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The RET proto-oncogene (RET) encodes a transmembrane 
receptor tyrosine kinase (proto-oncogene tyrosine protein 
kinase receptor RET) that has a physiological role in the 

embryonic development of the nervous system and the kidneys1,2. 
RET fusions and mutations induce oncogenic transformation, lead-
ing to the aberrant activation of RET receptor tyrosine kinase3. 
RET fusions can be found in 1–2% of non-small-cell lung cancers 
(NSCLCs), approximately 20% of papillary thyroid cancers and 
<1% of many other solid tumors, including ovarian, pancreatic, 
salivary and colorectal cancers4–8.

Pralsetinib (formerly known as BLU-667, Blueprint Medicines 
Corporation) is a selective RET inhibitor that potently targets RET 
kinases, including RET fusion proteins. The recommended phase 
2 dose of 400 mg once daily (QD) orally administered pralsetinib 
was determined in phase 1 of the ARROW study9. Pralsetinib has 
low affinity for off-target kinases. In a biochemical assay, pralsetinib 
was 88-fold more selective for RET than for vascular endothelial 
growth factor receptor 2 (VEGFR2), a tyrosine kinase receptor that 
is targeted by multi-kinase inhibitors such as cabozantinib and 
vandetanib2. Based on the results from the registrational phase 1/2 
ARROW study (NCT03037385)10,11, pralsetinib was approved in 

several countries globally, including the United States, for treatment 
of metastatic RET fusion–positive NSCLC, advanced or metastatic 
RET-mutant medullary thyroid cancer and RET fusion–positive 
thyroid cancer12, as well as in the European Union for treatment of 
advanced RET fusion–positive NSCLC13.

Pre-clinical and early clinical evidence suggests that RET fusions 
lead to oncogene addiction across tumor types and have the potential 
to be targeted by selective RET inhibition. Recent tumor-agnostic 
drug approvals have demonstrated that patients can benefit from 
select molecularly targeted therapies irrespective of tumor histol-
ogy14–18. These landmark approvals have heralded the era of pre-
cision oncology for tissue-agnostic targets. Since the approvals of 
pralsetinib and selpercatinib in NSCLC and thyroid cancer12,19, bio-
marker testing for RET alterations is recommended in treatment 
guidelines for patients with these tumor types20–22. However, this is 
not standard of care across all disease indications where RET altera-
tions are recognized as oncogenic drivers23,24.

ARROW is a phase 1/2 study of the highly selective RET inhibi-
tor pralsetinib in patients with medullary thyroid cancer, RET-altered 
NSCLC and other RET-altered solid tumors. Efficacy and safety of 
pralsetinib in patients with RET-altered NSCLC and thyroid cancer 
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from the ARROW study were previously reported10,11. After recent 
approvals of pralsetinib in patients with RET-altered NSCLC and thy-
roid cancers and respective publications of these data, here we present 
interim data on the efficacy and safety of pralsetinib in prospectively 
identified patients with diverse RET fusion–positive tumors.

Results
Patients. Between 17 March 2017 and the data cutoff date of 18 
October 2021, 587 patients were enrolled across all groups (Fig. 1 
and Extended Data Fig. 1). Of these, 29 patients had RET fusion–
positive solid tumors, excluding RET fusion–positive NSCLC or 
thyroid cancer, and were included in the safety population pre-
sented here. In total, 28 patients (96%) received a starting dose of 
pralsetinib 400 mg QD, and one patient (4%) received a starting 
dose of pralsetinib 200 mg/100 mg twice daily but transitioned to 
400 mg QD after 3.4 months; the latter patient was the only patient 
included from the dose-escalation phase of the ARROW trial. At 
the data cutoff date, four patients (14%) remained on treatment, 
and 25 patients (86%) had discontinued treatment for the following 
reasons: disease progression (20 patients (69%)); administrative/
other (two patients (7%)); adverse events (AEs) (two patients (7%), 
of which both were treatment-related—grade 3 thrombocytopenia 
and grade 3 neutropenia); and withdrew consent (one patient (3%)).

Twenty-six of the 29 patients in the safety population enrolled 
by the 18 October 2021 data cutoff, with RET fusion–positive solid 
tumors excluding RET fusion–positive NSCLC or thyroid cancer, 
were enrolled by the efficacy enrollment cutoff date of 18 February 
2021. Fourteen of 26 patients were confirmed to have co-occurring 
alterations at study entry (Extended Data Fig. 2). RET fusions were 
identified as the only oncogenic driver in 23 patients (three patients 
had other oncogenic drivers in addition to RET and were excluded 
from the efficacy-evaluable population due to this pre-specified crite-
rion). Among these 23 patients evaluable for efficacy, the median age 
was 53 years (range, 31–71); 14 patients (61%) were female; 20 (87%) 
patients had metastatic disease; and 20 (87%) patients had received 
prior therapies at baseline (Table 1 and Extended Data Fig. 3). The 
most common cancer diagnoses in the efficacy-evaluable population 
were pancreatic cancer (four patients (17%)), cholangiocarcinoma 
(three patients (13%)), neuroendocrine cancer (three patients (13%)), 

sarcoma (three patients (13%): malignant mesenchymal tumor (one 
patient (4%)), mixed sarcoma and adenocarcinoma (one patient 
(4%)), malignant isolated fibroma (one patient (4%))), head and neck 
cancer (two patients (9%): sweat gland cancer (one patient (4%)), sali-
vary duct cancer (one patient (4%))), colorectal cancer (two patients 
(9%)) and small-cell lung cancer (SCLC) (two patients (9%)). Three 
patients had stage 3 disease, including one patient with stage 3 ovarian 
cancer who had received nine prior lines of therapy and one patient 
each with stage 3B gastric cancer or sarcoma who had both received 
one prior line of therapy. Two patients had not received prior systemic 
therapy, both of whom had stage 4 head and neck cancer.

RET fusions were identified by next-generation sequencing 
(NGS) in 16 patients (70%), by fluorescence in situ hybridization 
(FISH) in five patients (22%) and by GeneTrails Solid Tumor Fusion 
Panel and local NGS each in one patient (4%). Central circulating 
tumor DNA (ctDNA) analysis was also performed in patients for 
whom FISH was used, with the aim of identifying the RET fusion 
partners. The most common RET fusion partners were CCDC6 
(six patients (26%)), KIF5B (six patients (26%)) and NCOA4 (three 
patients (13%)) (Table 1). None of the tumors in the patients with 
pancreatic cancer was identified to harbor KRAS mutations.

Efficacy. Overall response rate (ORR) was the primary endpoint of 
phase 2 of this study. In the 23 patients eligible for efficacy analy-
ses, the ORR was 57% (95% confidence interval (CI), 35–77); three 
(13%) had a confirmed complete response (CR); and ten (43%) had 
a confirmed partial response (PR) (Table 2). Target tumor shrinkage 
per Response Evaluation Criteria in Solid Tumors (RECIST) version 
1.1 was seen in 91% of patients with post-baseline tumor assessments 
(Fig. 2a); one patient with progression based on a new site of disease 
did not have post-baseline assessment of RECIST target lesions.

Confirmed tumor responses were observed in all four patients 
with pancreatic cancer (including one CR), two of three patients 
with cholangiocarcinoma, two of three patients with sarcoma 
(including one CR), two of three patients with neuroendocrine can-
cer and single patients with head and neck cancer and unknown 
primary tumor (CR). The other patient with cholangiocarcinoma 
had a single timepoint response before discontinuing treatment due 
to an AE.

(n = 587)
62 enrolled in phase 1

525 enrolled in phase 2

29 other RET fusion–positive solid tumors
(enrolled by 18 October 2021)

4 remained on treatment

299 RET fusion–positive NSCLC
32 RET fusion–positive thyroid cancer
187 medullary thyroid cancer 
40 other tumorsa

25 discontinued treatment 

 20 disease progression 

 2 adverse events 

    2 related

 2 administrative/other

  1 withdrew consent

26 enrolled by 18 February 2021

23 eligible for efficacy analyses

3 excluded due to additional
known driver mutationsb

Fig. 1 | Patient disposition. A flowchart that illustrates enrollment of patients with RET fusion–positive solid tumors in the safety (n = 29) and 
efficacy-evaluable (n = 23) populations in the context of the overall study population of 587 patients, as well as the status of these patients at the data 
cutoff. aOther RET-mutant tumors (n = 15), no or unknown RET status (n = 2) and prior treatment with a RET inhibitor (n = 23). bThree patients (two with 
colon cancer and one with cholangiocarcinoma) had additional driver mutations (KRAS, PIK3CB and BRAF).
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The clinical benefit rate (CBR) was 70% (16/23 patients), and the 
disease control rate (DCR) was 83% (19/23 patients) (Table 2). Median 
duration of response (DOR) was 11.7 months (95% CI, 5.5–19.0)  

with a median follow-up of 26.7 months (95% CI, 9.3–26.7) 
(Extended Data Fig. 4a). DOR rates were 69% (95% CI, 44–94) at 
6 months and 39% (95% CI, 8–69) at 12 months. Of the 13 patients 
with CR or PR, DOR was ≥6 months for nine (69%) (Fig. 2b); two 
(15%) had response durations of ≥18 months, one (8%) of whom 
had a response duration of ≥24 months. Median time to response 
was 1.9 months (range, 1.7–3.6); at data cutoff, 31% (4/13) of 
patients had ongoing responses.

Although individual results may vary, among the patients with 
tumor response, three cases were particularly notable. A man in his 
early 30s had pancreatic cancer (2.5-cm pancreatic head mass) with 
multiple hepatic metastases (largest 2.3 cm and 2.4 cm) and multiple 
peripancreatic lymph nodes at treatment initiation, and his tumor 
harbored RET–TRIM33 and RET–JMJD1C fusions; other genomic 
alterations detected on liver biopsy were FGFR4 p.R493Q, which 
was a variant of unknown significance, and PTCH1 p.1287_1303del 
and PTEN copy number loss, which were not considered action-
able drivers. Baseline cancer antigen (CA) 19-9 was 12.6 U ml−1, 
and baseline carcinoembryonic antigen was 2.5 ng ml−1. This 
patient, who had previously experienced progressive disease (PD) 
and treatment-limiting toxicity on one prior line of chemotherapy 
(PD and toxicity on capecitabine), had a CR with pralsetinib (100% 
decrease in the sum of lesion diameters (SLD)). This patient con-
tinued treatment with an ongoing CR at a treatment duration of 
33.1 months as of the 18 October 2021 data cutoff.

A woman in her early 50s had an intrahepatic cholangiocarci-
noma with a RET–NCOA4 fusion and metastases to liver and bone 
on diagnosis. Diagnostic imaging revealed a large mass with at 
least a 13 × 8 cm diameter and 20 satellites of different diameters 
(most ~15 mm) (Fig. 3a,b). The patient had a PR with pralsetinib 
after experiencing a best response of PD on all three prior lines of 
therapy (received for ≤3 months: gemcitabine/cisplatin/abraxane, 
erlotinib/bevacizumab and osimertinib). Other genomic altera-
tions identified in this patient were EGFR A1118T, which was not 
an actionable driver, and CDKN2A/B loss, which was a variant of 
unknown significance; microsatellite status was stable, and tumor 
mutation burden was low (three mutations per megabase). Liver 
immunohistochemistry was positive for CK7 and CDX-2 and nega-
tive for CK20. Throughout treatment with pralsetinib, CA 19-9 
reduced from 1 × 106 U ml−1 to 82 U ml−1, and CA-125 reduced from 
1,591 U ml−1 to 16.4 U ml−1, with rapid and near-complete clearance 
of RET–NCOA4 fusion ctDNA. This patient received treatment with 
continued tumor shrinkage (to a maximum of 77% reduction in 
measurable disease) for 20.7 months before ultimately succumbing  

Table 1 | Patient demographics and baseline characteristics

Demographic/characteristic RET fusion–positive solid tumors

Efficacy-evaluable 
populationa (n = 23)

Safety 
populationb 
(n = 29)

Median age (range), years 53 (31–71) 55 (25–75)

Sex, n (%)

 Female 14 (61) 18 (62)

 Male 9 (39) 11 (38)

Race, n (%)

 White 15 (65) 20 (69)

 Asian 7 (30) 8 (28)

 Black 1 (4) 1 (3)

ECOG performance status, 
n (%)

 0 7 (30) 11 (38)

 1 16 (70) 18 (62)

Tumor type, n (%)

 Pancreatic 4 (17) 5 (17)

 Cholangiocarcinoma 3 (13) 4 (14)

 Neuroendocrine 3 (13) 3 (10)

 Sarcoma 3 (13) 3 (10)

 Head and neck 2 (9) 2 (7)

 Colorectal 2 (9) 5 (17)

 SCLC 2 (9) 2 (7)

 Unknown primary 1 (4) 1 (3)

 Gastric 1 (4) 1 (3)

 Ovarian 1 (4) 1 (3)

 Thymic 1 (4) 1 (3)

 CNS 0 1 (3)

History of CNS metastases, 
n (%)

6 (26) 7 (24)

TNM stage, n (%)

 III 3 (13) 4 (14)

 IV 20 (87) 24 (83)

 Unknown 0 1 (3)

RET fusion partner, n (%)

 CCDC6 6 (26) 9 (31)

 KIF5B 6 (26) 6 (21)

 NCOA4 3 (13) 4 (14)

 Otherc 5 (22) 6 (21)

 Unknown 3 (13) 4 (14)

Median prior lines of therapy, 
n (range)

2 (1–9) 2 (1–9)

Baseline demographic and clinical characteristics of patients in the safety population (n = 29) and 
efficacy-evaluable population (n = 23) with RET fusion–positive solid tumors. Three patients in 
the safety population were not enrolled by the efficacy enrollment date of 18 February 2021, and 
an additional three patients had oncogenic drivers in addition to RET and were excluded from the 
efficacy-evaluable population. aEnrollment as of 18 February 2021 and data cutoff date 18 October 
2021. bEnrollment and data cutoff date as of 18 October 2021. cIncludes ANKRD26, MYH10, NUP93, 
SATB1, PRKG1 and TRIM24, and TRIM33 and JMJD1C. CNS, central nervous system; ECOG, Eastern 
Cooperative Oncology Group; TNM, tumor, node, metastases.

Table 2 | Summary of tumor response

Response, n (%) RET fusion–positive solid tumors 
(n = 23)a

ORRb (95% CI) 13 (57) (35–77)

 CR 3 (13)

 PR 10 (43)

SD 6 (26)

PD 4 (17)

CBRc (95% CI) 16 (70) (47–87)

DCRd (95% CI) 19 (83) (61–95)

Median DOR, months (95% 
CI)e

11.7 (5.5–19.0)

Response rates and the number of patients with each individual response per RECIST version 1.1 
in the efficacy-evaluable population (n = 23). Two-sided 95% CIs were based on exact binomial 
distributions using the Clopper–Pearson method. aEnrollment as of 18 February 2021 and data 
cutoff date 18 October 2021. Excludes three patients (two with colon cancer and one with 
cholangiocarcinoma) with additional driver mutations (KRAS, PIK3CB and BRAF). bConfirmed CR or 
PR. cConfirmed CR, PR or SD ≥16 weeks. dConfirmed CR, PR or SD. eKaplan–Meier estimated.
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to PD, leading to treatment discontinuation and death before the 
data cutoff.

A woman in her early 60s with a sarcoma (malignant mesenchy-
mal tumor) with a RET–CCDC6 fusion and no metastases had a PR 
after 1.9 months of pralsetinib treatment that had evolved to a CR at 
the time of the data cutoff (100% decrease in SLD), with treatment 
duration of 19.4 months (Fig. 3c). She had two muscular masses 
on her right upper arm, and the initial pathologic diagnosis after 
resection was pigmented villonodular synovitis (PVNS). Given this 
diagnosis, the patient received imatinib as first-line therapy but pro-
gressed, with locoregional recurrence with at least four macroscopic 
tumor nodules in the right arm that were considered inoperable. In 

parallel to RNA sequencing analysis that confirmed a RET–CCDC6 
fusion, transcriptomic analysis suggested that the diagnosis was 
not PVNS but, rather, an undifferentiated histiocytic tumor. Other 
mutations in the whole-exome RNA sequence included an in-frame 
fusion of type FN1-PRG4 as well as the reciprocal transcript (also 
in-frame) and mutations in exon 43 of ATM (p.R2105G) and exon 
5 of PDGFRB (p.R251H). These three mutations were variants of 
unknown significance. At the time of treatment initiation, a total 
of seven nodules (8–50 mm) were found on pre-treatment mag-
netic resonance imaging (MRI) in the soft tissue of the right arm as 
well as two right axillary lymph nodes (10 mm and 12 mm). As of 
October 2021, the CR was ongoing after 19.6 months of follow-up.
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Fig. 2 | individual tumor response and treatment duration waterfall and swimlane plots for the efficacy-evaluable population. In 23 patients eligible for 
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Among all 23 patients, median progression-free survival (PFS) 
was 7.4 months (95% CI, 5.1–13.6) at a median follow-up of 
28.5 months (95% CI, 10.9–28.5) (Extended Data Fig. 4b), with a 
PFS rate of 60% (95% CI, 39–80) at 6 months and 41% (95% CI, 
20–62) at 12 months. Median overall survival (OS) was 13.6 months 
(95% CI, 7.5–not reached) with median follow-up of 23.5 months 
(95% CI, 19.8–23.9) (Extended Data Fig. 4c), with an OS rate of 78% 
(95% CI, 61–95) at 6 months and 54% (95% CI, 33–75) at 12 months.

Safety. For the 29 patients in the safety population, median relative 
dose intensity was 86% (range, 51–124), with a median daily dose 
of 397 mg (range, 212–400), and median time on treatment was 
7.0 months (range, 0.4–33.1). Dose intensity was calculated based 
on starting dose; as the patient who initiated at 200 mg/100 mg twice 
daily dosing subsequently received 400 mg QD, this patient had a 
dose intensity >100%. All patients experienced treatment-emergent 
AEs, of whom 21 (72%) experienced grade ≥3 events (Extended 
Data Fig. 5). Treatment-related adverse events (TRAEs) occurred in 
25 patients (86%), of whom 20 (69%) experienced a grade ≥3 TRAE 
(Table 3). The most common any-grade TRAEs were increased aspar-
tate transaminase (AST; 11 patients (38%)), increased alanine trans-
aminase (ALT; ten patients (34%)) and neutropenia (ten patients 
(34%)). Grade 4 events were experienced by two patients (7%); one 
patient experienced thrombocytopenia, and one patient experienced 
thrombocytopenia, pancytopenia and acute kidney injury. One death 
occurred in which the cause was unknown; this patient had multiple 
possible causes of death, including disease progression, pulmonary 
infection, respiratory failure, cardiac insufficiency and hypertensive 

heart disease. The death was recorded as treatment related because 
the cause could not be unequivocally excluded.

In total, 17 patients (59%) had transient dose interruptions due to 
TRAEs, and 13 patients (45%) had permanent dose reductions due 
to TRAEs. The most common TRAEs leading to dose interruption 
were neutropenia (eight patients (28%)), anemia and increased AST 
(each three patients (10%)) and thrombocytopenia and increased 
ALT (each two patients (7%)). The most common TRAEs leading 
to dose reduction were neutropenia (eight patients (28%)), anemia, 
increased AST and increased ALT (each two patients (7%)).

Discussion
In this phase 1/2 study of pralsetinib in patients with advanced or 
metastatic RET fusion–positive solid tumors, almost all of whom 
were previously treated with systemic therapy, pralsetinib showed 
robust and durable anti-tumor activity regardless of tumor type or 
RET fusion partner. RET fusions have been identified as oncogenic 
drivers in multiple tumor types4–8,25, and, generally, standard thera-
pies that are effective in tumors without oncogenic drivers are less 
effective than targeted therapies26–28. Precision oncology paradigms 
that comprise identification of oncogenic alterations through clini-
cal NGS and subsequent application of genomically targeted thera-
pies are applicable to multiple malignancies. Herein, RET fusions 
defined a unique subset of alterations across multiple tumor types 
(>15 including NSCLC and multiple subtypes of thyroid cancer) 
targeted by pralsetinib, validating RET as a tissue-agnostic target.

In this patient group, whose disease was resistant to prior treat-
ments where available, treatment with pralsetinib resulted in an ORR 
of 57% across seven tumor types, and clinical benefit was reported in 
70% of patients by blinded independent central review (BICR). This 
compares to an ORR of 61% and 70% in patients with RET fusion–
positive NSCLC who received prior platinum therapy and no prior 
systemic treatment, respectively, and an ORR of 89% for patients 
with RET fusion–positive thyroid cancer in previously published 
data on the ARROW study10,11. Despite the small number of patients, 
responses were seen in all four patients with pancreatic cancer 
(including an ongoing CR with treatment duration of 33.1 months) as 
well as in two of the three patients with cholangiocarcinoma (includ-
ing a patient who received treatment for over 20 months after a best 
response of PD on all three prior lines of therapy). These are encour-
aging findings because these tumor types are difficult to treat, and 
the unmet need for better treatments to improve clinical benefit is 
high. Indeed, response rates for standard-of-care therapies are 26% in 

Baseline 5 months 19 months 
c

a

b

Baseline 8 weeks

Fig. 3 | time-dependent disease evaluations in two patients after 
pralsetinib treatment. Baseline and 8-week disease evaluation in a 
51-year-old woman with RET–NCOA4 fusion–positive cholangiocarcinoma: 
a, at first disease evaluation after 8 weeks receiving pralsetinib, a left 
hepatic lobe lesion measuring 2 × 3 cm at baseline had reduced to 
1.2 × 1.9 cm; b, a prior heterogeneously enhancing soft tissue mass in the 
right gluteal muscles had decreased in size and enhancement and showed 
increased cystic and necrotic components compared to baseline scans. 
c, Baseline, 5-month and 19-month disease evaluation in a 60-year-old 
woman with a RET–CCDC6 fusion–positive sarcoma presenting as two 
muscular masses in the right upper arm.

Table 3 | treatment-related adverse events (tRAEs)

Preferred term, n (%) RET fusion–positive solid 
tumors (n = 29)a

All grades Grade ≥3

Patients with TRAEs 25 (86) 20 (69)

 Increased AST 11 (38) 3 (10)

 Increased ALT 10 (34) 2 (7)

 Neutropenia 10 (34) 9 (31)

 Anemia 9 (31) 4 (14)

 Constipation 7 (24) 0

 Decreased white blood cell count 6 (21) 2 (7)

 Thrombocytopenia 5 (17) 2 (7)

 Hypertension 5 (17) 2 (7)

 Asthenia 5 (17) 0

TRAEs that occurred in ≥15% of patients in the safety population (n = 29), which were graded 
according to the Common Terminology Criteria for Adverse Events version 4.03, with terms pooled. 
aEnrollment and data cutoff date as of 18 October 2021.
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biliary cancers (cisplatin plus gemcitabine29) and 23–32% (first-line 
oxaliplatin-based combination chemotherapy and first-line gem-
citabine plus nab-paclitaxel) in pancreatic cancer30,31. In ARROW, 
responses were seen in treatment-naive patients who were not can-
didates for standard therapies and in patients who had received sev-
eral prior lines of therapy, highlighting the need for targeted therapies 
across a range of tumor types for patients who currently have no stan-
dard of care and for those who have exhausted all other options. The 
strategy of treating patients with RET fusion–positive solid tumors 
with targeted therapies is also supported by results with selpercatinib: 
in an analysis that included adult patients with locally advanced or 
metastatic RET fusion–positive non-lung/non-thyroid solid tumors 
who received selpercatinib twice daily, the ORR was 47%32. The 
efficacy-evaluable population comprised patients who were enrolled 
long enough to allow a 6-month follow-up from their first dose.

The safety profile reported in this analysis is consistent with 
previously reported results in patients with RET fusion–positive 
NSCLC and thyroid cancer from the ARROW study10,11, with no new 
safety signals identified, and no effect of pralsetinib on QT interval 
was observed11. The most common TRAEs were increased ALT/
AST and neutropenia. Common TRAEs seen with selpercatinib 
include increased ALT/AST, dry mouth, diarrhea and fatigue1,32. For 
patients with other solid tumors who received selpercatinib in the 
LIBRETTO-001 study, a grade ≥3 TRAE of QT interval prolonga-
tion was reported in 4% of patients32.

ARROW is a single-arm study with no comparator group. The 
safety population for the cohort analyzed here included a small 
heterogeneous number of patients (n = 29); despite this, all but two 
patients included in the efficacy-evaluable population (n = 23), a sub-
set of the safety population, experienced a tumor shrinkage. In com-
bination with the robust activity seen in patients with NSCLC and 
thyroid cancer in the ARROW study10,11, these data further support 
the potential of pralsetinib to address the unmet medical need across 
a broad range of RET-altered tumor types with differing histology.

Overall, these data highlight the need for broad RET testing, 
preferably by NGS, to identify candidates who may benefit from 
treatment with pralsetinib. Enrollment of patients with other RET 
fusion–positive solid tumors in ARROW is ongoing.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41591-022-01931-y.
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Methods
Study design and patient population. ARROW (NCT03037385) is an open-label, 
international, phase 1/2 study evaluating the efficacy and safety of pralsetinib 
across various RET-altered solid tumors conducted at 84 sites across 13 countries. 
The phase 1 dose-escalation portion identified the maximum tolerated dose 
and recommended phase 2 dose of pralsetinib as 400 mg QD10. Adults with 
unresectable, locally advanced or metastatic solid tumors were enrolled into nine 
phase 2 groups as defined by disease type and prior therapy status. This current 
analysis reports results for the subgroup of patients with RET fusion–positive 
solid tumor types, excluding NSCLC and thyroid cancer, who were enrolled in the 
phase 1 study portion and in the phase 2 expansion group 5. In accordance with 
study eligibility requirements, these patients had previously received or were not 
candidates for appropriate standard-of-care therapy. Additional eligibility criteria 
were as previously reported10.

This study was conducted in accordance with the ethical principles of 
Good Clinical Practice and the Declaration of Helsinki, and was based on the 
International Council for Harmonisation E6 requirements. The full protocol was 
approved by the institutional review board or independent ethics committee of 
each participating site, and all patients provided signed informed consent. The 
name of each participating institute, organization or site whose ethical committee 
approved the protocol is provided in the Supplementary Information.

Outcomes. Phase 2 primary endpoints were ORR (defined as the proportion of 
patients who had confirmed CR or PR per RECIST version 1.1) and safety. Key 
secondary endpoints included CBR (defined as the proportion of patients who 
had confirmed CR, PR or SD lasting ≥16 weeks); DCR (defined as the proportion 
of patients who had confirmed CR, PR or SD); DOR (defined as time from first 
documented tumor response (CR/PR) until first documented disease progression 
or death); PFS (defined as time from first dose of pralsetinib to first documented 
disease progression or death due to any cause); and OS (defined as time from first 
dose of pralsetinib to death due to any cause).

Assessments. Tumor response per RECIST version 1.1 was assessed by BICR. 
Computed tomography or MRI of all known disease sites was performed at 
screening and approximately every 8 weeks during treatment. For the purpose of 
study eligibility, RET fusions were identified by local testing using NGS, FISH or 
GeneTrails Solid Tumor Fusion Panel, which used DNA and RNA, with RNA used 
to identify RET fusions. In accordance with the statistical analysis plan, patients 
were confirmed as RET fusion positive if any one of these methods returned a 
positive fusion result. The presence of concurrent non-RET fusion oncogenic 
drivers was determined prospectively based on local testing and/or by retrospective 
central analysis if necessary. As per the study protocol, concurrent drivers were 
defined as known primary driver alterations consistent with the scientific literature 
for different tumor types, and the final decision was made by the sponsor. AEs 
were graded according to the Common Terminology Criteria for Adverse Events 
version 4.03, and terms were pooled.

Statistical analysis. All patients with RET fusion–positive solid tumors, excluding 
NSCLC and thyroid cancer, who were enrolled by the analysis cutoff date (18 
October 2021) were included in the safety analyses. Of these patients, those who 
began treatment by the enrollment cutoff date (18 February 2021), who had 
baseline measurable disease per BICR, who had at least one evaluable post-baseline 
disease response assessment and who were without other known oncogenic 
mutations were included in efficacy analyses. The enrollment cutoff for efficacy 
analyses was employed to provide adequate follow-up time for responses to 
pralsetinib. Two-sided 95% CIs were based on exact binomial distributions using 
the Clopper–Pearson method. DOR, PFS and OS were analyzed using the Kaplan–
Meier method. Estimates of follow-up duration for DOR, PFS and OS were based 
on the inverse Kaplan–Meier method, with 95% CIs based on the Greenwood 
formula.

For group 5, which excluded patients with RET fusion–positive NSCLC but 
included patients with RET fusion–positive thyroid cancer, a total sample size of 
100 patients with solid tumors harboring a RET fusion was intended to allow >90% 
power at the two-sided significance level of 0.05 for testing the assumption of null 
hypothesis of ORR = 0.1 versus the alternative ORR = 0.3. As results for 20 patients 
with RET fusion–positive thyroid cancer were reported previously11, patients with 
these cancers were excluded from this interim analysis. All statistical analyses were 
performed with SAS version 9.4 software.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The anonymized derived data from the registrational ARROW study 
(NCT03037385) that underlie the results reported in this article may be made 
available after Roche and/or Blueprint Medicines have received regulatory approval 
for pralsetinib in the United States and the European Union in the tumor-agnostic 
setting described herein or upon terminating its clinical development in this 
setting. Qualified researchers can then request access to individual patient-level 

clinical data through a data request platform. At the time of writing, this platform 
is Vivli (https://vivli.org/ourmember/roche/). As RET fusions are rare alterations, 
the anonymization of patient-level data in patient subgroups or trial cohorts of 
fewer than 50 patients may be difficult to achieve. As a result, Roche will assess 
the feasibility of anonymization and, therefore, data release as part of the review of 
inquiries. For up-to-date details on Roche’s Global Policy on the Sharing of Clinical 
Information and how to request access to related clinical study documents, see 
https://go.roche.com/data_sharing.
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Extended Data Fig. 1 | Prior therapies at baseline. All Ns are target enrollment. Safety and efficacy analyses presented herein were based on the shaded 
group (5).
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Extended Data Fig. 2 | See next page for caption.

NAtuRE MEDiCiNE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNature MediciNe

Extended Data Fig. 2 | Co-occurring alterations in patients with RET fusions in the ARROW trial at study entry. a12 patients from the efficacy population 
did not have any genomics carried out except CRF before the first treatment and were therefore not included. bTwo patients with colorectal cancer and one 
patient with cholangiocarcinoma were excluded from efficacy analyses due to additional co-occurring driver alterations of PIK3CB E1051G, KRAS Q61H 
and BRAF V600E, respectively. After enrollment, although the patients were allowed to continue on-study, considering concurrent activating events the 
sponsor later excluded these patients from the efficacy cohort as the concurrent drivers were adjudicated centrally.
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Extended Data Fig. 3 | Phase 2 study design. aEnrollment as of 18 February 2021 and data cutoff date 18 October 2021. bEnrollment and data cutoff date as 
of 18 October 2021. PD-1, programmed death-1; PD-L1, programmed death ligand-1.
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Extended Data Fig. 4 | a, Duration of response in 13 patients with RET fusion–positive tumors in the efficacy-evaluable population with a confirmed CR or 
PR. b, Progression-free survival in 23 patients with RET fusion–positive tumors in the efficacy-evaluable population. c, Overall survival in 23 patients with 
RET fusion–positive tumors in the efficacy-evaluable population.
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Extended Data Fig. 5 | treatment-emergent adverse events occurring in ≥15% of patients. aEnrollment and data cutoff date as of 18 October 2021.
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