of radiomics in relation to the

clinical and radiological information, what variables the model relies on, and how

the model behaves for specific sub-groups within the cohort such as low- vs. high-

risk patients. This type of analysis will be crucial for the clinical integration of ML

models because it provides a perspective on how the model behaves and makes deci-

sions. This can give users and clinics a sense of when using the model is appropriate

or inappropriate.

This chapter presents material that is currently under peer review in multiple undisclosed

scientific journals.

4.2 Dataset

Acquisition

The patient data used in this chapter were retrospectively collected from an unprecedent-

edly large cohort of 949 prostate cancer patients who had undergone multiparametric

prostate MRI and prostatectomy in the European Institute of Oncology (IEO) between

2015 and 2018. For each patient, we used the T2-weightedMRI sequences and all relevant
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clinical variables.

TheMRI images were acquired using 1.5 TMR scanners with slice thickness 3.0-3.6

mm, slice gap 0.3 mm, pixel spacing 0.59×0.59 mm, echo time 118 ms, and repetition time

3780 ms.

Each image was corrected with the N4 bias-field correction algorithm (implemented in

sITK 2.1.1 using default parameters), and the image intensities were subsequently normal-

ized with an outlier-aware range normalization that linearly maps the 0th and 99th per-

centile values of every image to a predefined range (in this case between 0 and 424). Every

unique value in the 100th percentile was appended after 424 using a 1:1 linear map (the

first unique value was mapped to 424+1, the second to 424+2, etc.)

The clinical variables included age, initial PSA, and comorbidity as well as MRI-related

data such as prostate volume, number of dominant lesions, PI-RADSv2 score, extrapro-

static extension score, and ADC (apparent diffusion coefficient). The following tumor-

related variables were also obtained: initial ISUP grade group, clinical tumor stage (T),

clinical lymph node status (N), and NCCN2019 risk class. For prediction, we included

six outcome variables related to the pathological assessment of the patients: post-operative

ISUP grade group, pathological T, pathological N, surgical margin, biochemical progres-

sion, and clinical progression. An overview of the clinical characteristics within the cohort

is presented in Table B.1.

Image segmentation

The prostate in each image was segmented with the best-performing DLmodel (the adapted

EfficientDet3D) from Section 2.4. To maximize its inference performance, the model was
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retained on the full dataset for roughly 1600 epochs (about twice as long as the convergence

point). The training was performed twice with different random seeds, and the final seg-

mentation masks were established by taking the average of both outputs.

In order to ascertain an acceptable standard for the automatically generated contours, a

subset of the segmentations was selected and sent for correction by an expert radiologist.

Segmentations were included in this subset if at least one of the following two criteria was

met: 1) the segmentation had an estimated Dice coefficient of 0.8 or lower, and 2) the vol-

ume of the segmentation was in the upper or lower two percentiles. The Dice coefficient

was estimated by the QAmodel developed in Section 2.5, but calculated as the average of

all five models from the different validation folds. In total, 98 segmentations were selected.

Radiomic feature extraction and pruning

Radiomic features were extracted from the whole prostate using PyRadiomics143 3.0 in

Python 3.7. All available features were extracted from all available filter classes (Laplacian

of Gaussian, wavelet, square, square root, logarithm, exponential, gradient, local binary

pattern 2D, and local binary pattern 3D). For the Laplacian of Gaussian filter, we calculated

features for three different values of sigma corresponding to 1, 2, and 5 times the in-plane

spacing (0.59375 mm). No image resampling was performed since all the images had nearly

identical resolution and spacing. In total, 1967 features were extracted.

Features were removed if their variance was lower than 1−6 or if they had an absolute

Spearman correlation above 0.98 with any other feature. In the latter case, the feature with

the lowest cumulative correlation with other features was kept. After these steps, 737 fea-

tures remained.
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Data preprocessing

The clinical variables were ordinally encoded as follows:

• Clinical and pathological T: stages were encoded by their integer value such that

both T3a and T3b were encoded as 3, and T2a and T2b as 2, etc.

• Clinical and pathological N: stages were encoded by their integer value (N1→1,

N0→0).

• Risk class: “low” and “very low” was encoded as 0, “intermediate favorable” and

“favorable” as 1, “intermediate unfavorable” and “unfavorable” as 2, and “high” or

“very high” as 3.

• Clinical progression: absence of progression was encoded as 0, and any type of pro-

gression (pelvic, extrapelvic, or both) was encoded as 1.

To adapt the data for the DLmodels, all input variables were normalized with a quan-

tile transformer (with the number of quantiles set to the number of training samples), and

missing values were imputed with a k-nearest neighbors imputer with k = 8 and distance-

based weights (see Appendix B.2.1 for a deeper analysis on the imputation and its param-

eters). Quantile transformers, which have been used with great success in previous stud-

ies47,46, circumvent some of the limitations of other commonmethods such as z-norm and

min-max scaling by being robust to both outliers and scale variabilities124. Neither imputa-

tion nor quantile transformation is needed for GBDTmodels since they inherently handle

missing values* and the tree-growing algorithm uses cutoff values that are scale indepen-

*In the GBDT library that was used in this study (CatBoost), they are considered smaller than the smallest
real-valued entry, effectively making them a separate category.
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dent.

The full list of all target variables is given in Section 4.3.1. Prior to training the mod-

els, we binarized the non-binary target variables (post-operation ISUP grade, pathological

T, and the delta variables), allowing us to readily compare the performance of all different

targets with the same scale and metrics. We also observed that this achieved better classifica-

tion performance than binarizing the predictions after training the models with regression.

This can be done without much loss of clinical utility since many of the decisions within

the clinical workflow surrounding these parameters are largely made based on threshold

values.

4.3 Building & comparing clinical prediction models

In this section, we compare four common high-performance MLmodels and learning tech-

niques: gradient-boosted decision trees (GBDTs), a multilayer perceptron (MLP), a one-

dimensional convolutional neural network (1DCNN), and a transformer model with a

feature tokenizer (FT-Transformer)47 specialized for tabular data. In addition, we examine

the benefits of multitask learning, which involves training a model to predict several tar-

gets simultaneously, potentially leading to improvements in both speed and performance.

These methods, albeit common in areas outside of healthcare research, have not previously

been evaluated in a radiomics context.

4.3.1 Experiments

To compare the different models, we train them to predict six different pathological end-

points of clinical interest:
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1. Post-operation ISUP grade group

2. Pathological tumor stage (T)

3. Pathological lymph node status (N)

4. Surgical margin

5. Biochemical progression

6. Clinical progression

as well as three additional (“delta”) target variables based on whether or not there was a

positive change between the clinical and pathological assessment of the ISUP, T, and N

endpoints:

7. ΔISUP

8. ΔT

9. ΔN

Details of the models and their training routines are given below.

The models were compared in terms of their overall test performance in a nested five-fold

cross-validation routine (see Section 4.3.3 for details). The performance was measured in

terms of three different classification metrics: Matthews correlation coefficient (MCC),

AUC, and accuracy.
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4.3.2 Models

CatBoost

CatBoost117 is a free open-source library for GBDTmodels and an alternative to the simi-

lar libraries XGBoost19 and LightGBM78. GBDTmodels have been incredibly successful

in tabular data analysis applications, in large part due to their high discriminative power

yet simple structure and high speed. Unlike traditional methods, they can model arbitrary-

dimensional decision bounds and unlike DLmodels, they grow their architecture itera-

tively, meaning that they are less sensitive to an initial choice of model structure/architecture.

This allows users to perform hyperparameter searches without concern for the underlying

network topology, which is typically not possible for advanced DLmodels. Instead, train-

ing GBDTmodels requires specifying only the number of decision trees used in the ensem-

ble, their maximum depth (or the number of leaves), and the learning rate along with other

parameters for regularization (e.g. L1/L2 regularization, subsampling, class weights, etc.).

MLP

TheMLPmodel is one of the earliest and most straightforward DL architectures. It con-

sists of layers of interconnected nodes, where each node in one layer is connected to every

node in its preceding layer (it is “fully connected”). Despite their age and relative simplic-

ity, they have been shown to perform well on tabular data if trained properly77,46,83. They

are often faster and use fewer hyperparameters than their alternatives, which makes them

attractive candidates for search-based optimization pipelines. Apart from regularization

parameters, MLPs can be parameterized by just the number of layers and the number of
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Figure 4.1: The architecture of the FT‐Transformer. An input x is passed through a feature tokenizer and converted into
embeddings T. Multiple transformer layers (T0, ..., TL) are connected in sequence after which the CLS token is used
for prediction. Image source: Gorishniy 2021 47.

neurons within each layer. Our implementation used two layers (we found that more layers

did not improve the performance but increased the training time) and a swish activation

function followed by batch norm and dropout.

FT-Transformer

The FT-Transformer47 was recently proposed as a transformer architecture specifically tai-

lored for tabular data. The use of transformers in this scenario is not commonplace, but

the research direction is attractive given the success of transformers in natural language pro-

cessing146 and more recently computer vision35. The model consists of a feature tokenizer

module and several consecutive transformer layers (Figure 4.1), where the former converts

the input variables (both categorical and numeric) into embeddings, and the latter per-

forms the recurrent self-attention that is characteristic of the transformer. The final layer

performs prediction with the CLS (“classification”) token, which is designed to contain

information about the sentiment of the whole input sequence (as opposed to information

about individual elements in the sequence).
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Figure 4.2: The architecture of the 1DCNN model. An initial dense layer maps the input feature vector into a larger
vector more suited for convolutional operations. Standard convolutional and pooling operations are connected, and a
normal dense layer performs the final prediction. The numbers represent the dimension at each step (nchannels@ndepth).

1DCNN

Convolutional archetypes are commonly used for image analysis because they can handle

local correlations efficiently and are not impaired by positional and morphological vari-

ances. Tabular data, however, do not display these types of characteristics, which makes the

value of CNNs less apparent in these scenarios. One way to circumvent this is to map the

data into a higher-dimensional superspace in which the locality of convolutions is not an

impediment. The implementation we used is taken from the second-place submission (the

1D-CNN itself had the best single-model performance) in a previous Kaggle competition

for tabular data in 202010 and uses a learnable dense/linear layer to perform this mapping.

After the initial dense layer, several 1D-convolution and pooling layers are connected in

sequence along with a skip connection and a flatten operation (see Figure 4.2).
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Figure 4.3: The architecture of the multitask‐tailored MLP model. A base (left) structure is shared between all different
tasks, and multiple prediction heads (right) are trained to optimize each individual task separately.

Multitask-tailoredMLP

In addition to multitask variants of the four models above, an additional MLPmodel was

created and optimized specifically for the multitask scenario. This is motivated by the fact

that some design and architectural choices have no analogous counterpart in the single-task

setting. In particular, the multitask model was constructed by two distinct partitions: a

base that is shared among all different tasks, and N classification heads that have distinct pa-

rameters for each output task. The base handles the input and latent representations of the

model while the heads are fine-tuned for their respective tasks. The architecture (displayed

in Figure 4.3) builds upon the MLP and uses skip connections and varying activation func-

tions.
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4.3.3 Model training & feature selection

CatBoost

The CatBoost model was trained with a nested 5-by-5 stratified cross-validation (CV) and a

standard binary cross-entropy (log-loss) loss function. The inner 5-fold was used to search

for parameters and the outer 5-fold was used to estimate the performance. This eliminates

the selection bias from selecting the lowest error model. To search for parameters, we used

the Tree-structured Parzen Estimator (TPE) in the Optuna (v2.10) python package3 and

ran it for 600 trials with default parameters. Among the trials, we selected the model with

the highest Matthews correlation coefficient (MCC) on the validation sets and proceeded

to retrain it on the full training+validation set. The performance of the retrained model

was then evaluated on the previously held-out test sets.

The hyperparameter search space is shown in Table B.2 in Appendix B.2.2. Note that we

directly optimize the number of radiomic features to include (“n_features”) based on their

estimated predictive power over the target variable (see Appendix B.3 for details).

Deep learning models

The DLmodels were trained with a similar cross-validation procedure, but instead of a

full 5-fold validation in the inner loop, we used a single train-test split (80%-20%) due to

computational constraints. Moreover, the DL hyperparameter search was carried out with

64 trials instead of 600. All random seeds were fixed such that every model was trained and

evaluated on the same data (including the CatBoost model).

The hyperparameter search spaces and complete training details for the different DL
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models are shown in Appendix B.2.2. As for the CatBoost model, we directly optimized

the number of radiomic features to use within the parameter search (see Appendix B.3 for

details).

We trained the DLmodels to directly optimize a differentiable version of the MCC,

which can be achieved by defining continuous versions of the true and false positives/negatives.

In other words, if we let y be the real target label and h(x) be the network’s prediction:

TP =
∑
i

yih(xi) (4.1)

TN =
∑
i

(1− yi)(1− h(xi)) (4.2)

FP =
∑
i

(1− yi)h(xi) (4.3)

FN =
∑
i

yi(1− h(xi)). (4.4)

In the above formulae, it is assumed that the last operation in h is a logistic function such

that the outputs are in the (0, 1) range.

Multitask learning

For each of the four models mentioned above, we built alternative versions that were trained

with a multitask/multi-objective loss function. This can be done with very minor modifi-

cations to the architectures (e.g. simply adjusting the number of outputs of the final layer)

and has the potential to improve both speed and accuracy140,29,144. The multitask versions

of the models were trained in the same way as the regular ones, but with three important

modifications:
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1. Since the loss of the models needs to be a single scalar value, we calculated the total

loss by averaging the individual classification errors over all different targets (the bi-

narization of the target values allows us to make this aggregation without needing to

tune the weights between different types of targets).

2. A consequence of simultaneously predicting all targets is that missing target data

needs to be handled differently. In the single-task case, we did not implement any

target-specific imputation considerations since we could simply select and train on

all the patients with target data available. In the multi-task case, the patients have

varying target values missing, which means that some loss values are not defined.

Hence, we divided the full data set into training and test data as the first step, and

whenever a batch of samples with missing target data was encountered, we calculated

the total loss for each patient as the mean loss over all its non-missing values*. A con-

sequence of this is that regular (e.g. non-stratified) cross-validation has to be used.

3. A similar issue to point 2 is faced when we calculate the predictive power of the fea-

tures prior to feature selection. The predictive power was thus also calculated by

averaging the loss over all available targets.
*We can do this without worrying about undefined gradients since no sample has all its target values miss-

ing. If such a patient existed, it would not have been included in the dataset in the first place since we cannot
possibly hope to receive any signal from it.
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Table 4.1: Class distributions of the pathological target variables in terms of the number of positive and negative cases
and percentages. In total, 949 patients were considered.

Class ncases (+/-) % (+/-) Missing
Post-op ISUP Group 877/68 93/7 4
Pathological T 582/367 61/39
Pathological N 495/76 87/13 378
Surgical margin 716/232 76/24 1
Biochemical progression 637/140 82/18 172
Clinical progression 726/50 94/6 173
ΔISUP 603/343 64/36 3
ΔT 2030/715 24/76 4
ΔN 493/75 87/13 381

4.3.4 Results

Dataset

Table 4.1 shows the class distribution of the target variables (the number of positive, nega-

tive, and missing values) after discretization. A detailed overview of the clinical properties

of the patient cohort is given in Appendix B.1.

Radiomic model performance

An overview of the performance of the models is displayed in Figure 4.4 and a summary of

their relative scores in terms of their rank is displayed in Figure 4.5. For all endpoints, the

CatBoost model achieved the highest MCCwhereas the FTT and 1DCNNmodels appear

to be nearly equivalent (2.33 and 2.78 mean rank, respectively). TheMLP only achieved

similar MCC to the other DLmodels in one of the nine cases (biochemical progression),

resulting in the worst overall mean rank of 3.89. In terms of AUC, the results are similar,

with the exception that the 1DCNN achieved a better mean rank than the FTT (2.33 vs.
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Figure 4.4: Performance of the different models in terms of Matthews correlation, AUC, and accuracy for the nine dif‐
ferent prediction targets. Higher scores are better. MLP: multilayer perceptron, FTT: feature‐tokenizer transformer,
1DCNN: 1D convolutional neural network.

3.0). The results for the accuracy are different: all four models performed at a compara-

ble level, with MLP achieving the best mean rank. However, the mean rank difference be-

tween the MLP and the worst performing model, which is a tie between the FTT and the

1DCNN (mean rank of 2.67), is relatively small (0.56 mean ranks).

Figure 4.5: Total mean rank of the different models, aggregated as the mean over all nine different prediction targets. A
lower rank is better.
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Multitask performance

Figure 4.6 shows the performance of the multitask models and Figure 4.7 shows their re-

spective ranks. The 1DCNN appears to be the overall best model in terms of bothMCC

and AUC (though tied for first place with the CatBoost model in the AUC case). Cat-

Boost, MLP, and FTT all had comparable performance in terms of MCC, but the MT-

MLP clearly performed worse. TheMT-MLP has no AUC score since it was trained with

regression, but between the remaining two models, MLP and FTT, the FTT performed

better. The accuracy ranks are very different: the 1DCNNwas the worst performing model

andMLP was the best. TheMT-MLP still performs poorly with its second-to-last place,

but CatBoost and FTT perform very similarly.

Multitask improvement

In Figure 4.8, we show the mean percentage performance gained from training multitask

models compared to several single-task models. The overall difference is very large in terms

of MCC (16-31%) but fairly small for AUC (0-9%) and accuracy (2-6%). The added benefit

of multitask training differs between models and metrics which makes it hard to declare a

single best approach. Note that the performance difference can be positive for some end-

points even though the mean improvement is negative, and vice versa. The most drastic

change was, by far, the MCC for the CatBoost model, which performed 31% worse in the

multitask case on average. The second largest change was the MCC for the FTTmodel (-

18%). In contrast, the MCC of both the MLP and 1DCNN benefited greatly (16% and

17%) from the multitask training. In summary, the mean performance was better in one

case (and a tie in one case) for the CatBoost model, two cases for the MLP, two cases for the
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Figure 4.6: Performance of the multitask versions of the different models in terms of Matthews correlation, AUC, and
accuracy for the nine different prediction targets. Higher scores are better. The MT‐MLP model has no AUC since it
does not output produce probability estimates.

Figure 4.7: Total mean rank of the multitask versions of the different models, aggregated as the mean over all nine
different prediction targets. A lower rank is better. The MT‐MLP model has no AUC since it does not output produce
probability estimates
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Figure 4.8: Mean improvement gained from multitask training of the different models, aggregated over all nine different
prediction targets.

Table 4.2: The single best model, including both single‐task (ST) and multitask (MT), in every prediction target and per‐
formance metric.

Target MCC AUC Accuracy

Post-op ISUP Group 1DCNN (MT) CatBoost (ST+MT),
1DCNN (ST+MT) CatBoost (MT)

Pathological T CatBoost (MT) CatBoost (ST+MT) CatBoost (MT)
Pathological N CatBoost CatBoost (MT) CatBoost (MT)
Surgical margin CatBoost CatBoost CatBoost (MT)
Biochemical
progression

CatBoost,
1DCNN (MT) 1DCNN (MT) CatBoost (MT)

Clinical progression CatBoost CatBoost CatBoost (MT)

ΔISUP CatBoost CatBoost (ST+MT) CatBoost (ST+MT),
1DCNN (MT)

ΔT CatBoost CatBoost CatBoost (ST+MT)

ΔN CatBoost,
1DCNN (MT) CatBoost (MT) CatBoost (MT)

FTT, and two cases for the 1DCNN.

By comparing the best multitask models with the best single-task models, we can discern

the overall best-performing model across all endpoints (Table 4.2). Only two architectures

are represented: CatBoost and, to a lesser extent, the 1DCNN. In the accuracy metric, mul-

titask models are clearly overrepresented. InMCC and AUC, the single-task CatBoost

model is the most common, and multitask 1DCNN the second most common.
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4.4 Evaluating predictions & model behavior

This section further explores the CatBoost single-task model, which was the best of the

models in the previous section. In particular, we analyze how the performance varies when

changing the input variables, how the variables are used, and to what extent the different

types of features (clinical, radiological, and radiomics) influence the predictions. This can

allow us to identify the information needed to build good models and thus provide impor-

tant insights into the model’s behavior.

4.4.1 Methods

Roughly speaking, there are two angles from which the interesting behavior of the models

can be analyzed: the performance angle (e.g. how good are the predictions) and the feature

angle (e.g. what information is the model using when making its decisions). We elicited

a list of concrete questions from both clinicians and engineers to directly illuminate the

aspects of the model’s behavior that they find important. The aim was to elucidate the ML

models’ usefulness and how they behave from both these stakeholders’ perspectives. Below,

we list the questions along with our approach to addressing them:

1. How influential are the radiological variables?

• Since the radiological variables are crucial for the doctors’ clinical assessment,

it is interesting to know if this is also the case for MLmodels. If not, it may un-

dermine the credibility of the MLmodels or raise new questions about how

the model extracts complementary information. This can be analyzed by train-

ing the model with and without the radiological variables and then comparing
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the performances.

2. Are the radiomic features helpful?

• Similarly to the point above, we can train models with and without radiomic

features in order to gauge whether the features are impactful.

3. Do the radiomic features actually influence the decisions of the model?

• Even if the performance improves when radiomic features are included, it

is conceivable that the improvement could be a result of random variations

rather than added information (depending on what model is used and how

it is trained). To properly gauge whether the radiomic features add value, we

must also investigate whether they influence the decisions. This can be done by

analyzing their importance, with can be measured for example by howmuch

the prediction changes when the feature’s value changes, or by calculating their

SHAP (SHapley Additive exPlanations) values96*. The SHAP values have an

added benefit in that groups of features can be analyzed simultaneously—if

feature A influences the prediction on a patient positively, and feature B influ-

ences it negatively, their net contribution can be zero, thus having no cumula-

tive influence.

4. On what variables does the model base its decisions?

*SHAP values can be viewed as a local measure of feature importance (i.e. it can be calculated for each
patient individually). At a high level, it measures how the prediction changes when the feature is not included.
Crucially, the SHAP values differ from feature importance in that they measure directionality; features can
influence a decision both positively and negatively. The values can be converted to a global measure by taking
the mean absolute value over all patients.
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• The feature importance analysis described above can also be carried out for

clinical and radiological features. By inspecting these importances for differ-

ent target variables, we can get a good idea of the model’s tendency to use the

information clinicians are already familiar with (such as the ISUP grade and

PI-RADS score). For example, a model predicting survival ought to use the age

variable at least to a moderate degree, since old patients are likely to die from

age-related diseases (assuming the cohort includes predominantly senior citi-

zens).

5. Is there a performance difference between the low-risk and high-risk patients?

• In clinics, there is a large discrepancy between the assessment certainty of a

high-risk and a low-risk patient. Low-risk patients have smaller and less devel-

oped lesions, which makes it harder to assess the images visually and makes the

biopsy less likely to hit the pathological tissue. As such, AI can have a greater

impact when applied to low-risk patients. It is therefore interesting to analyze

if the AI’s performance on this subgroup of patients is better, worse, or unaf-

fected. To do this, we divided the patients by risk class (low/favorable/unfavorable/high)

and compared the performance between the different groups.

6. Does radiomics play a specific role for low-risk patients? What about high-risk pa-

tients?

• Even if one observes that the radiomic features are helpful in improving the

performance (question 2) and that they actively influence the decisions (ques-

tion 3), it may be the case that the features’ contributions are exclusive to a spe-
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cific sub-group (e.g. high-risk patients). In other words, it is possible to detect

a significant influence from the radiomic features even though they contribute

nothing to patients within the low-risk group. If so, the features would behave

akin to the radiological variables. To analyze the radiomic features’ contribu-

tion within different groups of patients, we calculated their cumulative SHAP

values and compared the magnitude to the cumulative SHAP values of the

other variables. The values were normalized to get a percentage contribution.

7. Is the MLmodel better at predicting the pathological ISUP, T, and N variables than

a naïve model? (A naïve model uses the pre-surgery value as the prediction.)

• The pathological variables are not explicitly predicted in the current medical

practice, and it is therefore not possible to compare the AI model to the clinical

workflow. However, using the naïve model is a reasonable assumption for the

best pre-surgery prediction. By comparing howmuch better/worse the AI

model is compared to the naive model, we can get a rough estimate of how

useful the AI might be. This can only be done for ISUP, T, and N because the

other variables have no pre-surgery equivalent.

With the above goals in mind, we expanded the CatBoost training procedure outlined

in Section 4.3.3 to also incorporate model variants trained with 1) only clinical variables,

2) clinical variables and radiological variables, 3) clinical variables and radiomic features,

and 4) all variables (clinical, radiological, and radiomic). Figure 4.9 presents an overview

of the study design. For the relevant model variants, we collected the feature importances

(measured in terms of prediction value change) and each feature’s SHAP values.
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Figure 4.9: Overview of the model evaluation study. After patients are enrolled, clinical variables like the clinical tu‐
mor stage (cT) and the pre‐operation ISUP grade are collected in the consultation, blood sampling, digital rectal exam
(DRE), and biopsy stages. Radiological and radiomic variables are judged/extracted from the mpMRI scan of the patients
(here the T2‐w images). Four different CatBoost models are built with different combinations of the collected variables.
Finally, pathological and oncological variables are predicted with histology and follow‐up blood tests and imaging as
confirmation.
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4.4.2 Results

To answer questions 1 and 2 (How influential are the radiological variables? Are the ra-

diomic features helpful?), Figure 4.10 shows the performance of models 1-4 and Figure

4.11 shows their relative mean ranks. We can gain insights into question 1 by comparing

the clinical model (blue) with the clinical + radiological model (orange), and question 2

by comparing the clinical model (blue) with the clinical + radiomic model (green) or the

clinical + radiological model (orange) with the all-model (red). A salient result is that the ra-

diological variables improve the performance by a substantial margin (blue vs. orange). The

radiomic variables appear to improve the performance by a small margin (blue vs. green

and orange vs. red), but not in all cases (decrease for surgical margin, and unchanged for

ΔT in terms of the MCC). However, there is a considerable difference between the blue

vs. green comparison and the orange vs. red comparison. Comparing model 2 (orange) and

model 3 (green), it appears that the radiomic variables do not fully encompass the useful

information within the radiological variables. The overall trends are similar for all scores

(Figure 4.11) but slightly different in accuracy, where the clinical-only model achieves the

best score for two targets (Pathological N and ΔN).

In Figure 4.12, the cumulative feature importance of different groups of variables (clini-

cal, radiological, and radiomics) in models 2, 3, and 4 are presented, which provides insights

into question 3 (Do the radiomic features actually influence the decisions of the model?)

and partly question 4 (On what variables does the model base its decisions?). Model 4 (red

bars in Figure 4.10, right panel in Figure 4.12) uses radiomic features to a moderate degree

(save for the ΔT target), which gives assurance that the benefit from radiomics observed

above is not a coincidence. The minuscule feature importance (2%) of the radiomic fea-
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Figure 4.10: Performance of the CatBoost model when trained with 1) only clinical variables, 2) clinical + radiological
variables, 3) clinical + radiomic features, and 4) all variables.

Figure 4.11: Relative mean ranks of the models in Figure 4.10.
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Figure 4.12: Cumulative importance of different groups of features when training model 2 (left), model 3 (middle), and
model 4 (right).

tures in predicting ΔT with model 4 is in agreement with the performance, which was un-

changed by adding radiomic features (orange vs. red bars in Figure 4.10). By comparing

model 2 (clinical + radiological) and model 3 (clinical + radiomics), we see that the clini-

cal variables have a larger overall contribution in model 3, consistent with the fact that the

radiological variables improved the performance more (thus having larger importance).

By inspecting the importance of individual features, we get answers to question 4 (On

what variables does the model base its decisions?). In this context, the clinical and radio-

logical variables are primarily the ones of interest, because we can readily compare them

with how important they are for doctors in the current medical practice. Figure 4.13 shows

model 4’s importance of the five most important clinical and radiological variables and

their cumulative importance. EPE (within top-5 for all targets, most important feature for

five targets) and PI-RADS (within top-5 for seven targets, most important twice) stand out

as recurringly important variables, consistent with the clinical expectation. The clinical T is

a powerful predictor for ΔT, which explains the low feature importance of the radiological

and radiomics variables apparent in Figure 4.12.

In answering question 5 (Is there a performance difference between the low-risk and
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Figure 4.13: Top‐five feature importance among clinical and radiological variables when training model 4 (all variables),
along with their cumulative importance.

high-risk patients?), the division of patients into different risk groups introduces a target-

distribution imbalance (see Figure B.1), which renders the above scores (MCC, AUC, and

accuracy) inappropriate. To compensate, we measured the mean absolute error (MAE)

instead, which can be calculated and compared individually for each patient. Figure 4.14

presents the distribution of MAE values for patients in the different risk groups. In all tar-

gets except pathological T, the median absolute error is lower in the low-risk group, some-

times by a large margin. The distribution is significantly wider within the high-risk group

than in the low-risk group (for post-op ISUP, pathological N, surgical margin, and clinical

progression) or similar (for the remaining targets).

For question 6 (Does radiomics play a specific role for low-risk patients? What about

high-risk patients?), the radiomic features’ normalized SHAP contribution within low- and

high-risk patients are presented in Figure 4.15. These results make it clear that the radiomic
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Figure 4.14: Distribution of MAE values for patients within different risk groups. The width of the violins is proportional
to the number of patients at different y‐values, and a white dot at the center indicates the median.
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Figure 4.15: Percentage contribution of radiomic features in terms of their absolute cumulative SHAP value. The bars
indicate the total cumulative contribution of all radiomic features, meaning that feature interactions are taken into
account (if feature A influences the decision negatively, and feature B positively, their net contribution may cancel out,
totaling a contribution of zero).

Figure 4.16: Performance comparison between a naive model (one that uses the clinical values as predictions for the
pathological values) and the best ML model (trained with all variables, i.e. model 4). Since the naive model does not
output probability estimates, the AUC is somewhat one‐sided.

features are in fact used in both the low-risk and the high-risk groups, although the contri-

bution generally seems somewhat larger within the high-risk group.

The results from comparing the naive model and the radiomic model (question 7) are

shown in Figure 4.16. The best MLmodel (model 4 above, which was trained with all vari-

ables) clearly outperforms the naive model significantly in bothMCC and AUC. However,

the naive model has better accuracy for two of the targets.
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4.5 Discussion

Overview

Pathological prediction models could constitute a great asset to the clinical workflow since

they could reduce under- and overtreatment by providing clinicians with pathological in-

formation prior to surgery. Such models can estimate the degree of malignancy even when

the standard assessment is not possible, for example in patients with comorbidities. Here,

we showed that the pathological characteristics of prostate cancer can indeed be predicted

successfully using MLmodels, particularly with GBDTs. The results demonstrate that

whole-prostate radiomics can offer a small improvement over models using only clinical

and radiological variables.

In the performance comparison between different models, the CatBoost model per-

formed consistently well and was the model that most often achieved the best score. Of the

deep learning models, the multitask 1DCNNwas generally the best, followed by the FT-

Transformer. There appears to be a tendency for the multitask models to perform better

in terms of accuracy than in terms of the other metrics, which may indicate that there is a

slight tradeoff betweenMCC/AUC and accuracy. This is also supported by observing that

the MLP generally performed much better in terms of accuracy than the other two scores.

However, it is likely that the MLP is not inherently better at achieving higher accuracy, and

that CatBoost would still be the best model if we decided to optimize for accuracy instead.

It is conceivable that the somewhat subpar performance of the DLmodels could be due to

insufficient training data since DLmodels are known to be data-hungry. A potential so-

lution for this that was not studied in this article is data augmentation, which is standard
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practice for most non-tabular DLmodels.

When further analyzing the CatBoost model, it is clear that the best performance is

consistently achieved by the model trained on all variables (clinical, radiological, and ra-

diomics). The experiments also demonstrated that the radiomic features often contributed

significantly (between 16% and 41% if we disregard the highest and lowest values) to the

predictions and that the model tends to rely on the same variables used in clinics such as PI-

RADS and EPE (Figure 4.13). Since the pathological variables are currently not explicitly

predicted in clinical practice, it is not possible to compare the MLmodels against the cur-

rent workflow. However, when comparingML against naïve models to detect the differ-

ences between the clinical and pathological statuses (Figure 4.16), the improvement is pro-

found. The model’s confidence in its predictions was slightly higher for low-risk patients

than for high-risk, which is contrary to the experience of clinicians, possibly indicating an

area where MLmodels could have an elevated impact. On the other hand, this may be a

consequence of the fact that the low-risk group generally contained fewer positive cases (see

Figure B.1). In general, the methods highlighted here represent an excellent tool to analyze

the behavior and gain insights into MLmodels intended for clinical care.

Data

This study was performed on an extensive dataset of 949 patients, the largest cohort to date

(the previous one being 489 patients) according to a recent review covering 57 different

prostate cancer radiomics studies37. These results demonstrate that T2-only radiomics

might be a promising approach moving forward, although a head-to-head comparison with

models that include the other modalities (DWI and ADC) is necessary. Since the PI-RADS
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evaluation performed by the clinicians is partially based on the ADC images, the informa-

tion in these is not entirely lost by using only T2 radiomic features.

Even though the experiments here were carried out by binarizing the target variables,

both the DL and the GBDTmodels can be modified to perform regression or multi-class

classification by simply changing the loss function (and the output layer for the DLmod-

els). The motivation behind making the binarization was to simplify the comparison be-

tween different target variables and to simplify the training procedure. It is likely that the

overall results would be similar for the other tasks as well since the training procedure is

identical.

The automatic segmentation procedure that was applied in this study appears to pro-

duce viable contours that can be used for analysis and feature extraction, further validating

the use of automatic segmentation in clinics. When using such contours, it is essential to

employ quality checks such as the one outlined in Section 4.2 in order to detect critical

failures. In our case, this enabled us to detect and revise a few cases where the algorithm er-

roneously delineated most of the image as prostate tissue. It should be noted that many of

the contours flagged for correction did not need any modifications.

Classification performance

When contrasting our results to other studies comparing the performance of clinical and

radiomic models, the results here appear much more conservative. In our results, radiomics

offered an improvement of just 0.02 units of MCC and 0.022 units of AUC on average

amongst all targets. By contrast, it is not uncommon to see AUC improvements of 0.2-

0.3 in the medical literature. It is not possible to conclusively identify the source of this
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discrepancy without performing extensive experiments, but a few potential factors can be

identified. The T2-only approach, the whole-prostate radiomics extraction, and the au-

tomatic segmentation may all influence the radiomic performance negatively compared

to their alternatives. However, we believe the primary cause to be the larger dataset and

more rigorous validation procedure. On a smaller dataset, it is much easier to overfit and

overestimate the performance. Furthermore, nested cross-validation (and sometimes even

single cross-validation) is not performed in most other studies. This has become a problem

to such an extent that some researchers have argued that there is a widespread overfitting

epidemic in the healthcare domain, supported by several independent meta-analyses and

discussions135,25,153,72,112,54.

Comparing the results on different target variables reveals a sizeable difference, suggest-

ing that some targets are more easily predicted than others. While it may be interesting to

look at these differences, comparing target variables head-on might not be fair for targets

with different distributions of missing data and positive/negative cases. The two variables

having much better performance (ΔISUP and ΔT) appear to be more easily predicted be-

cause their initial values (initial ISUP group and clinical T) are very strong predictors (see

Figure 4.12).

Feature selection is one of the most important aspects of model development because

it dictates what information the model will have at its disposal. Despite this, it is not com-

monly discussed or researched within studies of medical prediction models. Since the pro-

cedure’s outcome is heavily data and problem-dependent, it can be wise to explore the op-

tions when presented with a new problem or data set (though this requires additional ef-

fort). In most studies, features are selected prior to training (e.g. by a clustering procedure
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or statistical testing) or internally to the model (e.g. with LASSO), which is problematic in

several ways. First, it does not properly account for feature-parameter interactions. Second,

it may introduce leakage into the validation pipeline if not incorporated correctly (once

for each training set). It is also susceptible to additional variance and lower performance.

For these reasons, we instead incorporated the selection procedure into the parameter opti-

mization (see Appendix B.3), which should generally be preferred if its implementation is

possible.

A major concern in studies comparing the performance of different models is the vari-

ance and reproducibility of the results. In the model validation pipeline, there is a delicate

balance between exploration and validation in the sense that finding higher-performing

models via deeper exploration in the model space competes with performing more thor-

ough validation procedures (such as repeated cross-validation). If the model space is not

sufficiently explored, there will be large variations in the selected models (since there will

be a sparser sampling of the error landscape). Conversely, if the models are not thoroughly

validated (e.g. with repeated experiments with different random seeds), there may be large

variations due to instabilities in the training data or model weights. Multiple sources of

variations make it hard to analyze the performance with regular statistical tools without ex-

cessive amounts of compute. In the medical field, these instabilities are largely overlooked,

even though the small datasets may exacerbate the problem. Due to limited computational

resources, this study focused on finding high-performance models instead of repeated ex-

periments, which is currently the standard practice. To ensure the reliability of this ap-

proach, we performed informal repeated tests (only on the first target variable due to the re-

quired computational investment) and concluded that this variability would not invalidate
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the results. It is worth noting that another way of improving the reliability of predictions is

to create model ensembles, but this also requires an increased investment of computational

resources.

Optimization and training

In this study, we chose to optimize the MCC because it is known to be a more reliable

and informative measure of performance than other metrics like accuracy, F1-score, and

AUC13,22,23,24. For example, the MCC only achieves a high value when the classifier pro-

duces good results in all four quadrants of the binary confusion matrix. In medical re-

search, the AUC has been the standard reporting metric for prediction models, which in

many ways can be seen as a cause for concern (see e.g. Lobo 200895, Halligan 201552, or

Byrne 201615). For instance, the definition of AUC allows classifiers to increase their AUC

without modifying a single prediction since it considers all decision thresholds and not just

the actual operating threshold. A similar mechanism also allows them to simultaneously

increase their AUC and decrease their accuracy. This is not to say that AUC does not have

its uses, but we believe these are legitimate reasons to not optimize for AUC directly. Ac-

curacy is another natural candidate for optimization, but this metric can be misleading for

unbalanced data. In preliminary experiments, we observed that optimizing either AUC or

accuracy often leads to majority classifiers that classify all patients into the majority class,

which are essentially useless in practice (they do not utilize any information available in the

variables). When deploying prediction models in real clinical environments, it will be cru-

cial to discuss and clarify if true/false positives and negatives should be weighted equally,

and then optimize the appropriate metric.
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When selecting features for the multitask models, we chose to select the feature with the

highest mean predictive power over all different endpoints. An exciting alternative to this

is to favor features with high predictive power for tasks the model struggles with, which

would effectively act as an indirect loss-weighing for different targets. In loss-weighting,

each task’s loss function is weighted differently to optimize an aggregated loss function that

may be more ideal. This of course raises the question of how exactly to weigh the differ-

ent tasks, which is a difficult optimization problem in and of itself. Furthermore, the de-

sired balance is heavily influenced by external factors such as preference and the individual

samples being evaluated. We chose not to explore these considerations due to the foreseen

complexity, but it is of interest for future research.

Interpretation

The analysis methods for the model’s behavior and tendencies outlined here can be used

as an effective interpretation tool that can reveal critical flaws that are not apparent from

simply inspecting the performance. Such analyses will be required before MLmodels can

be deployed in practice as they allow both users and administrators to learn when not to

trust the model and what its strength and weaknesses are. While the feature importance

measures provided by GBDT packages are exclusive to GBDTmodels, the other meth-

ods are model agnostic. Feature retraining, SHAP value analyses, and sub-group analyses

such as those presented in Figures 4.12, 4.14, and 4.15 can all be applied to DLmodels and

traditional models as well (the SHAP value may be interpreted as a measure of feature im-

portance). The calibration analysis in Figure 4.14 can be used with all models that provide

probability estimates. Many other useful methods exist such as ICE (individual conditional
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expectation) plots and PDPs (partial dependence plots), which can be used to analyze the

response when individual features of interest are changing. For DLmodels specifically, a

plethora of different methods has been developed to give users explanations such as saliency

maps and feature visualizations.
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5
Conclusion

In this thesis, we have explored various applications of deep learning and radiomics for the

assessment of clinically relevant prostate cancer. We showed that automatic segmentation

models can achieve excellent performance with very few training samples with clever use of

extensive data augmentation. The mixup augmentation technique appeared particularly

useful when training segmentation models on the small scale typical for medical applica-
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tions. Furthermore, we introduced a novel method to automatically predict the quality of

contours with deep learning that can be used as a safeguard when deploying segmentation

models. In Chapter 3, we discussed the issue of image normalization and demonstrated

that the choice of normalization can significantly impact the calculation of the radiomic

features. Finally, the practical utility of the automatic segmentation methods was demon-

strated in predicting pathological endpoints of interest. On an unprecedentedly large

dataset of 949 patients, we showed that the pathological status of prostate cancer patients

can be reliably predicted byMLmodels, particularly using GBDTs. We also presented a

framework for analyzing prediction models’ behavior that can be used as an interpretation

tool before deploying models in the real world. In summary, the methods outlined in this

thesis demonstrate howDL andML can successfully be combined with radiomics and inte-

grated into the pathway of the patient, from image acquisition to treatment decision.

It is clear that AI has a vast potential to improve and enhance the clinical care process in

myriad ways. But before AI can become a reality in clinics, we need to carefully address the

available options and their strengths and weaknesses. This includes different types of mod-

els, how they behave in different situations, and how we should interpret and handle their

predictions and decisions. It will be important to approach the challenges with an open

mind and communicate what the models can and cannot do. Likewise, users, developers,

and administrators need to engage in conversation about how to solve the problems col-

lectively. Following these principles will ensure that the ensuing integration of AI will be

beneficial for everyone involved, from patients and doctors to developers and administra-

tors.
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A
Supplementary information for Chapter 2

A.1 Association between clinical variables and segmentation results

The analysis in this appendix covers two aspects of the relationship between the clinical

variables and the segmentation performance. First, pure associations (correlation for con-

tinuous variables and the Kruskal-Wallis test for categorical variables) can reveal confound-

ing factors that may influence the segmentation performance. Second, the CatBoost pre-
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diction model that was trained to predict the segmentation performance from clinical vari-

ables can be analyzed in terms of its accuracy and feature importance. The motivation for

carrying out these analyses is to find factors that could serve to indicate whether a given

prostate is suitable for automatic segmentation.

In the first analysis, no significant associations (p≥0.08) between any of the categorical

clinical variables (ISUP grade, EPE score, and PI-RADS) and segmentation performance

were found (see Figure A.1). Out of the continuous clinical variables (prostate volume,

age, and iPSA), prostate volume and age were found to be significantly associated with per-

formance, albeit only in terms of MSD (see Figure A.2). In both cases, the relationship

was weak: Spearman rank correlation ρ=0.33 for volume (p=0.021), and ρ=0.29 for age

(p=0.040). The lack of any strong relationship consistent for both Dice andMSD suggests

that the segmentation performance is not strongly influenced by single clinical parameters.

The CatBoost prediction model did not perform better than the naïve model on aver-

age (the MAE was 0.016 in both models; see Table 2.3), suggesting that clinical variables

alone are not indicative of segmentation performance. A plot of the predicted Dice values is

shown in Figure A.3. There was a slight negative correlation of -0.155 but the relationship

was not significant (p = 0.54). The most important features were iPSA (68%) and volume

(21%), but since the overall performance was low, this is unlikely to indicate a significant

underlying relationship.
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Figure A.1: Association between clinical categorical variables and segmentation performance (Kruskal‐Wallis test).
Only the lowest p‐values for each variable and dataset split (blue: 70/30, orange: 50/50) are shown. No significant
associations were found.

160



Figure A.2: Association between continuous clinical variables and segmentation performance in terms of Spearman
rank correlation. Left column: Dice coefficient, right column: mean surface distance. The trend line is a non‐parametric
lowess regression smoother (for visual aid only).
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Figure A.3: Predicted vs. target Dice values of the baseline CatBoost model, which only uses clinical variables to predict
segmentation quality. The dotted line indicates perfect x = y predictions. The predictions of this model tend to only
vary minimally (very close to the naïve model), suggesting that the clinical variables are not indicative of segmentation
performance.
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B
Supplementary information for Chapter 4

B.1 Additional patient details

Table B.1 displays the clinical characteristics of the dataset and the number of patients with

different conditions. Figure B.1 shows the distribution of positive and negative patients

within different risk groups, illustrating the large class imbalances within some target vari-

ables.
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Table B.1: Clinical characteristics of the dataset. The column headers indicate the stage/group/number (e.g. ISUP grade
group 1, 2, 3, etc.), and the numbers in each cell represent how many patients there are within that particular category.
For binary variables (e.g. biochemical progression) a zero indicates absence and a one indicates the presence of the
condition. For risk class, the numbers 0‐3 indicate low, favorable, unfavorable, and high risk, respectively. # DIL: number
of dominant lesions, T: tumor stage, N: lymph node status.

0 1 2 3 4 5 Missing
Comorbidity 541 406 2
# DIL 310 536 93 5 1 4
PI-RADS + 2 48 163 380 355 1
EPE + 3 80 232 242 227 133 32
Initial ISUP Group 461 328 157 1 2
Clinical T 559 324 62 4
Clinical N 943 3 3
Risk class 389 277 201 81 1
Post-op ISUP Group 207 437 233 37 31 4
Pathological T 582 367
Pathological N 495 76 78
Surgical margin 716 232 1
Biochemical progression 637 140 172
Clinical progression 726 50 173
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Figure B.1: Number of positive and negative patients (after binarizing the target variables) within different risk groups. In
some cases, there are extreme class imbalances.

B.2 Additional training details

B.2.1 Imputation

Imputation of missing variables is needed to train models that do not inherently handle

missing values such as DLmodels. Naturally, the impact of imputation depends on the

distribution of missing values within the data, which makes it hard to assess its importance

and downstream effects. Some guidelines have been suggested such as not imputing a vari-

able if more than 40% of the data are missing (in such a case, excluding the variable may

be more appropriate)73, or when the statistical assumptions of the particular imputation

method do not hold (e.g. if the data are not randomly missing, but the result of a system-

atic error)134. Clinical studies typically do not discuss this issue and tend to deploy simple
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Figure B.2: Mean absolute percentage error (MAPE) of different imputation strategies with varying neighbors: a kNN
imputer with uniform weights, a kNN imputer with distance‐based weights, and a simple mean imputer. The best per‐
formance was generated by a distance‐weighted kNN imputer with eight neighbors.

and easy imputation strategies such as filling missing data with the average or median value.

However, it seems unwise from an information perspective to not use the available infor-

mation when making such inferences.

Here, we constructed a simple test where we compared the performance of two promis-

ing imputation methods with varying parameters: one k-nearest neighbor (kNN) im-

puter111 and one simple mean imputer. The kNN imputer uses a predetermined number

of neighbors (“n_neighbors”) and weighs them either uniformly or according to their dis-

tance from the sample being imputed. We removed random entries from the data following

the observed missing data distribution (see Table 4.1) and performed imputation twelve

repeated times. The different imputation methods were evaluated based on the mean ab-

solute percentage error (see Figure B.2). Following these results, we selected the distance-

weighted kNN-imputer with eight neighbors.
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B.2.2 Learning parameters & hyperparameter search spaces

This section covers the learning parameters and the search spaces that were used in the

Optuna hyperparameter search for the different models. For the DLmodels, we comple-

mented the automatic search by manually tuning the learning rate, batch size, and number

of epochs. The learning rate was tuned with a special heuristic that is covered in section

B.2.3.

The number of epochs was selected by observing the point at which the validation loss

ceased to decrease using each model’s default parameters. We used 40% fewer epochs (roughly

coinciding with the start of the loss plateau) in the Optuna search to accelerate the search

process. The batch size was set to the largest batch that could fit into memory without

splitting the training set unevenly (in this case 384). All DLmodels used the Adam opti-

mizer with default parameters.

The search space for the CatBoost model is shown in Table B.2 and the DLmodels’

search spaces are shown in in Table B.2. Note that the number of radiomic features to in-

clude is optimized in all cases (see Appendix B.3 for details). TheMLP optimizes the num-

ber of hidden units and the dropout rate in each of the two layers. The FTT optimizes the

token dimension for each feature, the dimension (i.e. the number of hidden units) and the

dropout rate in the feed-forward part (ffn) of the transformer blocks, the dropout rate in

the attention mechanism, and the number of transformer blocks. The 1DCNN optimizes

the dimension of the initial dense up-scaling layer, the number of channels the output of

this layer is split into (“Reshape” in Figure 4.2), the number of channels in the first three

convolution layers, the number of channels in the last convolution layer, and the dropout

rate (we used the same dropout rate throughout the whole network to narrow the search
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Table B.2: Hyperparameter search space for the CatBoost model. Parentheses and brackets indicate continuous and
integer search ranges, respectively.

Parameter Value
bootstrap_type ‘MVS’, ‘Bernoulli’
n_estimators [2, 600]
max_depth [2, 8]
l2_leaf_reg (1−4, 30) (log-uniform)
random_strength (0, 6)
min_data_in_leaf [1, 100]
subsample (0.1, 1)
colsample_bylevel (0.1, 1)
auto_class_weights ‘None’, ‘Balanced’
n_features [0, 32]

Table B.3: Hyperparameter search space for the MLP, FTT, and 1DCNN deep learning models. Parentheses and brackets
indicate continuous and integer search ranges, respectively. The third number (if any) within the brackets indicates the
step size discretization.

MLP FTT 1DCNN
param value param value param value
n_units 1 [32, 2000] d_token [8, 512, 8] upscale size [256, 4096, 32]
n_units 2 [32, 2000] d_ffn [8, 256, 8] n_channels 1 [8, 512, 8]
dropout 1 (0, 0.5) dropout_fnn (0, 0.5) n_channels 2 [8, 512, 8]
dropout 2 (0, 0.5) dropout_att. (0, 0.5) n_channels 3 [8, 512, 8]
n_features [0, 32] n_blocks [1, 5] dropout (0, 0.5)

n_features [0, 32] n_features [0, 32]

space).

The only changes made to the FTT and 1DCNNmultitask models were to change the

number of output units in the final layer to one. In the multitask MLPmodel, we added

an additional layer and changed the search range for the number of hidden units in each

layer to [32, 1024] (we observed that this deeper network was beneficial in the multitask

scenario).

As for the multitask-tailoredMLP, the core architecture was fixed throughout the train-
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ing pipeline. The dropout rate and the number of hidden units in the layers were tuned

with a grid search covering dropout rates between 0 and 0.5, and hidden units from 100 to

1000. In contrast to the other models, this one was trained with a focal loss with gamma=4

and instead of binarizing all targets, it was trained to regress the non-binary outcomes di-

rectly. Furthermore, the model relies on implicit feature selection and L2 regularization

instead of the feature selection procedure described above. These choices were based upon

prior work with similar multitask models.

B.2.3 Learning rate

The learning rate was selected using FastAI’s LR-finder heuristic—a strategy in which one

plots the training loss against the learning rate after iteratively increasing the learning rate

for a set number of steps while training. The result is typically a curve that starts flat (the

network fails to learn anything at very low learning rates) and then decreases quickly and

finally succumbs to pure noise or a giant spike (the network fails to consistently reduce the

loss at extreme learning rates). See Figure B.3 for examples from our models. The heuristic

is to select the learning rate with the steepest decline, which is motivated by the assumption

that a steep decline in the loss corresponds to a learning rate regime in which the network

learns well. In especially noisy cases and in cases where the largest gradient was not evident,

we sampled multiple learning rates and chose the best one. This procedure was done on the

full data set with the models’ default parameters.
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Figure B.3: Examples of curves from the LR‐finder procedure and selected learning rates (vertical dashed line) for the
MLP (left), FTT (middle), and 1DCNN (right) models. The shape and behavior of the curves vary from target to target—
these examples were cherry‐picked for the purpose of illustration.

B.3 Feature selection

This appendix gives a brief account of the feature selection issue. Despite its importance, it

is not commonly addressed inML studies for healthcare. First, we introduce the core prob-

lems and some critical aspects of common selection strategies. In section B.3.2 we describe

the method that was used in this study in more detail. Finally, we present tentative experi-

ments we performed to compare selection strategies.

B.3.1 Background

Most modern prediction models incorporate some sort of implicit feature attention/selection

mechanism (e.g. L1 penalty in traditional models like LASSO, the weights & biases in DL

models, or the splitting criterion in decision trees), but these mechanisms alone appear

not to achieve optimal selection since prior feature selection can consistently improve the

performance. It is sometimes argued that a good prediction model should be able to learn

what information to rely on and what to ignore, which is partially supported by theory,

but it appears that this does not sufficiently address problems like overfitting and the curse

of dimensionality in practice. For example, virtually all radiomic studies incorporate some
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prior selection procedure, and not a single high-performing Kaggle submission uses unpro-

cessed data.

An additional obstacle is that one needs to decide not only how to select the features,

but also howmany to select. Sometimes this number can be chosen based on statistical ar-

guments like the “one in ten rule”, which says that one predictor variable can be included

for every ten events, but such arguments fail to account for the fact that e.g. deep learning

models, which have been dominating many fields lately, are extraordinarily overparameter-

ized and often use tens of thousands of features. Furthermore, the rule is just a heuristic—

there is no guarantee that it should work well, so more rigorous or data-driven approaches

should be used whenever possible. For this reason, we chose to include the number of se-

lected features in the parameter search, which is a relatively easy way to support the choice

based on empirical evidence. The downside is that it increases the dimensionality of the

search space and incurs a slight additional computational burden (depending on what

methods are used). The latter problem can sometimes be alleviated by pre-calculating the

quantities prior to the validation loop such that they are not re-calculated every time a new

set of parameters is evaluated.

Many feature selection methods rely on correlation as a criterion to search for redun-

dancy, for instance by clustering features based on their correlation patterns. However,

correlation is limited to linear (in the case of Pearson correlation) or monotonic (in the case

of Spearman correlation) relationships. Moreover, correlation is symmetric (the correla-

tion between A and B is equal to the correlation between B and A), which is a property that

is often not desirable. Mutual information is sometimes used to circumvent the former

problem, but when asymmetry is desired, KL-divergence is more appropriate. However,
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Figure B.4: Demonstration of the behaviors of correlation and predictive power in different scenarios. The Pearson and
Spearman correlation in each context is indicated by the p and the s above each subfigure. The y‐label indicates the
predictive power the x‐variable has over y, and the x‐label indicates the predictive power the y‐variable has over x.

while a high correlation or KL-divergence implies a high predictive power, the converse is

not true—it is possible to have a very strong predictive power and yet zero correlation. To

illustrate this, Figure B.4 shows the behavior of correlation and our implementation of pre-

dictive power in different scenarios. The symmetry difference is very pronounced in some

cases, which is a crucial property in many real-world contexts. For instance, zip code is a

very strong predictor of household income, but household income does not tell us much

about where in the world the household is located.

B.3.2 Predictive power selection method

The core principle in this method was to select features based on their “predictive power”

over the target variable—if feature A is better than feature B at predicting the target in a
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univariate test, feature A would be chosen over feature B. Thus, this selection can account

for both nonlinear relationships and directional variation (unlike e.g. correlation). Then,

for a given n (which is one of the parameters being optimized), we include the top-n best

features in terms of their estimated predictive power.

The predictive power was estimated by the training loss of a shallow univariate Light-

GBM regressor trained to predict the targets within the training set with the given feature

as the only input. The parameters of the regressor was n_estimators=192, learning_rate=1,

max_depth=3, and min_child_samples=10 (all other parameters were set to their default

value). This shallow structure prevents excessive overfitting and is extremely fast to train.

We observed that this selection performed better than other common alternatives such as

correlation clustering or recursive feature elimination.

After selecting the set of n radiomic features, the total input to the model was the chosen

features plus the clinical variables. This way, the models can learn to not use the radiomic

features when these are not related to the outcome. All clinical variables were included and

fixed throughout the selection procedure. This ensures that clinically relevant information

is always available and allows us to directly gauge the variables’ contribution, which may be

used as a sanity check and quasi-interpretation.

B.3.3 Experiments

To estimate how different feature selection methods compare against the predictive power

selection strategy, we performed a set of tentative experiments. Since this was not the pri-

mary focus of the study, we did not devote sufficient resources to conclusively determine

the best method. The primary goal of these explorations was to identify if any of the meth-
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ods were clear outliers. A full-scale study examining these methods in detail is warranted,

but would ideally require multiple datasets and many repeated experiments.

The following methods were tested in addition to the predictive power method men-

tioned above:

1. A correlation clustering method that clusters the features into n clusters and selects

one representative feature from each cluster. The representative feature was selected

by maximummutual information with the target variable within the training set

(for a deeper overview of mutual information compares with correlation, see Ince

201764). The clustering was performed with a k-means clustering on the absolute

Spearman correlations.

2. A PCA (principal component analysis) method that transforms the features set into

its principal components and uses the n leading components as features.

3. A recursive feature elimination strategy where the model is first trained on all fea-

tures simultaneously, and then re-trained on just the features with more than 1% fea-

ture importance (measured internally by CatBoost). The retraining was repeated un-

til all features had more than 1% importance or until three models had been trained.

4. A CatBoost selection procedure where the nmost important features in the Cat-

Boost model were selected. This procedure was only tested on DLmodels since this

is where it integrates most naturally (in the CatBoost case, it is equivalent to using a

select-n-best procedure with one iteration).

Method 1 was compared against predictive power selection on all available endpoints,

while methods 2 and 3 were compared in terms of four repeated measurements on the
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Figure B.5: Performance of feature selection by predictive power and by correlation clustering in terms of Mathews
correlation coefficient on the different targets.

Figure B.6: Left: performance of the predictive power, PCA, and recursive elimination feature selection methods on four
repeated experiments on the ISUP target variable. Right: performance of DL models trained with predictive power and
CatBoost feature selection on the ISUP target variable.

ISUP target variable. Method 4 was compared to predictive power selection on the three

DLmodels exclusively: MLP, FTT, and 1DCNN.

Method 1 (correlation clustering) was worse than predictive power selection on eight out

of the nine different target variables (Figure B.5), the exception being biochemical progres-

sion. Predictive power selection also outperformed PCA and recursive feature elimination

on average (Figure B.6) over repeated measurements on the ISUP target. For the DLmod-

els, CatBoost feature selection outperformed predictive power selection when training the

ML and the CNN, but not the FTT.With these results in mind, predictive power selec-
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tion was deemed an appropriate choice for the analyses performed in the remainder of this

thesis.
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