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Abstract—Today big data pipelines are increasingly adopted
by service applications representing a key enabler for enterprises
to compete in the global market. However, the management of
non-functional aspects of the big data pipeline (e.g., security,
privacy) is still in its infancy. As a consequence, while functionally
appealing, the big data pipeline does not provide a transparent
environment, impairing the users’ ability to evaluate its behavior.
In this paper, we propose a security assurance methodology
for big data pipelines grounded on the DevSecOps development
paradigm to increase trustworthiness allowing reliable security
and privacy by design. Our methodology models and annotates
big data pipelines with non-functional requirements verified by
assurance checks ensuring requirements to hold along with the
pipeline lifecycle. The performance and quality of our method-
ology are evaluated in a real walkthrough analytics scenario.

Index Terms—Assurance; Big Data; Trustworthiness; DevSec-
Ops

I. INTRODUCTION

To compete in the global market, enterprises must take
advantage of big data, precisely and quickly analyzing the
huge amount of data generated and collected every minute.
Data analysis does not only carry challenges related to data
analytics and processing, but also critical challenges in data
preparation and management. Data in fact can be sensitive
and need to be protected and secured once stored and during
processing, following strict regulations such as the General
Data Privacy Regulation (GDPR) in Europe.

Different ad hoc solutions have been provided to protect
big data analytics infrastructures from threats [1]–[3]. They
mostly focus on compliance with specific regulations [4],
or protection according to traditional requirements such as
confidentiality, integrity, availability, and privacy [5]–[7]. Fur-
thermore, these solutions secure specific portions of a big data
pipeline only, for instance, data preparation with anonymiza-
tion techniques [8]. Big data security is instead a much
larger and multi-facets problem, related to data protection
techniques along with all phases of the pipeline as well as to
the underlying big data infrastructure. The pipeline inevitably
inherits non-functional leaks or strengths from the execution
platform. In turn, the platform depends on the cooperation
and security features of the (cloud) services composing the
platform. For instance, services executed on a platform verified
for confidentiality at rest inherit the support for confidentiality,

if configured properly. Lastly, the development of big data
pipelines is beginning to approach DevSecOps, a development
process integrating security in all its phases. This adoption
is however in its infancy, requiring the adaptation of tra-
ditional DevSecOps controls to big data pipelines, which
are much more complex and difficult than traditional cloud-
based services. To conclude, the lack of proper solutions
for security and assurance of big data pipelines limits their
trustworthiness, and represents a major barrier against high-
quality big data computations. There is a clear need for a more
holistic security assurance solution for big data pipelines,
covering the underlying ecosystem of services, the pipeline
itself, and its development process, in order to finally increase
its trustworthiness.

The approach in this paper aims to fill in the above gap
and puts forward the idea that the development of big data
pipelines can benefit from a standardized paradigm inspired
by DevSecOps, where security checks are considered at each
point of the pipeline life cycle. Our approach builds on security
assurance techniques evaluating whether the target big data
pipeline behaves as expected in terms of given non-functional
requirements (e.g., confidentiality). It enriches the functional
descriptions of the target pipeline with the non-functional
requirements that should hold at each step, and connects these
requirements with assurance checks to be executed at each
point of the corresponding DevSecOps development process,
from planning to operations [9]. Checks vary from model
checking against non-functional requirements to traditional
infrastructure-level checks. In short, our approach takes ad-
vantage of DevSecOps development of big data pipelines to
fully unleash their potential even in critical scenarios where
many requirements must be honored, promoting the “big data-
analytics enabled services” paradigm, where trustworthiness is
of paramount importance.

The contribution of this paper is manifold. We first model
big data pipelines and present a DevSecOps approach for
their development. Second, we define and implement a novel
assurance evaluation suitable for DevSecOps development of
big data pipelines. We then apply it in the context of the
development of a real big data pipeline demonstrating its
usefulness and feasibility.

The remainder of this paper is organized as follows. Sec-



tion II discusses the notion of non-functional assurance eval-
uation based on assurance checks. Section III introduces our
modelling approach for big data pipelines, whose assurance
evaluation methodology is presented in Section IV. Section V
discusses our experimental evaluation. Section VI describes
related work, and Section VII gives our conclusions.

II. ASSURANCE EVALUATION

Non-functional assurance models the degree of confidence
to which a system supports non-functional requirements (e.g.,
“Confidentiality”, “Inter node communication security”). Our
assurance evaluation is implemented using assurance checks.
For instance, let us consider a non-functional requirement
r=data confidentiality at rest. Two different mechanisms of
the target system can be considered as relevant for r: i) a
mechanism for storage encryption, and ii) an access control
mechanism protecting data access. The assurance evaluation
measures, with a certain degree of confidence, whether the
two mechanisms support the confidentiality defined in r. For
instance, it can use two assurance checks: one controlling
the strength of the encryption algorithm and the other the
correctness of the access control system. Assurance checks
are defined as follows.

Definition 2.1 (c): An assurance check c is a function of the
form c : (t, r, param) → (result, artifacts), where t is the target
of the check; r∈R is the requirement to verify; param is the
configuration of c in terms of, for instance, inputs, expected
outputs, URI of the target; result is the outcome of the check,
⊤ if t supports r, ⊥ otherwise; artifacts is a set of details
motivating the outcome (e.g., the output of test cases used in
the check).
Our assurance evaluation uses the outcomes of a set of assur-
ance checks {c1, . . . , cn} to evaluate the assurance confidence.

Definition 2.2 (L({c1, . . . , cn})): The assurance confidence
level is a function of the form L : {c1, . . . , cn}→[0, 1], where
{c1, . . . , cn} is a set of assurance checks referred to the
same requirement r∈R and target t. It is computed as the
ratio between the number of succeeded checks (i.e., assurance
checks returning result=⊤) and of all checks |{c1, . . . , cn}|.
For instance, assuming that the assurance check on storage
encryption fails while the one on access control succeeds in
the above example, the assurance confidence level returns 0.5.

In this paper, assurance checks are implemented as probes
of the following types: i) testing probes, submitting test
cases against a given target and inspecting the results; ii)
configuration probes, evaluating configuration files looking
for specific issues; and iii) monitoring probes, monitoring
the behavior of the target system. We note that the specific
activities implemented in probes depend on the peculiarities
of target t and requirement r.

III. BIG DATA PIPELINE

In this paper, we represent a big data pipeline p using a
two-steps modelling approach (i.e., declarative and procedural)
similar to the one used by TOREADOR project [10].

A. Declarative model

The declarative model describes a big data pipeline at
a high level of abstraction in terms of workflow of steps
and infrastructure layer of services supporting the workflow
execution.

Definition 3.1 (Tp): A declarative model Tp for a given
pipeline p is defined as ⟨[θ1, . . . θn], [σ1, . . . , σm]⟩ where

• [θ1, . . . θn] is an ordered sequence of steps, each step θi
of the form (A, J) describing the abstract processing jobs
j∈J (e.g., cleaning, dimension reduction, clustering);

• [σ1, . . . , σm] is a set of abstract big data infrastructure
layers σi of the form (A,S) describing the abstract
ecosystem of services s∈S supporting the pipeline ex-
ecution (e.g., distributed filesystem, processing engine,
workflow orchestrator).

• A represents a specific area of jobs or services and
is taken from a controlled vocabulary (e.g., ingestion,
preparation, analytics, visualization).

Each area A is connected to specific non-functional require-
ments that should hold in A. In the following, we describe
some of the most prominent areas and requirements.

• Ingestion. The technological connection to the source of
data must be compliant with non-functional requirements.
For instance, specific streaming technologies can be used
to achieve specific performance requirements.

• Preparation. Ingested data should address non-functional
requirements since the veracity of the origin is not enough
(e.g., by filtering, cleansing, and enrichment classifi-
cation). For instance, it requires fast data granulation
techniques to bring large volumes of data to a granularity
and detail level compatible with the privacy preferences
and non-disclosure requirements of the data owners.

• Analytics. Big data computations should be modeled
and processed following non-functional requirements.
Analytics algorithms should be designed with security
and privacy requirements in mind, resulting in security-
and privacy-aware processing. For instance, an analytics
process supporting confidentiality should not disclose
processed information with external services (i.e., outside
the big data perimeter).

• Visualization. The outcome of big data computations can
be sensitive and need to be protected by inferences that
might affect the privacy of data owners. This outcome is
in general the result of aggregations that might reveal
critical data. This scenario should be forbidden, still
preserving a given quality of data.

• Processing. The ecosystem of service supporting dis-
tributed and parallel processing must be compliant with
non-functional requirements. Any leakages in the dis-
tribution of the processing tasks or their orchestration
should be considered, such as insecure distribution chan-
nels or untrusted orchestration.

• Storage. The ecosystem of services for distributed data
storage must be verified against non-functional require-



ments. Similar to traditional storage systems, their weak-
nesses in protecting data at rest have to be considered.

• Infrastructure. It refers to the lowest layer of the big data
infrastructure, including virtualization, operating system,
or, in general, the environment where the services are
executed. Weaknesses at the infrastructure level may have
a severe impact on the entire system.

The declarative model can refer to a set of requirements R
in form of annotations as follows.

Definition 3.2 (TR
p ): An annotated declarative model TR

p is
a declarative model Tp where each step θi and infrastructure
layer σj can be annotated with one or more requirement rk∈R,
denoted as θrki and σrk

j .
The declarative model allows defining an abstract design

plan for a big data pipeline p, leaving implementation details
for further refinement.

Example 3.1 (Annotated Declarative Model): Let us con-
sider a non-functional requirement r=Confidentiality. An an-
notated declarative model TR

p can be defined as ⟨[(Ingestion,
{batch})r, (Preparation, {cleaning})r, (Analytics, {regression
model})r, (Visualization, {save})r], [(Processing, {})r, (Stor-
age, {})r, (Infrastructure, {})r]⟩.

The declarative model in the above example models a
pipeline performing any kind of regression after batch inges-
tion and data cleaning, then saving the model on the storage.
We note that every workflow step and infrastructure service
is asked to satisfy a generic “Confidentiality” non-functional
requirement.

B. Procedural Model

The procedural model represents the incarnation of a declar-
ative model Tp into a more concrete big data pipeline model.
It defines implementation details that are missing in the
declarative model.

Definition 3.3 (IRT ): Let TR
p be an annotated declarative

model. An annotated procedural model IRT instantiates TR
p by

replacing
• each abstract job j∈J in θi with a concrete job of the

form (j, f) where j is the abstract job in TR
p and f is

the concrete function implementing j;
• each abstract infrastructure layer s∈S in σi with the

concrete service supporting job execution;
• each annotated abstract requirement r∈R with a more

concrete and specialized one.
Example 3.2 (Annotated Procedural Model): Let us

consider the annotated declarative model in Example 3.1
and two requirements r1=Confidentiality at rest and
r2=Confidentiality in transit derived from abstract
requirement r. A procedural model IRT with R=[r1, r2]
can be defined as ⟨[(Ingestion, {(batch, LoadHDFS())})r1 ,
(Preparation, {(cleaning, Clean())})r1 , (Analytics,
{(regression model, m=Regression())})r1 , (Visualization,
{(save, SaveHDFS(m))})r1 ], [(Processing, {Spark,
Airflow})r2 , (Storage, {Hadoop HDFS})r1 , (Infrastructure,
{Linux Node})r1,r2 ]⟩. The annotations on IRT express

the need to cope with specific requirements, for instance
jobs in the Ingestion area (i.e., function LoadHDFS()) to
support confidentiality at rest (r1), while the services in the
Infrastructure area (i.e., the Linux Node) to support both
confidentiality at rest (r1) and confidentiality in transit (r2).
The services in the infrastructure layers of IRT are:

• Hadoop HDFS: it is a distributed file system designed to
support the Hadoop Map-Reduce paradigm. It is the core
component of the Apache big data architecture. It also
supports services such as Apache Hive in storing SQL-
like datasets. It is the storing service of the pipeline.

• Spark: it is a framework for large-scale distributed pro-
cessing, based on the concepts of in-memory caching
and optimized query execution. It offers a set of Ma-
chine Learning libraries (Mlib) to be used for analytics
development. Its tasks are defined as a Direct Acyclic
Graph (DAG) of data transformations over a Resilient
Distributed Dataset (RDD). It is one of the processing
services of the pipeline.

• Airflow: it is a workflow manager orchestrating execu-
tions of different Spark tasks, according to DAG orches-
tration. It is one of the processing services of the pipeline,
responsible for the orchestration of the whole workflow.

• Linux Node: it is the operating system of the computing
and storage nodes where the pipeline is executed.

These infrastructure services support the following functions
of the workflow jobs in IRT .

• LoadHDFS: it is the function of the ingestion job provid-
ing batch ingestion. It is implemented in Spark and loads
raw data from Hadoop HDFS.

• Clean: it is the function of the preparation job providing
data cleaning. It is implemented in Spark and cleans the
raw data in order to make them available for analytics.

• Regression: it is the function of the analytics job provid-
ing regression modelling. It is implemented in Spark Mlib
and creates a linear regression model out of the dataset.
It returns a model called m.

• SaveHDFS: it is the function of the visualization job
saving the generated model m for later usage (i.e.,
prediction). It is implemented in Spark and saves data
on the Hadoop HDFS.

C. DevSecOps for big data pipeline

DevSecOps is a development process methodology focused
on ensuring continuous integration (CI) and deployment (CD)
on one side (“Dev” and “Ops”), and embedding security
checks in the development process on the other (“Sec”) [11].
It is a sequence of activities (stages) in a continuous loop,
organized in two groups: development and operation. In the
context of a big data pipeline, these groups of stages are as
follows.

Development focuses on the design and implementation of
the pipeline according to the following stages.
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Fig. 1. Our reference scenario.

• Plan: the service provider designs the pipeline at a high
level identifying the areas for jobs and services and
abstract job representations.

• Code: the service provider produces code for the jobs of
the pipeline. It first identifies the jobs that are suitable for
the pipeline for every area and then implements them.

• Build: the service provider defines the workflows of jobs
and the supporting ecosystem of service.

• Test: the service provider prepares testing activities for
each job of the pipeline.

• Release: the service provider identifies the operation or
staging target and executes integration testing, that is,
testing of the whole workflow.

• Deploy: the service provider deploys the pipeline on a big
data engine in a staging or operation environment, that is,
the pipeline is moved from a local platform to the final
one (or similar to the final one). It includes also eventual
details on the containerization and container orchestration
solution adopted for the deployment (e.g., Kubernetes).

We note that stages Plan, Code, Build, and Test are normally
carried out in the local development environment, while stage
Release is meant to be ready for deployment in staging or
operation environment. Testing activities in the local environ-
ment have to be adapted for the release of the entire pipeline
in staging or operation. We also note that despite the deploy
stage is typically considered part of the operation group, given
the importance of the deployment environment for big data
pipeline development, we consider it part of the development
group.

Operation focuses on packaging and deploying the pipeline
in staging/production environments according to the following
stages.

• Operate: the service provider re-executes part of the
verification carried out in the development stages in
the operation environment, with more emphasis on the
ecosystem of services. It also introduces infrastructure-
levels checks.

• Monitor: the service provider monitors the pipeline be-
havior by inspecting execution traces.

In this paper, we embed our notion of assurance evaluation
in Section II into the above DevSecOps process applied to

LoadHDFS() Clean() SaveHDFS(tmp) LoadHDFS(tmp) m=Regression() SaveHDFS(m)

Hadoop HDFS

Linux Node 

Airflow

Linux Node Linux Node 

Apache Spark

Fig. 2. The running example. Workflow jobs are presented in white boxes
while infrastructure layer services in grey boxes.

big data pipelines, in order to evaluate pipelines against non-
functional requirements, to increase their security and, in turn,
trustworthiness.

D. Reference scenario

Figure 1 shows our reference scenario where a service
provider wishes to develop a big data pipeline p ensuring
a specific set of non-functional requirement R. Following
a DevSecOps approach, our assurance evaluation and cor-
responding assurance checks are automatically triggered to
continuously verify the requirements R during the pipeline
development and operation lifecycle. Figure 2 shows our
running example, underlining jobs, services, and the different
areas. It is an extension of the pipeline in Example 3.2 having
the following annotated procedural model.

Example 3.3 (Running Example): The annotated
procedural model IRT of our running example is
⟨[(Ingestion, {(batch, LoadHDFS())})r1 , (Preparation,
{(cleaning, Clean())}, {(save, SaveHDFS(tmp))})r1 ,
(Analytics, {(batch, LoadHDFS(tmp))}, {(regression
model, m=Regression())})r1 , (Visualization, (save,
{SaveHDFS(m)}))r1 ], [(Processing, {Spark, Airflow})r2 ,
(Storage, {Hadoop})r1 , (Infrastructure, {Linux Node})r1,r2 ]⟩.
It extends the procedural model in Example 3.2 with jobs
(save, SaveHDFS(tmp)) saving cleaned data on a temporary
location tmp, and (batch, LoadHDFS(tmp)) loading cleaned
data. r1 and r2 refer to requirements Confidentiality at rest
and Confidentiality in transit, respectively, in Example 3.2.

IV. ASSURANCE EVALUATION METHODOLOGY FOR BIG
DATA PIPELINE

Our assurance evaluation methodology for big data pipeline,
depicted in Figure 3, follows the DevSecOps paradigm. It
starts from the design of the big data pipeline p at stage
Plan and the corresponding modeling and the annotations of
requirements R as in Section III. It then introduces, during the
“Development” DevSecOps stages, specific assurance checks
to be executed by the CI/CD DevSecOps framework (Devel-
opment Assurance). Prior to move to the “Operation” stages,
our assurance methodology embeds relevant assurance checks
within the big data pipeline (Assurance Weaver) to execute
them in the operation environment. The embedded assurance
checks are selectively executed during the “Operation” stages
according to scheduling options added by the Assurance
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Weaver (e.g., executing the checks every time or just at the
first deployment) (Operation Assurance).

We note that the operation environment is normally not
under full control of the developers, therefore the presence
of assurance checks in the pipeline enables to monitor the
pipeline behavior while deployed in production.

Development Assurance and Operation Assurance collect
assurance checks outcomes (in the form of (result, artifacts)
according to Definition 2.1) at each iteration of the DevSecOps
loop. They then evaluate the corresponding assurance confi-
dence level L({c1, . . . , cn}) in Definition 2.2 (evaluating the
set of result), to proceed in the DevSecOps stages and to
support remediation and improvements (evaluating the set of
artifacts). More specifically, the assurance confidence level is
computed on the set of assurance checks that share the same
target (step θ or infrastructure layer σ) and requirement r.

In the following, we first describe our Development As-
surance addressing “Development” DevSecOps stages. We
then describe the Assurance Weaver and the corresponding
assurance checks execution within Operation Assurance.

A. Development Assurance

Development Assurance refers to the assurance activities
carried out during the Development stages of DevSecOps.
Type of checks to be executed at these stages are as follows.

• Plan - Pipeline annotation: the big data pipeline is mod-
eled and annotated with requirements R following the
declarative and procedural models in Section III. Checks
on the requirements are carried out manually at this stage.

• Code - Instance check: assurance checks verify the cor-
respondence between the annotations on the declarative
model TR

p and requirements R, and between the an-
notated declarative and procedural models TR

p and IRT ,
respectively. Specifically, checks fail in case a require-
ment is not annotated or wrongly annotated, or wrong
correspondence between TR

p and IRT (i.e., in terms of
steps θi or infrastructure layers σi).

• Build - Workflow verification: assurance checks verify the
workflow comparing IRT with the implemented pipeline p
in terms of job correspondence and workflow structure.
We note that this is the first stage where the implemented
pipeline p is checked against the pipeline model.

Every assurance confidence computed at each stage must be
higher than a given threshold to trigger the next stage in the
DevSecOps loop. We note that the thresholds are chosen by
experts according to the considered scenario. In our running
example in Section III-D, when not specified differently, we
consider an assurance confidence level threshold of 0.7.

Example 4.1 (Stages Code and Build): Let us consider the
declarative model TR

p in Example 3.1 and the corresponding
procedural model IRT in Example 3.2. The procedural model
IRT is a correct instantiation of TR

p according to our Instance
check, since all the elements (i.e., steps and infrastructure
layers) in TR

p are instantiated in IRT and with correct non-
functional requirements deriving from the abstract one anno-
tated on the corresponding elements in TR

p (assurance check
ci). The check ci is the only check of type Instance check
and its result is ⊤ (Definition 2.1), therefore the assurance
confidence level of the corresponding evaluation at stage Code
is L({ci})=1. The DevSecOps process can then move on. Let
us assume that in the next development iteration the pipeline p
is updated with the inclusion of two more jobs like in Exam-
ple 3.3 (i.e., our running example). Therefore, p differs from
IRT in Example 3.3. An assurance check cj of type Workflow
verification during Build stage identifies this discrepancy by
inspecting the coded pipeline p with respect to IRT , therefore
returning ⊥. As a consequence, the assurance confidence level
of the corresponding evaluation is L({cj})=0. This failure
prevents the DevSecOps process from moving on, requiring
remediation. In fact, even if functionally equivalent, the fact
the data are temporarily stored after the cleaning job can
constitute a possible violation of r1=Confidentiality at rest.

Other checks of Development Assurance are as follows.

• Test - Job verification: assurance checks verify the im-
plementation of each job in p against the annotated
requirements r∈R separately. For instance, they search
for code weaknesses relevant for each requirement r. As
another example, they verify a that given preprocessing
job does not introduce data leakage (e.g., not allowing
re-identification of anonymized ingested data).

• Release - Release validation: assurance checks verify
the packaging against requirements R. For instance, they
verify that jobs packaged in containers are uploaded to a
private container registry not accessible from the outside.

• Deploy - Deployment validation: assurance checks ver-
ify the deployed services against requirements R. For
instance, they verify that services at infrastructure layers
are correctly configured with respect to requirements.

Example 4.2 (Stages Test, Release, and Deploy): Let us
consider procedural model IRT in Example 3.3 and the cor-
responding implementation p in Example 4.1. Each job needs
to be verified against the annotated requirement. For instance,
in case the function of job “Clean()” calls an external service
for cleaning data, our Job verification check identifies this call
as a possible violation for requirement r1. Assuming assurance
confidence level threshold equal to 1 for this singleton evalu-
ation composed of check Job verification, this failure blocks



from moving to stage Release. Assuming that the above issue
is fixed, let us then consider that the entire pipeline is deployed
with Docker. Checks of type Release validation validate the
correctness of containerized solution by inspecting the docker
compose file. In this case, it contains a correct containerization,
allowing to deploy the pipeline as expected (assurance confi-
dence level=1). Checks of type Deployment validation verify
the correctness of all services’ configurations in p with regards
to r1 and r2. In this case, all the configurations allow for data
protection via encryption and enable secure communication
channels, therefore the assurance confidence level is equal to 1.

B. Assurance Weaver

The assurance weaver embeds the relevant assurance checks
as concrete jobs of the pipeline workflow, mimicking the
Aspect Weaver of the Aspect Oriented programming. The
checks are then executed as part of the pipeline and can benefit
from parallelization if realized accordingly. The assurance
weaver is formally defined as follows.

Definition 4.1 (W (IRT , p, {c1, . . . , cn})): Assurance weaver
is a function of the form W : (IRT , p, {c1, . . . , cn})→p̂. It takes
in input the procedural model IRT , the implemented pipeline
p, the set of identified assurance checks {c1, . . . , cn} and
produces as output a pipeline p̂ with checks {c1, . . . , cn}
added as jobs of the pipeline p.

First, the weaver adds auxiliary steps {γi} to the procedural
model IRT , generating a weaved procedural model ÎRT . Each
auxiliary step γi models an assurance check ci, and includes
i) the abstract job j as the type of assurance check (e.g., Job
verification, Deployment validation); ii) the job function f as
ci. The auxiliary steps are added before or afterward the work-
flow steps θ in ÎRT according to the type of assurance checks.
Finally, the weaver automatically modifies the implemented
pipeline p code guided by the weaved procedural model ÎRT .

Example 4.3 (Assurance Checks Weaving): Let us
consider pipeline p in Example 4.2. The assurance weaver
weaves within p the assurance check ck of area Storage
and type Deployment validation verifying the HDFS
configurations via function f=CheckHDFS(hook, conf).
The weaved procedural model ÎRT is defined as ⟨[(Ingestion,
{(batch, LoadHDFS())})r1 , (Preparation, {(cleaning,
Clean())}, {(save, SaveHDFS(tmp))})r1 , (Analytics, {(batch,
LoadHDFS(tmp))}, {(regression model, m=Regression())})r1 ,
(Visualization, {(save, SaveHDFS(m))})r1 , (Storage,
{(Deployment validation, CheckHDFS(hook, conf))})],
[(Processing, {Spark, Airflow})r2 , (Storage, {Hadoop})r1 ,
(Infrastructure, {Linux Node})r1,r2 ]⟩.

We note that the weaved assurance checks are subjected
to scheduling, meaning that even if the check is weaved in
the pipeline, it can be executed either every time the pipeline
is executed or in case of a specific event. The scheduling
option is added as parameter of the assurance checks during
weaving. For instance, the HDFS check in Example 4.3 can
be scheduled at every re-deployment.
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Fig. 4. Relation between the DevSecOps and our methodology. Develop-
ment Assurance and Operation Assurance together with Assurance Weaver
constitute the building blocks of our assurance evaluation methodology.

C. Operation Assurance

Operation assurance refers to the assurance activities carried
out during the Operation stages of DevSecOps. It includes two
types of assurance checks driven by the assurance weaver.

• Operation - Infrastructure scan: assurance checks verify
the infrastructure underlying the pipeline with regards to
requirements R. For instance, it includes checks against
cloud provider’ configurations or against the operating
system of private servers.

• Monitor - Trace monitor: assurance checks verify the
execution of each part of the pipeline with regards to
requirements R, reusing the assurance checks weaved in
the pipeline. We note that inputs of the weaved checks can
involve values that are only available in these stages [12].
For instance, the path of HDFS storage input of an
assurance check to verify its configuration is available
only in the operation environment (i.e., it can differ from
the one used in staging).

We note that, during operation assurance, the assurance
confidence level is retrieved as in development assurance in
Section IV-A but it does not block any DevSecOps stages.

Example 4.4 (Operate and Monitor stages): Let us consider
the weaved pipeline p̂ in Example 4.3. A check of type
Infrastructure scan inspects the Linux nodes of our cluster
looking for vulnerabilities. Assuming that some nodes host a
Linux distribution with some well-known vulnerabilities, the
assurance check returns a negative result (⊥), implying that
some remediation has to be carried out on the infrastructure.



Let us then assume that a check of type Trace monitor
verifying the working of job “Clean()” has been weaved in
the pipeline. The check requires information on the cleaning
parameters, which are defined at run time. Our weaver is able
to retrieve and weave this information, allowing the check to
work properly.

Figure 4 shows the relation between our assurance method-
ology for big data pipelines and DevSecOps stages.

V. EXPERIMENTAL EVALUATION

We evaluated our approach in terms of soundness and
usefulness, by presenting a walkthrough of our reference
example in Section III-D and evaluating its performance.

A. Experimental Setup

Our experimental setup is based on GitLab CI/CD where we
implemented, annotated, and evaluated the big data pipeline
in Section III-D according to our methodology. Our big data
platform is based on the Apache ecosystem with Hadoop as the
distributed filesystem, Spark as the computation framework,
and Airflow for pipeline definition and scheduling. GitLab
CI/CD orchestrates the jobs linked to the development and
deployment of the pipeline, including tests, assurance checks,
and operation monitoring. The GitLab runner is deployed on
a bare-metal configuration of NixOS with an AMD 5900x
processor, 32 GB of memory, and Linux kernel 5.17.5. The
running example we implemented was applied to the “Titanic”
dataset1 with the goal of producing a linear regression model
predicting whether a passenger will survive the sinking. We
consider a portion of the dataset for testing during development
stages, and the entire dataset for the deployment in operation.

B. Walkthrough Evaluation

In the following, we present a set of concrete checks and
their results on the first complete run of DevSecOps applied to
the above pipeline, whose modeling is shown in Table I. For
simplicity, we set the Confidence Level threshold to 0.7 for all
the evaluations, although we note that the threshold can vary
(Definition 2.2). For brevity, we present the assurance checks’
parameters param only, while target t and requirements r for
each check c are listed in Table I.

1) Development Assurance: Figure 5 shows a portion of
the YAML file describing the different checks to be carried
out in the different development stages. We note that the
YAML file includes a stage called operation where the as-
surance weaver is executed. We also note that the declarative
model TR

p is specified in the YAML as MODEL, while the
implemented pipeline in the procedural model IRp is specified
as DAG_FILE. Table II shows the pseudo code of probes
implementing the assurance checks described in the following.

At stage Code, two assurance checks of type Instance check
are applied checking: i) the correctness of annotations of
requirements R in the declarative model TR

p (c1(TR
p , R)); and

ii) IRT with respect to TR
p (c2(TR

p , IRT )). Both checks suc-
ceeded, leading to assurance confidence level L({c1, c2})=1.

1https://www.kaggle.com/c/titanic

TABLE I
WALKTHROUGH OF OUR RUNNING EXAMPLE IN EXAMPLE 3.3

Worflow in IRT
A1=Ingestion j1=(batch, LoadHDFS()) r1

A2=Preparation j2=(cleaning, Clean())
r1j3=(save, SaveHDFS(tmp))

A3=Analytics j6=(batch, LoadHDFS(tmp))
r1j4=(regression model, m=Regression())

A4=Visualization j5=(save, SaveHDFS(m)) r1

Services in IRT
A6=Processing {s1=Spark, s2=Airflow} r2
A5=Storage {s3=Hadoop} r1
A7=Infrastructure {s4=Linux Node} r1, r2

Assurance Checks c

t r

c1 TR
p r1, r2

c2 IRT
c3 p
c4 j1, . . . , j6 r1
c5 j1, . . . , j6 r1
c6 j1, . . . , j6 r1
c7 j3, j5, j6 r1

t r
c8 p r1, r2
c9 s1 r2
c10 s2 r2
c11 s3 r1
c12 s4 r1, r2
c13 s4 r1, r2

R = r1= Confidentiality at rest
r2= Confidentiality in transit

IRT = ⟨[(A1, {j1})r1 , (A2, {j2, j3})r1 , (A3, {j6, j4})r1 , (A4, {j5})r1 ],
[(A6, {s1, s2})r2 , (A5, {s3})r1 , (A7, {s4})r1,r2 ]⟩

...
variables:
DAG_FILE: ./dags/classification.py
MODEL: ./model.yml

stages:
- code
- build
- test
- release
- deploy
- operation

# CODE
c1:
stage: code
script:
- python3 ./tests/c1.py -r r1 -r r2

rules:
- if: $SKIP_C1 != "true"

c2:
stage: code
script:
- python3 ./tests/c2.py

rules:
- if: $SKIP_C2 != "true"

...

Fig. 5. Portion of the YAML description for Development Assurance checks.

At stage Build, one assurance check of type Workflow
verification is applied checking IRT against p (c3(IRT , p)) with
success, leading to assurance confidence level L({c3})=1.

At stage Test, four assurance checks of type Job verification
are applied targeting the jobs of the pipeline’s workflow: i) one
check looking for vulnerable code specifically impacting r1
(c4(p)); ii) two checks for code inspection aimed at finding
hidden temporary storage where data can be stored during the
processing impacting r1 (c5(p, uris)), and finding connection
to external services allowing data exfiltration (c6(p, urls));

https://www.kaggle.com/c/titanic


iii) one check verifying the correctness of the endpoints’
configurations (expected args) in relation to requirement r1
(e.g., correct storage endpoint) (c7(p, expected args)). Check
c4 raised some warnings related to r1 that are severe enough to
consider the check failed, leading to assurance confidence level
L({c4, c5, c6, c7})=0.75. This level is above the threshold
allowing to move to the next DevSecOps stage.

At stage Release, one assurance check of type Release
validation was applied to check the Docker files (docker file)
and Docker Compose file (docker compose file) to check
the composition (c8(docker file, docker compose file)). These
files allow for a correct deployment of our pipeline, leading
to an assurance confidence level L({c8})=1.

At stage Deploy, three assurance checks of type Deploy-
ment validation are applied analyzing the configurations of
Spark, Airflow, and HDFS in terms of acceptable thresh-
old of warnings (c9(threshold, r2), c10(threshold, r2) and
c11(threshold, r1)). Checks c9 against Spark and c11 against
HDFS failed, revealing wrong configurations in relation to
encryption, leading to L({c9, c10})=0.3. Being below our
threshold, it prevents other stages.

After fixing the above issues, the CI/CD moves to operation,
where the assurance weaver embeds assurance checks within
the Big Data pipeline. In particular, it introduces c4 and c7
prior to pipeline stage θ1; c9, c10, and c11 after pipeline stage
θ4. It also adds scheduling parameter to c4, c9, c10, c11 to
trigger them just once, while c7 has not scheduling restrictions.

2) Operation Assurance: At stage Operate, we applied
two additional assurance check of type Infrastructure scan to
check operating system-level vulnerabilities against the Linux
cluster: i) c12(threshold, openscap conf , environment) based
on OpenSCAP; ii) c13(threshold, openvas conf , environment)
based on OpenVAS for requirements r1 and r2. No severe vul-
nerabilities were identified, leading to an assurance confidence
level L({c12, c13})=1.

At stage Monitor, we applied assurance checks of type Trace
monitor, corresponding to those embedded by the assurance
weaver (Section V-B1). They discovered no issues, leading to
a Confidence Level L({c4, c7, c9, c10, c11})=1.

C. Performance

We evaluated the performance of our approach in terms of
the additional computational time requested by the application
of the assurance methodology in Section IV on the running
example in the above walkthrough. For the sake of simplicity,
we consider the following performance scenarios, based on
the assumption that assurance checks are triggered when
needed due to relevant changes (e.g., changes on the target
of assurance, assurance checks, or environment).

• First Deployment (FD): it includes all the checks re-
quested for the first complete round of DevSecOps.

• Pipeline Updates (PU): it includes changes at pipeline
level due to updates on jobs or services. This scenario
forces the re-evaluation of Development Assurance.
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Fig. 6. Performance of our walkthrough in different scenarios.

• Checks Changes (CC): it considers updates of assurance
checks, in particular those used in operation assurance.
This scenario forces the re-execution of the updated
checks both in Development and Operation.

• Infrastructure Changes (IC): it considers changes on the
operation infrastructure or, in general, the environment,
including the discovery of new weaknesses potentially
impacting the infrastructure. It forces the re-evaluation
of Infrastructure scan during Operation Assurance.

• Monitoring Issues (MI): it considers situations where
issues are found during monitoring. Once the correspond-
ing jobs are fixed, assurance checks insisting on such jobs
are re-executed.

Figure 6 shows the results of our performance evaluation
in the different scenarios. We note that i) the histogram does
not include check c13 for plotting reasons since its time of
execution (available in Table III) is significantly larger then the
other checks; ii) the times of execution are stacked assuming a
sequential execution, although most checks can be parallelized.
Table III shows the checks included in each scenario and
their averaged execution time. c1, c2, c3, c5, c6, c7, c10 and
c11 terminated in approximately 1 second without raising
any warnings. c4 executed in 3.9 seconds raising only minor
warnings related to code style and readability. c8 terminated in
3 seconds, with the Docker images already built and retrieved
from cache. Check c9 executed in 2.1 seconds while c11 in
1.2, and they both raised warnings regarding misconfigurations
in the encryption settings of the respective target services.
Finally, c12 and c13 terminated respectively in 4.5 and 93.3
seconds, without raising any issues.

To conclude, the execution time of the checks in each stage
did not vary much between the different scenarios, with the
total execution time in the most complete scenario (FD) being
less than 21 seconds, which is a far shorter than the typical
time required to execute a big data pipeline. In fact, our
pipeline executes in 108 seconds on our experimental setup
based on a small dataset (i.e., almost 1300 rows), therefore
the entire assurance overhead is approximately 19%.



TABLE II
ASSURANCE CHECK PROBES: PSEUDO CODE

Instance check
def c1(model, expected requirements):
model = Model.parse file(model)
model requirements = {

r for s in model.tasks.values()
for r in s.requirements

}.union({
r for s in model.services.values()

for r in s.requirements
})
missing requirements = expected requirements.

difference(model requirements)
if missing requirements:

print(f”Missing: {missing requirements}”)
sys.exit(1)

def c2(model, expected requirements):
model = Model.parse file(model)
dags = load dags from file(dag file)
for dag val in dags.values():

for t name, t def in dag val.task dict.items():
assert t def.area == model.tasks[t name].area
for req in t def.requirements:

assert set(t def.requirements) ==
model.tasks[t name].requirements

Workflow verification
def c3(model, dag file):
model = Model.parse file(model)
dags = load dags from file(dag file)
for dag val in dags.values():

for t name, t def in dag val.task dict.items():
assert t def.downstream task ids ==

model.tasks[t name].next

Release validation
def c8(docker file, docker compose file):
if docker file:

subprocess.check output([
”docker”, ”build”, ”−−file”,
docker file, ”−t”, ”test image”, ”.”])

subprocess.check output([
”docker”, ”scan”, ”test image”])

if docker compose file:
subprocess.check output([

”docker−compose”, ”config”, ”−f”,
docker compose file])

Job verification
def c4(dag file):
warnings = run pylint(target file=dag file)
types = {warning[”type”] for warning in warnings}
if ”error” in types:

pprint([ w for w in warnings
if w[”type”] == ”error”])

sys.exit(1)

def c5(dag file, expected urls):
dags = load dags from file(dag file)
sources = []
for dag val in dags.values():

for t name, t def in dag val.task dict.items():
sources += get sources(t def)

urls = {url for src in sources
for url in hdfs paths probe(src)}

unexpected urls = expected urls.differendce(urls)
if unexpected urls:

print(”Unexpected URLs:”)
pprint(unexpected urls)
sys.exit(1)

def c6(dag file, expected urls):
dags = load dags from file(dag file)
regex = URL REGEX
sources = []
for dag val in dags.values():

for t name, t def in dag val.task dict.items():
sources += get sources(t def)

sources = list(filter(lambda e: e is not [], sources))
urls = {url for src in sources

for url in re.findall(regex, src)
if url is not []}

unexpected urls = expected urls.differendce(urls)
if unexpected urls:

print(”Unexpected URLs:”)
pprint(unexpected urls)
sys.exit(1)

def c7(dag file, dag id, task id, expected args):
expected args = dict(expected args)
dags = load dags from file(dag file)
args = operator args extractor(dags[dag id], task id)
args = {k: str(v) for k, v in args.items()}
for k, v in expected args.items():

if args.get(k) != v:
print(f”expected {k} to be {v}”

f” but found {args.get(k)}”)
sys.exit(1)

Deployment validation
def c9(requirements, threshold):
kerberos login(”bertof/my.engine”, ”eng.keytab”)
spark = spark config check(requirements)
print(”Spark warnings:”)
pprint(spark[”warnings”])
if score < threshold:

sys.exit(1)

def c10(requirements, threshold):
kerberos login(”bertof/my.engine”, ”eng.keytab”)
airflow = airflow config check()
print(”Airflow warnings:”)
pprint(airflow[”warnings”])
if score < threshold:

sys.exit(1)

def c11(requirements, threshold):
kerberos login(”bertof/my.engine”, ”eng.keytab”)
enc = hadoop config check encryption(requirements)
sec = hadoop config check security(requirements)
hadoop = merge dicts(enc, sec)
hadoop[”score”] = min(enc[”score”], sec[”score”])
print(”Hadoop warnings:”)
pprint(hadoop[”warnings”])
if score < threshold:

sys.exit(1)
print(”Ok”)

Infrastructure scan
def c12(threshold, openscap conf, environment):
environment = dict(environment)
config = yaml.load(openscap conf, yaml.FullLoader)
openscap res = openscap check(

config=openscap conf, environment=environment)
print(”Openscap warnings:”)
pprint(openscap res[”warnings”])
if openscap res[”score”] < threshold:

sys.exit(1)

def c13(threshold, openvas conf, environment):
environment = dict(environment)
config = yaml.load(openvas conf, yaml.FullLoader)
openvas res = openvas check(

config=openvas conf, environment=environment)
print(”Openvas warnings:”)
pprint(openvas res[”warnings”])
if openvas res[”score”] < threshold:

sys.exit(1)

TABLE III
CHECKS INCLUDED IN EACH PERFORMANCE SCENARIO

Type Id Time (s) FD PU CC IC MI

Instance check c1 0.900 • •
c2 0.898 • •

Workflow verification c3 0.884 • • •

Job verification

c4 3.946 • • •
c5 0.905 • • •
c6 0.902 • • •
c7 0.888 • • • •

Release validation c8 3.028 • •

Deployment validation
c9 2.130 • • • •
c10 1.130 • • • •
c11 1.180 • • • •

Infrastructure scan c12 4.500 • •
c13 93.347 • •

VI. RELATED WORK

Recent years have been characterized by intense research
on big data and its protection, and on security assurance in
general. Big data security concerns enriching and protecting
big data computations with security techniques. Research on
this topic emerged around 2012 [13], and it immediately
become clear that, first and foremost, big data security must
adequately protect stored data [13]. It then moved towards
a larger definition of security embracing pipelines themselves
with approaches still centered on data [14]. This translates into
securing big data pipelines according to the CIA (Confidential-
ity, Integrity, Availability) triad [6], [7]. Scenarios involving
high-sensitive data (e.g., healthcare) and the emergence of
legal regulations such as General data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA) called
for the inclusion of privacy in the triad [5], [7]. In general,
security issues can occur and be counteracted at any step



of the pipeline [15], and protection techniques must find
an appropriate tradeoff between the quality of the analytics,
the degree of security, as well as the performance of the
analytics [5], and enforce legal compliance [4].

Security assurance is a suitable approach to address security
and privacy concerns in big data. It follows the applica-
tion of security countermeasures and aims to verify whether
such countermeasures work in practice, enabling the big data
pipeline to demonstrate a (set of) non-functional require-
ments [16]. The main techniques at the basis of non-functional
requirements verification range from testing [17], [18] to mon-
itoring [19], [20]. Other approaches include Trusted Platform
Modules [21] and security assurance cases [22], to name but
the most relevant.

To the best of our knowledge, very few solutions have been
presented for assurance in big data-based systems. They in
fact mostly address SLA compliance (e.g., [23], [24]), specific
requirements (e.g., privacy [4]), DevOps integration without
“Sec” (e.g., [25]), or DevSecOps integration without adequate
emphasis on assurance (e.g. [26]). The approach in this paper
addresses the confluence of big data pipelines developed in a
DevSecOps fashion.

VII. CONCLUSIONS

Big data pipelines process and gain insights from a vast
amount of critical data, whose scale poses additional chal-
lenges to the application of security and privacy counter-
measures. For this reason, it is of paramount importance
to ensure that such countermeasures and the whole pipeline
work as expected. The assurance methodology in this paper
provides the first boost in this direction, integrating assurance
checks within a DevSecOps-based big data pipeline where the
pipeline behavior in operation is continuously verified thanks
to inserted assurance checks.
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