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 Abstract 

 We report herein the synthesis of a new biologically active 3,4-dihydropyrimidin-2(1H)-

thione derivative (4) from 9-phenanthrenecarboxaldehyde, thiourea, and methyl acetoacetate by 

the Biginelli reaction. The structure of the synthesized compound was investigated by NMR 

spectroscopy, mass spectrometry, and elemental analysis. Moreover, to gain insight into the 

conformation and crystal packing, the structure of the novel dihydropyrimidine was also studied 

by single-crystal X-ray diffraction. The Hirshfeld surface and contact enrichment analyses were 

used to better understand the molecular interactions. Considering the biological activity of 

dihydropyrimidines, the antibacterial effect of the synthesized compound was evaluated against 

A. baumanii, E. coli, P.aeruginosa, K. pneumoniae, and S. aureus; interestingly, high activity 

was detected against S. aureus. Additionally, computational studies were performed using the 

Gaussian package and the Maestro Schrodinger programs, and the theoretical IR and NMR 

spectra of compound 4 were examined. Finally, an ADME/T analysis was performed to estimate 

the drug-likeness of the compound. 

 Keywords: thiodihydropyrimidine, Hirshfeld surface analysis, crystal structure, 

molecular docking, ADME/T. 
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1. Introduction 

 One-pot multicomponent reactions represent a potent synthetic method and a versatile, 

multifaceted tool for the production of a wide range of molecules with a broad spectrum of 

activities. Multicomponent reactions are gaining popularity day by day because they provide 

synthetic chemists with a number of extraordinary “trump cards” over traditional linear 

synthesis, including ease of use, simplicity of starting building blocks, high level of product 

complexity, and broad diversification [1-3]. The three-component, one-pot Biginelli reaction, 

which was discovered by the Italian chemist Pietro Biginelli in 1893, belongs to this type of 

transformation. This approach has found application in the synthesis of dihydropyrimidines, a 

class of two-nitrogen-containing six-membered heterocycles. This reaction, which is a 

combination of an aldehyde, a methylene-active compound, and a urea derivative, has been 

intensively studied, becoming increasingly popular among medicinal chemists after the 

discovery of the biological activities of dihydropyrimidines, which constitute ideal drug 

candidates. Another “ace up the sleeve” of the Biginelli reaction is the ease of introduction of 

various pharmacophoric groups in the structure of dihydropyrimidines, allowing their easy 

modification and the creation of hybrid molecules to enhance the range of their biological 

activities [4-9]. As a result, various investigations performed by scientists from all over the 

world have led to the obtainment of antitubercular compounds [10], mPGES-1 inhibitors [11], 

antidiabetic, antimalarial [12], antiepileptic [13], anti-HIV [14], anti-hypertensive [15-19], anti-

inflammatory [20-22], antibacterial [23-26], antitumor [27-32], anti-leishmanial, antiproliferative 

[33], antiviral, antifungal [8, 9] agents, miscellaneous [34-36], potassium [37-39] and calcium 

channel and α1aadrenergic antagonists [40]. However, this broad spectrum of biological activities 

is not the only reason why this class of compounds is a promising source of drug candidates. A 

“business card” of dihydropyrimidines that confirms their suitability as drugs is their presence in 

the structures of several therapeutic agents, including (S)-monastrol [41], 5-fluorouracil [42, 43], 

(S)-enastron [31], mon-97 [44], (R)-fluorastrol for the treatment of cancer [45], batzelladine A 

and B for the treatment of HIV [14], terazosin for the treatment of benign prostatic hyperplasia 

and high blood pressure [43], riboflavin (dietary supplement) [46], idoxuridine for the treatment 

of herpesvirus [47, 48], aminophylline for the treatment of asthma or COPD-based airway 

obstruction [49], methylthiouracil as antithyroid preparation [50]. Overall, these advantages have 

encouraged scientists to optimize synthetic methods to produce dihydropyrimidines, searching 

for innovative catalysts and constructing new molecules from different building blocks by 

employing the Biginelli reaction. To gain a deeper insight into the stereochemistry, 

conformation, and non-covalent interactions between molecules, which are key factors affecting 

activity, various methods have been used, leading to the development, enhancement and 

enrichment of their chemistry [51-53]. Furthermore, theoretical calculations have been 

frequently used to predict and/or explain their activities by finding the relationship between the 

structure of the investigated molecule and its biological effect [54, 55]. 
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 In this work, a new thiourea-based dihydropyrimidine derivative was synthesized from 9-

phenanthrenecarboxaldehyde by a microwave-mediated Biginelli reaction in the presence of 

cerium chloride. Because crystals of this compound were obtained, its structure was investigated 

by single-crystal X-ray diffraction (SC-XRD). In addition, the Hirshfeld surface and contact 

enrichment analyses were performed to quantify the molecular interactions and understand their 

importance in the crystal packing. Moreover, due to the fact that dihydropyrimidines 

demonstrate a wide spectrum of biological activities, the antibacterial effect of the compound 

was analyzed against Gram-positive (S. aureus) and Gram-negative bacteria (A. baumanii, E. 

coli, P.aeruginosa, K. pneumoniae), leading to promising results. Finally, computational studies 

of the novel dihydropyrimidine derivative were performed on the b3lyp/6-31g(d) basis set. 

Calculated IR and NMR spectra of the molecule were compared to the experimental data and 

examined in detail. Subsequently, molecular docking calculations were carried out using 

Staphylococcus aureus (PDB ID: 3G7B) [56], Pseudomonas aeruginosa (PDB ID: 2UV0) [57], 

and Escherichia coli proteins (PDB ID: 4WUB) [58]. 

 

2. Materials and methods 

 

2.1 General Information 

 All solvents and reagents, purchased from commercial suppliers, were of analytical grade 

and used without further purification. The control of the reaction progress and the determination 

of the purity of the synthesized compounds was done by thin-layer chromatography (TLC) on 

Merck silica gel plates (60 F254 aluminium sheets), visualized under UV light. Melting points 

were recorded in open capillary tubes on a Buchi B-540 apparatus and were uncorrected. 

Elemental analysis was performed on a Carlo Erba 1108 analyzer. 

 

2.2 Experimental synthesis procedure 

 Synthesis of 6-methyl-4-(phenanthren-9-yl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (4) by the Biginelli reaction (Scheme 1). 

 0.5 mmol (103 mg) of 9-phenanthrenecarboxaldehyde (1), 0.79 mmol (60 mg) of thiourea 

(2), and 0.147 mmol (0.055 mg) of CeCl3∙7H2O were added to a microwave vial with a magnetic 

stirrer and dissolved in 1 mL of ethanol. Subsequently, 0.556 mmol (60 µl) of methyl 

acetoacetate (3) was added to a vial, which was sealed and irradiated at 100 ⁰ C in a microwave 

reactor for 2.5 h at a maximum power of 200 W (CEM Discover System). At the end of the 

reaction time, the yellow precipitate (in the absence of a precipitate, the solvent was partially 

evaporated to facilitate the formation of the solid) was filtered, washed with distilled water, and 

dried. The purity of the compound was 90%, at this step. Further purification of 4 was performed 

by the Biotage Isolera One Flash Chromatography System (cyclohexane-ethyl acetate-methanol) 

using both the reaction solution and the precipitate. After purification and removal of the solvent, 

a yellow solid was obtained. Single crystals of 4 were grown by crystallization from a methanol-

ethyl acetate mixture (4:1). Yield: 68 %. M.p.: 254.1 °C. 1H NMR (DMSO-d6, δ, ppm): 2.53 (s, 
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3H, CH3), 3.42 (s, 3H, OCH3), 6.14-6.15 (s, 1H, CH), 7.60-7.78 (m, 5H, 5CArH,), 7.97-8.00 (d, J 

= 9 Hz, 1H, 1CArH), 8.51-8.54 (t, J = 6 Hz, 1H, CArH), 8.80-8.92 (m, 2H, 2CArH), 9.72 (s, 1H, 

NH), 10.50 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm): 17.37 (CH3), 50.1 (CH), 51.07 (OCH3), 

99.63 (C), 122.73 (CArH), 123.46 (CArH), 124.47 (CArH), 125.21 (CArH), 125.53 (CArH), 126.82 

(CArH), 126.99 (CArH), 127.32 (CArH), 128.89 (CArH), 129.04 (C), 129.75 (CAr), 130.46 (CAr), 

130.78 (CAr), 136.09 (CAr), 146.55 (CAr), 165.57 (COO), 174.04 (CS). HRMS (ESI‐ MS): 

363.17 [M+H]+ (Figure S1-S4). Elemental analysis calcd. for C21H18N2O2S, %: C, 69.59; H, 

5.01; N, 7.73. Found, %: C, 69.69; H, 5.13; N, 7.81. 

 
Scheme 1. Synthesis of the title dihydropyrimidine (4). 

 

 2.3 NMR experiments 

 The NMR experiments were performed on a BRUKER FT NMR spectrometer AVANCE 

300 (Bruker, Karlsruhe, Germany) (300 MHz for 1H and 75 MHz for 13C) with a BVT 3200 

variable temperature unit in 5 mm sample tubes using Bruker Standard software (TopSpin 3.1). 

Chemical shifts are given in ppm (δ) and are referenced to internal tetramethylsilane (TMS). 

Multiplicities are declared as follows: s (singlet), d (doublet), t (triplet), and m (multiplet). 

Coupling constants J are given in Hz. The experimental parameters for 1H are as follows: digital 

resolution = 0.23 Hz, SWH = 7530 Hz, TD = 32 K, SI = 16 K, 90° pulse-length = 10 ms, PL1 = 

3 dB, ns = 1, ds = 0, d1 = 1 s and for 13C as follows: digital resolution = 0.27 Hz, SWH = 17985 

Hz, TD = 64 K, SI = 32 K, 90° pulse-length = 9 ms, PL1 = 1.5 dB, ns = 300, ds = 2, d1 = 3 s. 

NMR-grade DMSO-d6 (99.7%, containing 0.3% H2O) was used to solubilize the synthesized 

compound. 

 2.4 Mass experiments 

 High-resolution mass spectrometry (HRMS) was performed using electrospray ionization 

(ESI) in positive-ion detection mode. 

 2.5 X-Ray analysis 

 X-Ray analyses were performed on a Bruker SMART APEX II Single Crystal X-ray 

Diffractometer equipped with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The 

crystal structure was solved by direct methods and refined on F2 by full-matrix least-squares 

using Bruker's SHELXTL-97 [59]. The details of the crystallographic data for the synthesized 

compound are summarized in Table 1. Crystallographic data for the structural analysis were 
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deposited to the Cambridge Crystallographic Data Center under accession number CCDC 

2103266. The refined structure was inspected using ORTEP-3 (v. 2020.1) [60] and analyzed by 

Mercury 4.0 (v. 2021.3.0) [61] and PARST [62], within the WinGX suite (v. 2021.3) [60]. 

Graphical representations were rendered with Mercury. 

 2.6. Hirshfeld surface analysis 

 Hirshfeld surfaces and two-dimensional fingerprint plots were generated using 

CrystalExplorer21 (v. 21.5) [63]. Contact enrichment analysis was performed using 

MoProViewer (v. 1.2000) [64]; details are provided in the Supplementary Materials. 

 2.7. Antibacterial activity 

 The disc diffusion method, as reported by Mayrhofer [68], was used to screen the 

antibacterial activity of compound 4. In detail, 1 mL of the fresh bacterial suspension was 

swabbed (105 CFU/mL) on the surface of the nutrient medium (Mueller Hinton Agar (MHA)), 

and plates were used 15 min after preparation. The test compound was solubilized in DMSO, and 

discs with certain concentrations were stratified on the surface of the nutrient medium using 

sterile tweezers. Plates were incubated at 37 °C for 24 h. The inhibition zones were measured 

and compared to those of control plates without the compound and with the known drugs 

cefotaxime and ceftriaxone. 

The minimum inhibitory concentration of the test compound was determined by the two-

fold microdilution method [65-67], using resazurin dye, in accordance with CLSI guidelines 

[87]. The compounds were prepared according to CLSI standards and diluted in U-bottom 96-

well microtiter plates containing Muller Hinton Broth (MHB). The bacterial strains were 

prepared freshly from overnight cultures. The final density of test cultures was adjusted to 105 

CFU (colony forming units) by using a digital densitometer. The bacterial suspension was added 

to each well of the microplate and incubated at 37 °C for 24 h. As a result, the concentration of 

the tested compound ranged from 1000 to 7.8 μg/mL. The growth of the bacterial cells was 

determined by the resazurin method. After incubation, 30 μL of resazurin dye (0.01 %) (Sigma 

Aldrich) was added to each well, and the microplates were again placed in an incubator for 3-4 h. 

The minimum inhibitory concentration (MIC) was defined as the lowest concentration of 

compound that prevented a color-change from blue to pink (bacterial growth was indicated by 

the pink color). The MIC value of the studied compound was compared with that of ceftriaxone. 

 2.8 Computational Approach 

 The calculation on the Gaussian software program was made in B3LYP with the 6-31g(d) 

basis set [69, 70]. Quantum chemical parameters, including HOMO (Highest Occupied 

Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital), ΔE (HOMO-LUMO 

energy gap), chemical potential (μ), electrophilicity (ω), chemical hardness (η), global softness 

(σ), nucleophilicity (ε), dipole moment, and energy values were calculated using the below-given 

equations [71]: 
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=
1

2
(𝐼 − 𝐴) ≅ −

1

2
(𝐸𝐻𝑂𝑀𝑂 − 𝐸𝐿𝑈𝑀𝑂) 

𝜎 = 1 𝜂⁄          𝜔 = 𝜒2 2𝜂⁄               𝜀 = 1 𝜔⁄  

The program developed by the Maestro Molecular modelling platform (version 12.8) by 

Schrödinger [72] was used for molecular docking simulations. Calculations were made up of 

several steps, each performed differently. In the first step, the “protein preparation module” [73] 

was used for the determination of the active sites of the proteins. The next step was the 

preparation of the compound. For this purpose, the molecule was first optimized with the 

Gaussian software, and then the LigPrep module [74] was employed for the calculations using 

the optimized structure. The Glide ligand docking module [75] was used to examine the 

interactions between the molecule and the target proteins from Staphylococcus aureus (PDB ID: 

3G7B) [56], Pseudomonas aeruginosa (PDB ID: 2UV0) [57], and Escherichia coli (PDB ID: 

4WUB) [58]. Calculations were performed using the OPLS4 method. Finally, an ADME/T 

analysis (absorption, distribution, metabolism, excretion, and toxicity) was performed to 

examine the druglikeness of the compound. The Qik-prop module [76] of the Schrödinger 

software was used to predict the effects and transformations of the molecule after human 

metabolism. 

 3. Results and discussion 

  

 3.1 Chemical synthesis.  

 A large number of procedures have been developed for the Biginelli reaction, resulting in 

the synthesis of dihydropyrimidines in high yields and with simple work-up techniques. In the 

present case, several catalysts including Cu(OTf)2, InCl3, InBr3, CF3COOH, Yb(OTf)3, YbCl3, 

HCl, H2SO4, NH4Cl, CAN, CH3COOH, CH2ClCOOH and others did not lead to the desired 

compound [8]. We were only able to obtain the title dihydropyrimidine by improving a literature 

procedure [52] and performing the reaction under microwave irradiation (Scheme 1). The 

structure of the newly synthesized dihydropyrimidine was determined by 1H, 13C NMR, mass 

spectrometry, and elemental analysis. As it can be seen from the 1H NMR spectrum, the signals 

from the methyl and methoxy groups are observed at 2.53 and 3.42 ppm, respectively, whereas 

the CH group is at 6.14 ppm. Their positions in the 13C NMR spectrum are at 17.37, 50.1, and 

51.07 ppm. The signals from amine groups of the dihydropyrimidine core are observed at 9.72 

and 10.5 ppm, whereas the positions of the ester and thiocarbonyl group are at 165.57 and 

174.04 ppm, respectively (Figure 1S-4S). 

 

 3.2 Structure description. 
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 Single crystals of the title compound were obtained by the slow evaporation of a 

methanol-ethyl acetate (8:1) solution, after 4 weeks. Crystallographic data and refinement details 

are given in Table 1. 

Table 1. Crystal data and structural parameters of compound 4. 

Crystal data 

Chemical formula C21H18N2O2S  

Mr 362.43 

Crystal system, space group Monoclinic, P 1 21/n 1 

Temperature (K) 120.03 

a, b, c (Å) 5.0021(19), 29.981(11), 23.097(8) 

Β (°) 93.209(9) 

V (Å3) 3458(2) 

Z 8 

Radiation type Mo-Kα (λ = 0.71073 Å) 

µ (mm−1) 0.206 

Crystal size (mm) 0.28x0.05x0.03 

Data collection 

Diffractometer Bruker-Axs Smart-Apex CCD 

Absorption correction multi-scan 

Tmin, Tmax 0.5189, 0.7452 

No. of measured, independent and 

observed [I > 2σ(I)] reflections 

25243, 6043, 1516 

Rint 0.3725 

Structure Refinement 

R, wR2, S 0.0817 [I > 2σ(I)] and 0.3217 [all], 0.1373 [I > 2σ(I)] and 

0.1751 [all], 0.715 [all] 

No. of parameters 473 

No. of restraints 534 

Δρmax, Δρmin (e Å−3) 0.491, -0.321 

 Compound 4 crystallized in the monoclinic space group P21/n with two independent 

molecules (I and II) in the asymmetric unit, representing the two enantiomers of a racemic 

mixture. The structure is shown in Figure 1 as an ORTEP diagram, with the arbitrary atom-

numbering scheme. 
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Figure 1. ORTEP diagram of 4 (I and II), with the arbitrary atom-numbering scheme. Thermal ellipsoids are drawn 

at the 40% probability level. 

 The molecular structure of 4 is characterized by a thiodihydropyrimidine nucleus bound 

to a phenanthrene moiety through an asymmetric carbon. Consequently, the angle between the 

best mean plane calculated for the heterocyclic ring and the aromatic portion is 80.6(5)° and 

71.5(5)° for molecules I and II, respectively. In I, the maximum deviation from the weighted 

least-squares plane was observed for C14, with a distance of 0.189(4) Å; conversely, the most 

deviating atom in II is N3, with 0.121(1) Å. The plane formed by the methyl and methyl 

carboxylate substituents is inclined to the best mean plane of the dihydropyrimidine nucleus at 

an angle of 11.7(5)° and 6.7(8)° in I and II, respectively. Finally, the Cremer-Pople puckering 

parameters of the heterocyclic ring are θ = 108.41(5)°, φ = 160.29(5)°, QT = 0.3137(3) for I, and 

θ = 76.99(9)°, φ = -27.85(11)°, QT = 0.2058(4) for II, indicating a flattened boat conformation. 

 The two molecules in the asymmetric unit interact with each other through two long-

range H-bonds between the sulfur atom of the thione and an NH group of the dihydropyrimidine 

ring. Non-traditional H-bonds are also established between the carbonyl oxygen of the ester and 

CH groups of the phenanthrene rings of adjacent molecules. All details are reported in Table 2. 

The crystal packing is consolidated by strong parallel π-π stacking interactions between the flat 

phenanthrene moieties: the planes on which the two aromatic portions lie are at 3.383(1) Å, and 

the distance between the centroids calculated for the phenanthrene rings is 5.002(1) Å. Minor 

CH∙∙∙π and van der Waals contacts contribute to the stabilization of the crystal structure. Figure 2 

provides a graphical depiction of the molecular packing. 

Table 2. Hydrogen bonding geometry in the crystal structure of 4. 

H-bond D-H/Å H∙∙∙A/Å D∙∙∙A/Å D-H∙∙∙A/° 

N2-H2   S2 0.880 2.546(1) 3.342(1) 150.80(4) 

N4-H4A   S1 0.880 2.599(1) 3.433(1) 158.38(4) 

C2-H2A   O1 0.950 2.382(1) 3.246(1) 151.03(4) 

C32-H32   O1 0.950 2.622(1) 3.551(1) 166.06(4) 

C29-H29   O3 0.950 2.528(1) 3.446(1) 162.55(4) 
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Figure 2. A. Spacefill-stick model of 4, evidencing the main H-bonds and the π-π stacking interactions. B. Ellipsoid 

model (40% probability level) showing the crystal packing along the a axis. Hydrogen atoms are omitted for the 

sake of clarity. 

 

 3.3 Hirshfeld surface analysis 

 The Hirshfeld surface of the title dihydropyrimidine 4 was mapped over the normalized 

contact distance (dnorm), according to the following equation: 

𝑑𝑛𝑜𝑟𝑚 =
𝑑𝑖 − 𝑟𝑖

𝑣𝑑𝑊

𝑟𝑖
𝑣𝑑𝑊 +

𝑑𝑒 − 𝑟𝑒
𝑣𝑑𝑊

𝑟𝑒
𝑣𝑑𝑊  

where di is the distance between the HS and the nearest nucleus inside the surface, de is the 

distance between the HS and the nearest nucleus outside the surface, and rvdW represents the van 

der Waals radius of the atom [77, 78]. The HS was calculated for the two independent molecules 

(I and II) in the asymmetric unit (Table 3): while their surfaces are not identical, they share most 

of the key characteristics. Hence, HS-II was arbitrarily chosen for the discussion, but the same 

concepts can be applied to HS-I, too. 

Table 3. Characteristics of the two HS generated for the two independent molecules (I and II) in the asymmetric 

unit. 

 V (Å3) A (Å2) G Ω 

HS-I 420.33 387.25 0.701 0.062 

HS-II 428.17 383.48 0.716 0.059 

The dnorm property was visualized with a red-blue-white color scheme, based on the 

length of the intermolecular contact with respect to the sum of the van der Waals radii. As shown 

in Figure 3A, the surface presents two big red spots corresponding to the H-bond established 

between the sulfur atom and one of the NH groups of the dihydropyrimidine nucleus. The 

remaining, generally feeble, red spots correspond to weak CH···O bonds, CH···π interactions, 

and other less significant short-range contacts. The HS of the compound mapped over the shape-

index helped identify complementary portions in the crystal packing structure. As shown in 

Figure 3B, hollow regions perfectly match bumpy areas in the interacting molecules; 
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specifically, red spots indicate deep concavities corresponding to shorter-range contacts. 

Moreover, the characteristic pattern of red-blue triangles on the phenanthrene portion of the 

compound indicated the presence of strong parallel π-π stacking interactions. The large flat area 

evidenced by the curvedness plot (Figure 3C) confirmed the potential to form intermolecular 

aromatic–aromatic contacts. 

 

Figure 3. A. HS-II mapped over dnorm with a fixed colour scale in the range -0.3214 au (red) – 1.6319 au (blue), 

based on the length of the intermolecular contacts with respect to the sum of the van der Waals radii (red: shorter; 

blue: longer; white: same). B. HS-II mapped over the shape-index (colour scale: -0.9988 au – 0.9982 au). Blue areas 

represent bumps and red regions indicate hollows. C. HS-II mapped over the curvedness (colour scale: -3.7422 au – 

0.4341 au). Green represents flat regions and blue indicates edges. 

The two-dimensional (2D) fingerprint of HS-II, providing a visual summary of the 

contribution of each contact type and the relative area of the surface corresponding to it, revealed 

that H···H contacts are the major contributors, accounting for nearly half of the HS (46.6%). A 

considerable portion is also constituted by C···H/H···C contacts (19.8%), representing both van 

der Waals and CH···π interactions. The major determinants of the crystal packing are NH···S H-

bonds and π-π stacking interactions. The former is evidenced by the S···H/H···S plot, accounting 

for 12.6% of the whole surface; the shape of the fingerprint is characterized by two spikes 

protruding towards the lower left part of the graph. Differently from those of traditional H-

bonds, these spikes are short, reflecting the longer range of S···H contacts compared to O···H 

bonds. Stacking interactions can be easily inferred from the C···C plot (7.0%), which shows the 

characteristic arrow-shaped pattern with a central green region, indicating a rather large 

contribution of the points on the surface. Non-traditional H-bonds between the carbonyl oxygen 

of the ester and aromatic hydrogens represent the last major contributors to the HS, as shown by 

the O···H/H···O plot, accounting for 9.5% of the whole surface. The remaining contact types are 

less significant and occupy 2% or less of the HS; a complete account of the intermolecular 

interactions is provided in Figure 4. Details on HS-I and specific data regarding the contact 

enrichments are provided in the Supplementary Materials. 
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Figure 4. 2D Fingerprint plots of HS-II, providing a visual summary of the frequency of each combination of de and 

di across the HS. Points with a contribution to the surface are colored blue for a small contribution to green for a 

great contribution. 

 3.4 Biological assays 

Initially, the antibacterial activity of the compound was screened by the agar disc 

diffusion assay. Results were compared with the antibacterial activity of known antibiotics 

(cefotaxime and ceftriaxone) [68]. As shown in Table 4, the bacterial cultures demonstrated a 

high susceptibility to the test compound, compared to the antibiotics. The highest antibacterial 

activity was observed against S. aureus (34 mm). Most notably, the compound performed better 

than the established antibiotics. Moreover, the antibacterial activity of the compound was equal 

to that of ceftriaxone in the case of K. pneumoniae, while it was lower than that of cefotaxime. 

The control containing DMSO did not affect the growth of the above mentioned gram-positive 

and gram-negative bacteria. 

Table 4. Antibacterial activity of compound 4. 

P. aeruginosa 4 cefotaxime ceftriaxone 

Concentration (µg/mL) 125 250 500 1000 1500 1500 1500 

Inhibition zone (mm) 3 9 20 31 40 34 30 

 

S. aureus 4 cefotaxime ceftriaxone 

Concentration (µg/mL) 62.5 125 250 500 1000 1000 1000 

Inhibition zone (mm) 2 6 12 22 34 26 17 

 

E. coli 4 cefotaxime ceftriaxone 

Concentration (µg/mL) 125 250 500 1000 1500 1500 1500 

Inhibition zone (mm) 3 7 16 26 33 25 20 
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A. baumanii 4 cefotaxime ceftriaxone 

Concentration (µg/mL) 125 250 500 1000 1500 1500 1500 

Inhibition zone (mm) 2 5 15 23 29 24 16 

 

K. pneumoniae 4 cefotaxime ceftriaxone 

Concentration (µg/mL) 500 1000 1500 2000 2500 2500 2500 

Inhibition zone (mm) 2 5 11 16 23 32 24 

 

 The minimum inhibitory concentration (MIC) of the compounds against the test cultures 

(S. aureus, E. coli, A. baumannii, P. aeruginosa, and K. pneumonia) was determined using the 

microdilution method and the resazurin dye, after an initial screening [53]. The results were 

compared to those obtained with the control antibiotics (cefotaxime and ceftriaxone). 

Interestingly, the bacterial strains were more sensitive to 4 than to the controls (Table 5). S. 

aureus was the most susceptible, with a MIC value of 62.5 µg/mL, whereas E. coli, A. baumanii, 

and P. aeruginosa showed the same value of 125 µg/mL. Finally, K. pneumoniae was the least 

sensitive to 4, with a MIC value of 500 µg/mL, the same value obtained with ceftriaxone, but 

higher than that exhibited by cefotaxime (250 µg/mL). 

Table 5. Minimum inhibitory concentration (MIC, µg/mL) of 4 compared to that of the control antibiotics. 

Investigated sample Bacterial strains 

 E. coli  P. 

aeruginosa  

S. 

aureus  

A. 

baumannii 

K. pneumonia 

4 125 125 62.5 125 500 

cefotaxime 250 250 250 250 250 

ceftriaxone 500 500 500 500 500 

  

The antibacterial activity of some dihydropyrimidine derivatives was also evaluated in 

previous work from our research group [53]. In comparison with compound 16 from the 

mentioned study, 4 showed improved antibacterial activity against all bacterial strains. For 

instance, 16 was not active against K. pneumonia [53], while all the bacterial strains tested were 

susceptible to 4. The improvement of the antibacterial effect of 4 may be related to its chemical 

structure. In particular, the phenanthrene ring could be responsible for its enhanced biological 

activity, since the antimicrobial effect of this moiety has been previously observed against a 

variety of infectious agents, including drug-resistant strains [88-90]. However, despite the 

antimicrobial activity of the phenanthrenes having been known since the 1980s, the mechanism 

by which they act has not been properly studied yet [91]. 

 Conversely, the potent antibacterial action of dihydropyrimidines can be explained by 

their ability to cross the bacterial cell wall. Moreover, they have been suggested to bind and 

inhibit a variety of enzymes (dihydrofolate reductase, bacterial DNA gyrase, aminoacyl-tRNA 

synthetases, etc.) [53, 92]. 

 3.5 Computational studies 

 The key moieties of organic molecules can be identified and examined by theoretical 
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calculations [54]. For this purpose, the necessary quantum chemical parameters of the title 

compound 4 were determined by the Gaussian package program and are given in Table 6. The 

optimized structure of 4 is shown in Figure 5. 

 

Figure 5. Optimized structure of 4. 

 Among these parameters, the Lowest Unoccupied Molecular Orbital (LUMO) and 

Highest Occupied Molecular Orbital (HOMO) provide information about the reactivities of 

molecules. More precisely, the numerical value of these indicators describes charge-exchange 

properties. In detail, the HOMO parameter indicates the electron-donating ability of a 

compound; the more positive the value, the greater its tendency to donate electrons [55]. 

Conversely, the LUMO parameter describes the ability to withdraw electrons; the more negative 

the value, the greater the tendency to accept electrons [79]. 

 
Table 6. Calculated quantum chemical parameters of 4. 

Parameters Value 

EHOMO -4.0396 

ELUMO -1.4033 

I 4.0396 

A 1.4033 

ΔE 2.6363 

𝜼 1.3181 

σ 0.7587 

𝝌 2.7214 

Pİ -2.7214 

ω 2.8094 

ε 0.3560 

Dipol 4.4536 

Energy -39956.1361 

 

 The HOMO-LUMO energy gap is another parameter that can be used to explain the 

reactivity: a small numerical value is usually correlated with a higher reactivity. The images of 
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HOMO, LUMO, and Δ𝐸 energy values of 4 are depicted in Figure 6. The electronegativity is yet 

another significant parameter; as with the previous one, a small numerical value indicates a 

higher reactivity. All data are reported in Table 6. 

 
Figure 6. The images of HOMO, LUMO, and Δ𝐸 energy values of 4. 

 

 Furthermore, the electrostatic potential (ESP) of 4 was calculated to determine the 

electron density of the molecule (Figure 7). Red regions are the richest in terms of electron 

density, blue-colored areas are electron-poor, and green parts indicate no-load zones. Electron-

rich regions have a high propensity to donate electrons, while electron-poor areas show the 

highest electron-accepting ability. Therefore, red- and blue-colored regions indicate the most 

reactive sites of the molecule [70, 80]. 
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Figure 7. ESP of compound 4. 

 

 The IR spectrum of 4 was calculated on the B3lyp/6-31g(d) basis set (Figure 8). The 

vibrations occurring at 3021 and 3202 cm-1 indicate aromatic C-H bonds. C-C bond vibrations 

are observed at an average of 1800 cm-1, C-O signals are in the range of 1420-1430 cm-1, and 

C=C bond vibrations are at 1220-1240 cm-1. 

 
Figure 8. IR spectrum of 4. 

 NMR chemical shifts of the carbon and hydrogen atoms of 4 were calculated by using the 

gauge-independent atomic orbital (GIAO) method [81]. The NMR spectrum of the compound 
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was calculated on the B3lyp/6-31g(d) basis set. The calculated chemical shift values are given in 

Table S1. 13C signals below 51 ppm indicate aliphatic carbon atoms, while the others correspond 

to aromatic carbons. As for the 1H spectrum, signals with chemical shift values between 5-8.5 

ppm indicate aromatic hydrogens, while chemical shifts in the range of 1.4-3.7 ppm are observed 

for hydrogens attached to aliphatic carbons. The obtained data were in agreement with the 

experimental results. 

 

 

Figure 9. Interactions of 4 with the 4WUB protein. 

 

Figure 10. Interactions of 4 with the 3G7B protein. 
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Figure 11. Interactions of 4 with the 2UV0 protein. 

 Molecular docking calculations were performed to investigate the possible binding of 4 to 

selected proteins from Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli 

(Figures 9-11). 

 

Table 7. Numerical values of the docking parameters calculated for 4 and for the control antibiotics 

against the selected bacterial enzymes. 

4WUB 4 Ceftriaxone Cefotaxime 

Docking Score -4.98 -4.76 -4.38 

Glide ligand efficiency -0.19 -0.13 -0.15 

Glide hbond 0.00 -0.35 -0.53 

Glide evdw -33.79 -36.44 -35.83 

Glide ecoul -3.10 -9.34 -4.18 

Glide emodel -46.27 -56.97 -48.69 

Glide energy -36.89 -45.78 -40.01 

Glide einternal 3.07 8.03 6.28 

Glide posenum 89 114 315 

3G7B 4 Ceftriaxone Cefotaxime 

Docking Score -5.88 -5.42 -4.79 

Glide ligand efficiency -0.23 -0.18 -0.13 

Glide hbond 0.00 -0.46 -0.45 

Glide evdw -37.12 -39.35 -33.35 

Glide ecoul -1.11 -9.99 -8.33 

Glide emodel -50.82 -59.20 -50.93 

Glide energy -38.23 -49.33 -41.67 

Glide einternal 1.99 15.79 7.18 

Glide posenum 399 9 240 

2UV0 4 Ceftriaxone  Cefotaxime 

Docking Score -4.95 -4.63 -3.46 

Glide ligand efficiency -0.19 -0.13 -0.12 

Glide hbond -0.35 -0.94 -0.48 

Glide evdw -25.53 -21.72 -22.51 

Glide ecoul -7.24 -15.18 -9.03 

Glide emodel -41.20 -47.41 -38.34 

Glide energy -32.78 -36.90 -31.54 

Glide einternal 0.41 9.57 3.31 

Glide posenum 300 232 280 
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 All calculated docking parameters are given in Table 7. Among these indicators, 

Glide ligand efficiency, Glide hbond, Glide evdw, and Glide ecoul illustrate the efficiency of the 

molecule and provide a numerical value to define the chemical interactions (hydrogen bonds, 

polar and hydrophobic interactions, π-π and halogen contacts) [82]. On the other hand, 

parameters such as Glide emodel, Glide energy, Glide einternal, and Glide posenum describe the 

pose of the molecule within the active site of the protein [75]. Interestingly, the examination of 

the interaction of 4 with the selected proteins suggests it may perform better as a binder 

compared to the reference substances, ceftriaxone and cefotaxime. 

The analysis of the druglikeness is fundamental to verify that a molecule is suitable to be 

further developed as a therapeutic agent [83]. Hence, an ADME/T (Absorption, Distribution, 

Metabolism, Excretion and Toxicity) study was performed to simulate the absorption of the 

molecule, its interaction with the human metabolic enzymes, and its excretion. All parameters 

obtained from these calculations are given in Table 8. 

 
Table 8. ADME properties of 4. 

 4 Reference Range 

mol_MW 362 130-725 

dipole (D) 3.7 1.0-12.5 

SASA 585 300-1000 

FOSA 146 0-750 

FISA 59 7-330 

PISA 301 0-450 

WPSA 79 0-175 

volume (A3) 1078 500-2000 

donorHB 0 0-6 

accptHB 2.5 2.0-20.0 

glob (Sphere =1) 0.9 0.75-0.95 

QPpolrz (A3) 38.6 13.0-70.0 

QPlogPC16 11.4 4.0-18.0 

QPlogPoct 14.6 8.0-35.0 

QPlogPw 5.6 4.0-45.0 

QPlogPo/w 5.4 -2.0-6.5 

QPlogS -6.0 -6.5-0.5 

CIQPlogS -6.7 -6.5-0.5 

QPlogHERG -5.1 * 

QPPCaco (nm/sec) 2708 ** 

QPlogBB 0.1 -3.0-1.2 

QPPMDCK (nm/sec) 3920 ** 

QPlogKp -1.4 Kp in cm/hr 

IP (ev) 8.6 7.9-10.5 

EA (eV) 1.0 -0.9-1.7 

#metab 1 1-8 

QPlogKhsa 1.0 -1.5-1.5 

Human Oral Absorption 3 - 

Percent Human Oral Absorption 100 *** 

PSA 64 7-200 

Rule-Of-Five 1 Maximum is 4 

Rule-Of-Three 1 Maximum is 3 

Jm 0.0 - 

*below -5, **<25 is poor and >500 is great, *** <25% is poor and >80% is high. 
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Some of them are related to the chemical characteristics of the molecule and some are 

linked to its biological properties. In detail, two indicators are instrumental to determine whether 

a compound has the potential to be drug, namely the Rule-Of-Five [84, 85], also known as the 

Lipinski's (or Pfizer’s) Rule-Of-Five, and the Rule-Of-Three [86], also known as the Jorgensen’s 

Rule-of-Three. The numerical value of these parameters should be as close to zero as possible 

(no violations); in the present case, 4 shows only 1 violation. However, its passage through the 

blood-brain and blood-intestinal barriers is predicted to occur with difficulty. 

 

4. Conclusion 

 A new dihydropyrimidine derivative (4) was synthesized by the Biginelli reaction under 

microwave irradiation in the presence of cerium chloride. Its structure was investigated by SC-

XRD and examined by Hirshfeld surface analysis to gain insights into the crystal packing and 

molecular interactions. Considering its potential antibacterial effect, 4 was tested against Gram-

positive (S. aureus) and Gram-negative (A. baumannii, E. coli, P.aeruginosa, K. pneumoniae) 

bacteria. Interestingly, it was found to be more active than known antibiotics (ceftriaxone and 

cefotaxime) against S. aureus, A. baumannii, E. coli, and P. aeruginosa. Finally, the chemical 

properties and biological effects of the molecule were estimated through theoretical calculations. 

Molecular docking simulations revealed that the activity of 4 may be potentially higher than that 

of the reference antibiotics. In addition, the IR and NMR spectra of the compound were 

examined theoretically and were found to agree with the experimental results. The estimation of 

the druglikeness of 4 also provided promising results. As a result of our investigations, we 

believe that the data presented here will prove pivotal for the future in vitro and in vivo 

development of this class of compounds. The obtained results are encouraging, indicating that 

the synthesized dihydropyrimidine derivative indeed represents an interesting potential drug 

candidate with antibacterial activity. 
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