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Pain is a constant in our lives. The efficacy of drug therapy
administered by the parenteral route is often limited either by
the physicochemical characteristics of the drug itself or by its
adsorption–distribution–metabolism–excretion (ADME) mecha-
nisms. One promising alternative is the design of innovative
drug delivery systems that can improve the pharmacokinetics |
(PK) and/or reduce the toxicity of traditionally used drugs. In
this review, we discuss several products that have been
approved by the main regulatory agencies (i.e., nano- and
microsystems, implants, and oil-based solutions), highlighting
the newest technologies that govern both locally and systemi-
cally the delivery of drug compounds. Finally, we also highlight
the risk assessment of the scale-up process required, given the
impact that this approach could have on drug manufacturing.
Teaser: The management of pain by way of the parenteral

route can be improved using complex drug delivery systems
(e.g., micro- and nanosystems) which require high-level assess-
ment and shorten the regulatory pathway.
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Introduction
Pain is present in our lives. It is comparable to an alarm that
defends us from damage, but which is also a terrible enemy to
fight, particularly when persistent. ‘Physiological’ pain has its
origin in normal, functional nervous tissue, including the
peripheral and central nervous systems, is of brief duration,
and is generally described as acute. Evoked by noxious stimuli,
it results from burns or cuts, bee stings, dental work, labor and
childbirth, broken bones or surgery. By contrast, ‘pathological’
pain is a persistent condition arising from articular diseases,
fibromyalgia, cancer, and neuropathic and visceral problems,
among others. A repeated painful signal can induce a maladap-
tive response of the nervous system that alters pain perception
as well as the efficacy of common analgesics.1,2 As a part of the
chronic pain continuum, the term ‘nociplastic pain’ was recently
proposed to describe the clinical and psychophysical findings
related to altered nociceptive functions, in an attempt to join
all the aforementioned conditions.3

Independently of the characteristics of pain, the Declaration
of Montréal (2010) states that ‘the access to pain management
is a fundamental human right’ and an integral component of
Universal Health Coverage, a critical objective of the WHO.4

Painful and/or inflammatory conditions can be treated with
numerous therapeutic agents belonging to different classes,
including opioid analgesics, nonsteroidal anti-inflammatory
drugs (NSAID), corticosteroids, and antiepileptics, or by using
various techniques and administration protocols depending on
the patient’s need. Indeed, infusions of pharmacological agents
into the central neuraxis (e.g., opioid analgesics) can be required
to provide good, long-term pain relief, whereas local injections of
the drug (e.g., glucocorticoids) into the affected area is a valuable
approach for targeting the specific inflamed tissues, thus improv-
ing the therapeutic activity and reducing adverse effects.5 How-

c

FIGURE 1
Possible relationship between formulations and pharmacokinetics (PK) and/or
repurposed drugs in pain therapy.
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ever, the success of these different approaches is often limited
either by the physicochemical characteristics of the drug sub-
stance itself or its ADME mechanisms.

To overcome these issues, the development of a medicinal
product containing a substance never previously used in humans
(‘first-in-human’) is an arduous process that requires a huge
investment of money and time with no guarantee of returns.
This is because 80% of approved drugs are reported to fail to yield
profitable earnings for the companies that developed them.6

Most of the expenditure can be ascribed to the translation of a
medicinal product from preclinical to clinical studies, necessary
for demonstrating its efficacy and safety. Hence, approaches that
make use of drug candidates with known safety profiles (drug
repurposing) can effectively avoid time-consuming, laborious,
high-risk, and costly processes. Typically, ‘old’ drug substances
could be sourced from medicinal products (i) approved by regu-
latory agencies; (ii) undergoing clinical development for a differ-
ent application; or (iii) that have been abandoned or have failed
to demonstrate efficacy during clinical trials (Phase II or III).

To accomplish successful drug repositioning, both maximiz-
ing drug interaction at the target site and mitigating or eliminat-
ing adverse effects are mandatory. In this regard, the design of a
drug delivery system offers unique potential for repurposing
applications, by allowing researchers to overcome obstacles of
solubility, ADME, and targeting, thus significantly expanding
the range of potential novel indications. Benefits arise from the
broad range of materials, structures, and physicochemical modi-
fications, all of which can address patient’s needs. The develop-
ment of a new drug product starting from an old active
pharmaceutical ingredient (API) brings significant advantages
from a regulatory point of view. In most cases, information
regarding the efficacy and safety profiles of the drug substance
is already available in literature or to the regulatory authorities.
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This means that the extent of the data to be provided by the
applicant for the assessment process is reduced, and drug prod-
ucts can be authorized following an abridged application
(Box 1). The nature and extent of such data can vary based on
the type of the API (biological or nonbiological), the intrinsic
complexity of the drug product, and its therapeutic indications.7

Based on these considerations, here we discuss how this idea
has been successfully applied to design parenteral drug delivery
systems for pain management in different settings (Fig. 1). We
review cases of micro- and nanosystems (i.e., liposomes and
nanoemulsions) available on the market to highlight the role
of drug delivery systems in reducing adverse effects, optimizing
PK, or improving patient compliance.
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Nanosystems in pain management
Nanosystems are possibilities for optimizing a variety of thera-
peutics owing to their specific therapeutic benefits and versatility
of application. Indeed, they are capable of encapsulating small
drugs as well as macromolecules, protecting them from chemical
degradation, increasing their in vivo half-life, enhancing the drug
payload, and providing controlled release and targeted delivery,
among other things. Two main classes of nanosystem are
approved in pain management, namely nanoemulsions and lipo-
somes, as a result of their therapeutic benefits and optimal safety
profiles.

The key points that determine whether clinical translation
and commercialization will be successful are related to challenges
in cost-effective manufacturing and scale-up, appropriate regula-
tory guidelines regarding benefit/risk balance assessment, and
validated characterization methods. Indeed, developing a scal-
able and reproducible manufacturing process generally involves
multiple and complex steps (e.g., homogenization, centrifuga-
tion, extrusion, sterilization, lyophilization, etc.). Considering
that these medical products are administered via th parenteral
route, the careful selection of materials, solvents, and manufac-
turing methods is important from the point of view of patient
safety. Among them, sterility is mandatory, even if the steriliza-
tion process can pose challenges to the stability of nanomedi-
cines. For instance, liposome components are sensitivity to
physicochemical alterations: terminal steam sterilization should
be avoided because it can cause the degradation of phospholipids
into free fatty acids (FFAs), which can cause serious adverse
effects. Sterile filtration is not applicable in liposomes up to
200 nm in size because of possible filter pore clogging, especially
if the dispersion medium is viscous.8 Alternatively, aseptic man-
ufacturing in closed systems equipped with sterile filter barriers
have been developed,8,9 although these require additional pro-
cess validation data and justification during regulatory
submission.10

Finally, an understanding of the effect of storage conditions
on the stability and biocompatibility of nanocarriers is vital for
their translation into clinical practice. Indeed, storage conditions
can affect physical stability (e.g., aggregation or coalescence),
causing drug leakage or phospholipid degradation (i.e., hydroly-
sis oxidation). Moreover, a correlation between mechanism of
action and the type of pain most sensitive to the drug was
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attempted, even if this theoretical approach is often limited by
the multiple characteristics of persistent pain.
Liposomes
Opioids are considered ‘gold standard’ in clinical practice for the
treatment of postoperative pain and the WHO has included mor-
phine in its Model List of Essential Medicines (https://list.essen-
tialmeds.org/). Three major classes of opioid receptor (l, d, and j)
mediate spinal and supraspinal (particularly l opioid receptor
subtype 1) analgesia. The coupling with inhibitory G proteins
allows inhibition of adenylate cyclase with reduced generation
of cAMP and other second messengers. Opioids increase the con-
duction of potassium and hyperpolarize target cells, making
them less responsive to depolarizing pulses and inhibiting cal-
cium influx. These actions reduce the release of neurotransmit-
ters from neurons and decrease the generation of the
postsynaptic impulse; consequently, these drugs are able to
counteract nociceptive pain.11 In particular, epidural opioids
are widely used for central neuraxial blockade and postoperative
analgesia.12 Indeed, epidural morphine sulfate has analgesic effi-
cacy and superiority over systemically administered morphine,
although pain relief following a single epidural injection lasts
less than 24 h. Techniques used to administer and prolong opi-
oid epidural analgesia, such as patient-controlled analgesia
pumps, continuous epidural infusion, and frequent reinjection,
are expensive and inconvenient.13 In this scenario, the advent
of extended-release epidural morphine (DepoDurTM, SkyPharma)
greatly improved postsurgical pain control, providing analgesia
for up to 48 h with a single dose.14 This formulation exploits
multivesicular liposomes (DepoFoam technology) to prolong
drug release over several days after nonvascular administration
(i.e., intrathecal, epidural, subcutaneous, intramuscular, intra-
articular, and intraocular). The peculiar features of DepoDur are
related to the mean diameter of the systems (��20 mm) and to
their structure, which is characterized by closely packed non-
concentric vesicles containing morphine sulfate (final drug con-
centration = 10 mg/ml) stabilized by triglycerides acting as space
fillers at the intersection points of the phospholipid bilayer.15,16

DepoDur comprises dioleoyl phosphatidylcholine (DOPC),
dipalmitoyl phosphatidylglycerol (DPPG), cholesterol, Tri-
caprylin, and triolein in a mass ratio of 42:9:33:3:1.15

Although opioids can be used alone for postoperative pain,
multiple studies have shown that analgesia is more effective
when they are combined with local anesthetics.12 For example,
bupivacaine is able to block Na+ channels and, thus, might also
be able to affect the activity of many other channels, including
NMDA receptors. NMDA receptors are crucial for the plastic
events in the dorsal horn underlying central sensitization; thus,
bupivacaine, by inhibiting NMDA currents, is active also against
persistent pain.17 Bupivacaine is administered by way of subcuta-
neous injections or intravenous infusions; unfortunately, in
most cases, a single administration is not sufficient to manage
postoperative pain because the drug is rapidly redistributed from
the site of administration, limiting its duration of action. More-
over, the use of perineural catheters requires catheters requires
a clinician’s specific skills, additional costs, and potential compli-
cations for patients.
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Therefore, to promote a controlled and prolonged release of
an active compound, a DepoFoam-based system was developed.
The multivesicular liposomes containing bupivacaine (bupi-
somes) have a diameter of 24–31 lm and are suspended in a
0.9% sodium chloride solution. The inactive components are
cholesterol, 1,2-dipalmitoyl-sn-glycero-3 phospho-rac-(1-
glycerol), tricaprylin, and 1,2-dierucoylphosphatidylcholine
(DEPC). Compared with traditional bupivacaine, which has a
duration of less than 10 h, the duration of action of Exparel� typ-
ically ranges from 72 to 96 h.18–20 The medicinal product
(Exparel, Pacira Ireland Limited) approved by the US Food and
Drug Administration (FDA) in October 2011 is proposed as a
single-dose administration directly into the surgical site, to
obtain a prolonged postoperative analgesia (bunionectomy,
hemorrhoidectomy, and interscalene nerve block).21,22 In recent
years, its off-label use has also been proposed for laparoscopic
hysterectomy, femoral and intercostal nerve block, epidural
injections, and knee, shoulder, and hip arthroplasties.23–25 The
two formulations (266 mg/20 ml or 133 mg/10 ml as a single
vial) received marketing authorization from the European
Medicines Agency (EMA) in 2020,26 as a brachial plexus/femoral
nerve block for the treatment of postoperative pain in adults and
as a field block for the treatment of somatic postoperative pain
from small- to medium- sized surgical wounds in adults.

It was reported that more than 6 million patients in the USA
have been treated with bupivacaine liposomes since 2012, and
the annual sales of Exparel reached US$331 million in 2018.27

The clinical use of this formulation has been shown to decrease
the hospitalization time of patients, even though the actual over-
all reduction resulting from the use of Exparel with respect to
other conventional drugs remains under investigation.28–30
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Nanoemulsions
The clinical experience accumulated over �40 years of the use of
phospholipid stabilized nanoemulsions for parenteral nutrition
has led them to be a template for the design of drugs adminis-
tered via the intravenous (IV) route.10,31,32

From a formulation perspective, the selection of the surfactant
is crucial for forming and stabilizing because nanoemulsions are
thermodynamically unstable, but kinetically stable. Among the
possible emulsifying agents accepted by regulatory agencies,
egg or soy lecithin are typically used, whereas long-chain triglyc-
erides (LCT) and medium-chain triglycerides (MCT) are first-
choice excipients as the inner phase. Given that, within a few
minutes after IV administration, nanoemulsions are cleared by
lipoprotein lipase (LPL), which hydrolyzes triglycerides into
FFAs, the phospholipid content, droplet size, lipid type, and infu-
sion rate are among the factors determining the rate of plasma
clearance.33 Free phospholipids (not involved in the emulsifica-
tion process) interfere with LPL activity; thus, 20% oil emulsions
are cleared faster compared with those containing 10%, because
they have proportionally fewer free phospholipids owing to a lar-
ger oil content. Moreover, a large total interfacial area, along with
reduced droplet size, facilitates LPL activity, although droplets
>250 nm are cleared faster, indicating greater involvement of
the reticuloendothelial system (RES). In addition, MCTs are
cleared more rapidly than LCT, because of more efficient LPL
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activity, and because their fatty acid metabolism is independent
from the mitochondrial carnitine co-transporter.10 The maxi-
mum clearance rate for injectable nanoemulsion is 3.8 g fat/kg/-
day. Beyond this rate, LPL becomes saturated and the infused
triglycerides accumulate in the plasma, leading to major adverse
effects, including impairment of RES/immune function (espe-
cially for LCT) and of pulmonary hemodynamics, hepatobiliary
disorders (steatosis, cholestasis, and gallbladder sludge/stones),
pancreatitis and fat-overload syndrome (fever, jaundice, irritabil-
ity, and spontaneous hemorrhage).33

The most outstanding example of a nanoemulsion-based drug
delivery system is propofol. In its pure form at room temperature,
it is an oil, but it freezes at 19 �C. Given its chemistry, propofol
cannot be administered as an aqueous salt because the only ion-
izable functional group (the hydroxyl group) has a pKa of 11. The
remaining portion of the molecule, the benzene ring and iso-
propyl side groups, is highly lipophilic. The result is a molecule
with poor water miscibility (150 mg/l). Its high lipophilicity
(logP = 4.16) means that good propofol miscibility can only be
achieved in lipophilic substances or organic solvents.34 In early
human testing, propofol formulated as Cremophor EL micellar
solution35 presented several adverse effects because, apart from
severe pain at the injection site, it caused a high incidence of
anaphylaxis and peripheral neuropathy. Conversely, develop-
ment of the propofol soybean oil nanoemulsion formulation
(Diprivan�, AstraZeneca) exhibited greater potency, a smaller dis-
tribution volume, less first-pass lung sequestration, and
decreased time to peak EEG effects.36–38 Pain reduction following
IV administration can be ascribed to the lipid sequestration of
propofol from the aqueous phase, which minimizes distribution
to vessel walls.39

In pain management, nanoemulsions are used for the repur-
posing of different substances, including anaesthetic,40 anal-
gesic, and anti-inflammatory agents.41 Etomidate is a hypnotic
agent used in general anesthesia that has a stable hemodynamic
profile and causes minimal histamine release, even though pain
on injection and myoclonus are the most common adverse
effects. The nanoemulsion formulations (Etomidat-Lipuro�, BB
Braun) abolish soreness at the injection site, venous irritation,
and hemolysis.42–44

A similar problem of lipophilicity is presented by diazepam, a
benzodiazepine used in preoperative settings for its sedative and
muscle-relaxant properties. To avoid pain on injection and
thrombophlebitis, an oil-in-water nanoemulsion (Diazemuls�,
Pharmacia) can be used45–47 or diazepam can be added to
ready-prepared emulsions.10,40

Nanoemulsions might or might not have a significant impact
on the distribution and elimination of loaded drugs, depending
on their partitioning. Indeed, low drug lipophilicity (i.e., diaze-
pam) causes a rapid release from the emulsion.45 By contrast,
very lipophilic drugs are subject to metabolism by the liver or
RES, with a different tissue biodistribution profile.10

Besides proper drug repurposing, nanoemulsions have also
been used for the delivery of conventional NSAIDs, but in the
form of insoluble cleavable prodrug esters aiming to control
nociceptive and inflammatory pain. This can be achieved
through the inhibition of cyclo-oxygenase as well as, at least
for some molecules of the class, of lipoxygenase and algogenic
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metabolites; thus, central mechanisms can enhance peripheral
signaling.48 As an example, flurbiprofen, practically insoluble
in water, can be intravenously administered as a solution only
by using sodium salt, but this formulation causes irritation at
the injection site. Nanoemulsions loaded with a prodrug (i.e.,
flurbiprofen axetil, Lipo-NSAID - Ropion�, Kaken Pharmaceuti-
cal) can be administered for postoperative pain or in patients
with cancer, without irritation and reaching higher drug concen-
trations in the bloodstream, with faster analgesic effects and
fewer adverse gastrointestinal reactions, compared with conven-
tional formulations.49

Similarly, the preparation of a nanoemulsion (Limethason�,
GreenCross) using dexamethasone palmitate allows the reduc-
tion of drug dosages, with a consequently reduced risk of
steroid-inherent adverse effects.50 Indeed, subsequent to intra-
articular injection, this prodrug is gradually hydrolyzed by
esterases, exhibiting greater anti-inflammatory activity compared
with conventional water-soluble dexamethasone phosphate, pri-
marily because of a more specific distribution in the inflamma-
tory lesion and greater uptake by macrophages.51,52 This
product is particularly useful to treat rheumatoid arthritis, a
chronic, autoimmune rheumatic disease that evolves with
inflammatory flares associated with inflammation of joint syn-
ovial membranes, progressive bone and cartilage destruction,
and strong pain. Indeed, local corticosteroid delivery can reduce
inflammation, immune cell response, and pain.53
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Long-acting injectable formulations
In the case of parenteral administration, long-acting implantable
or injectable dosage forms (LAIs) extend drug release over a suit-
able period of time to guarantee a therapeutically relevant con-
centration either in the bloodstream or locally in a specific
tissue/organ (e.g., eye or intra-articular cavity) for days, weeks,
or months. Many technologies have been proposed for control-
ling drug release, including crystal suspensions, emulsions, or
implantable or injectable dosage forms, which can be based
either on nonbiodegradable and biodegradable polymers or on
in situ gelling systems.54 To avoid tissue damage after the extrac-
tion procedure at the end of the release period or in the case of
harmful events/adverse reactions, biodegradable polymers are
generally used [e.g., poly(lactide-co-glycolide) (PLGA)], which
typically undergo complete degradation in biocompatible by-
products. Finally, a device required for injection and/or implan-
tation should be optimized along with the implantation
procedure.

Among the drugs that can be loaded into LAIs, glucocorticoids
are one of the most successful examples. Indeed, the use of glu-
cocorticoids, despite their long history as anti-inflammatory
and immunosuppressive drugs, is limited to short-term treat-
ments to relieve inflammation during flare-ups because of their
severe side effects.55 In this context, polymeric implants can take
advantage of the specific physiopathology of inflamed tissues
and the vascular-enhanced permeability effect to deliver encap-
sulated molecules to the target tissue through passive diffusion
into the affected area. This means that the extended residence
time of an implant in the inflamed tissues can improve the
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anti-inflammatory activity of the loaded drug, while reducing
doses and, consequently, adverse effects.
Biodegradable implants
To maximize the efficacy of glucocorticoids while reducing their
adverse effects, a local intra-articular injection has been shown to
be a valuable approach for targeting synovial inflammation, a
typical feature of osteoarthritis, a degenerative joint disease char-
acterized by cartilage breakdown, fibrotic changes to the joint
capsule, bony changes, and inflammation of the synovial mem-
brane.56 Triamcinolone acetonide is widely used for this purpose,
although providing relatively short-lived analgesia.57,58 To avoid
the need for multiple injections, a PLGA formulation (Zilretta�,
Pacira Bioscience) of triamcinolone acetonide was developed to
favor the slow release of the analgesic into the synovium, pro-
longing efficacy to over 3 months.59

Zilretta is formulated as microspheres of �45 mm loaded with
small crystals of triamcinolone acetate [nominal drug load of
25% (w/w)].60 Size control is essential here to assure the compat-
ibility and efficacy, because particles smaller than 6 lm are taken
up by synovial macrophages.61

Drug release is controlled by nanochannels (500 nm), which
permit the flow of fluids into the particle matrix, thus prolonging
drug release and slowing PLGA erosion. This slow and homoge-
neous degradation is favored by the low glycolic acid content
(75:25) and by the small sizes of the microspheres.59 A pivotal
Phase III trial showed that Zilretta significantly reduced knee
pain for a full 12 weeks, with some patients experiencing pain
relief through week 16. A clinical trial is in progress
(NCT0426104962) to assess the pre- and post-effects of a single
knee injection on physiological measures of pain and disability,
physical performance, and physical activity in individuals with
knee osteoarthritis. Thirty-five patients with symptoms were
recruited and data were collected before injection (baseline), as
well as at 4- (post 1) and 8-week follow-ups (post 2).

Commercial implants (‘rods’) are also available for the treat-
ment of inflammation in ocular diseases, aiming to overcome
ocular barriers and prolong the duration of drug effects. Ozur-
dex� (Allergan Pharmaceuticals) is an intravitreal rod-shaped
implant containing dexamethasone, which is injected via a 22-
gauge applicator directly into the vitreous body to treat non-
infectious uveitis. In this case, the polymeric matrix (NOVA-
DUR�), comprising two grades of 50:50 PLGA differing in
hydrophobicity, provides a gradual release of 700 mg dexam-
ethasone at the target site over 6 months. The rod is obtained
by a hot-melt extrusion process, an efficient and accurate
method for controlling the consistency and diameter of the fila-
ment, which is suitable for placement inside a 22G hypodermic
needle.63,64 Treatment with Ozurdex was shown to be more
effective than sham treatment for reducing inflammation in
patients with uveitis as measured by vitreous haze scoring. In a
main study involving 229 adults with uveitis, 8 weeks after injec-
tion, around 47% of patients treated with Ozurdex (700 mg)
achieved a vitreous haze score of zero compared with 36% of
patients treated with Ozurdex (350 mg) and 12% of patients
who received the sham treatment.65
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In situ-forming polymer implants typically comprise a drug,
solvent, and biocompatible polymer that controls drug release.
Upon injection, the solution forms a solid polymer matrix at
the injection site, via phase separation triggered by co-solvent
and tissue-for-fluid (non-solvent) exchange. Based on the use of
N-methyl-2-pyrrolidone (NMP) and PLGA, tri(ethylene glycol)
poly(orthoester) (BiochronomerTM technology66), Atrigel� deliv-
ers a fixed-dose combination of bupivacaine and meloxicam to
produce postsurgical analgesia for up to 72 h after bunionec-
tomy, open inguinal herniorrhaphy, and total knee arthroplasty
(Zynrelef�, Heron Therapeutics). Similarly, Posimir� (Durect Cor-
poration) is a bupivacaine solution to be used for postsurgical
analgesia for up to 72 h following arthroscopic subacromial
decompression, obtained after administration into the subacro-
mial space under direct arthroscopic visualization. This formula-
tion is based on a nonpolymeric scaffold (i.e., sucrose acetate
isobutyrate) in ethanol and benzyl alcohol (SABER�). This mate-
rial is an extremely hydrophobic viscous liquid that forms a low-
viscosity fluid when dissolved in some types of organic solvent. If
the solvent is water miscible, it would diffuse out upon contact
with the aqueous biological fluids, leaving a highly viscous
biodegradable matrix, which can act as a drug depot.67
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Nonbiodegradable implants
To manage ocular diseases, sustained-release systems made of
nonbiodegradable polymers have shown prolonged drug reten-
tion at the site of action. Retisert� (Bausch & Lomb) is a sterile
implant designed to release fluocinolone acetonide to the poste-
rior segment of the eye. The nominal initial rate of 0.6 lg/day
decreases over the first month to a steady state ranging between
0.3 and 0.4 lg/day, which is maintained for approximately
2.5 years. This implant comprises a tablet enclosed in a silicone
elastomer cup containing a release orifice and a poly(vinyl alco-
hol) membrane positioned between the tablet and the orifice;
it is indicated in the treatment of chronic non-infectious uveitis
affecting the posterior segment of the eye.68

The Iluvien� implant (Alimera Sciences) is a nonbiodegrad-
able cylindrical polymer tube that measures 3.5 mm in length
and 0.37 mm in diameter. Fluocinolone acetonide is incorpo-
rated into a poly(vinyl alcohol) matrix within a polyimide tube,
which has membrane caps on each end to allow the diffusion of
water into the matrix. The drug diffuses through the tube, allow-
ing a consistent and sustained release for up to 3 years.68 It is a
continuous MicrodosingTM Delivery System, the device providing
the sustained delivery of 0.59 mg poly(vinyl alcohol) and enables
physicians to treat diabetic macular edema (DME) in an effective
and consistent manner.69,70
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Nanocrystal suspensions
Nanocrystal suspensions with sustained release characteristics
and suitable administration volumes have been developed to
both reduce administration times and improve patient compli-
ance. Indeed, the injection of a steroid decreases inflammation
and provides pain relief at a later stage. In clinical application,
several types of commercial nanocrystal suspension are available
for the treatment of ocular diseases, including Betason L.A� (Cas-
pian Tamin Pharmaceutical Co.; betamethasone acetate), Depo-
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Medrol/Lidocaine� (Pfizer; methylprednisolone, lidocaine
hydrochloride) and Kenalog� (Bristol-Myers Squibb; triamci-
nolone acetonide).

Betason L.A is supplied as a dual-acting formulation contain-
ing both betamethasone acetate and betamethasone (as dis-
odium phosphate). It has multiple indications for use, such as
inflammatory or allergic reactions and rheumatic disorders, and
as a palliative treatment for neoplastic disease. Depending on
the indications, Betason L.A is administered via intra-muscular,
intra-articular, intrabursal, or intradermal injections. In a PK
study in healthy human volunteers, Salem et al. demonstrated
the controlled-release capabilities of this dual-acting suspension
upon intramuscular injection.71 The PK profiles showed that
the soluble betamethasone (phosphate ester) had a faster release
to achieve a prompter onset of activity and that the prodrug nat-
ure of hydrophobic betamethasone (acetate ester) is responsible
for the extended-release characteristics of the formulation. A
double-blind trial using a betamethasone phosphate/betametha-
sone acetate suspension for intra-articular injections showed an
average duration of �14 days for pain relief in patients with
rheumatoid inflammation.72

Depo-Medrol/Lidocaine is an injectable suspension contain-
ing methyl prednisolone acetate combined with lidocaine
hydrochloride. It is used to treat inflammatory or rheumatic con-
ditions requiring local glucocorticoid effects. It can be injected
weekly via intra/periarticular or intrabursal routes or else directly
into the tendon sheath, according to necessity. It is formulated
for localized anti-inflammatory or antirheumatic pain manage-
ment, although, following its intra-articular injection, several
cases of anaphylaxis have been reported.73 In these cases, the
allergic reaction could have been caused by sensitivity to the
drug itself or the excipients it contains, such as carboxymethyl-
cellulose or, less probably, to the polyethylene glycol.74 Further
investigations are required to understand the origin of such aller-
gic reactions and to guarantee the safe use of Depo-Medrol/
Lidocaine.

Kenalog is a microcrystal formulation of the poorly water-
soluble triamcinolone acetonide. The latter is a chemical deriva-
tive of triamcinolone, the two hydroxyl groups of which are
cross-linked by a molecular equivalent of acetone, such as a
ketal.75 This covalent modification renders triamcinolone ace-
tonide more lipophilic and less water soluble compared with tri-
amcinolone (0.043 versus 0.847 mg/ml, respectively). This
micronized suspension exhibits an extended duration of phar-
macological action. The administration of Kenalog was accompa-
nied by retinal toxicity after 14 days, but some studies have
demonstrated that this toxicity could be in response to one of
its excipients, probably benzyl alcohol.76,77
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Oil-based formulation
Naldebain� (Taiwanese) is an oil-based formulation containing
dinalbuphine sebacate. Dinalbuphine sebacate is a prodrug of
nalbuphine, which is a mixed opioid antagonist–agonist, and
has a ceiling effect in terms of respiratory depression and a
potentially lower risk for addiction and abuse compared with full
opioid agonists. The single-dose regimen is administered before
surgery and the extended duration of action (i.e., several days)
/doi.org/10.1016/j.drudis.2022.07.006
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provides an advantage over the need for continuous postsurgical
administration of a short-acting opioid. Following injection,
dinalbuphine sebacate (prodrug) is converted into the active
moiety, nalbiphine. Naldebain is available as an injection con-
taining 75 mg/ml of dinalbuphine sebacate and benzyl benzoate
dissolved in sesame oil.78,79

The clinical efficacy of dinalbuphine sebacate intended for
treating acute postsurgical pain was based on a pivotal Phase III
study, SDE-2–001. This was a randomized, double-blind,
placebo-controlled study aiming to assess the safety and efficacy
of a single-dose intramuscular injection of dinalbuphine sebacate
for post-hemorrhoidectomy pain management. The primary effi-
cacy variable considered was pain assessment (time-specific pain
intensity), which was calculated as the area under the curve
(AUC) of the visual analog scale (VAS) pain intensity scores, for
48 h after surgery. The AUC0–48 (mean VAS scores of pain inten-
sity) for the dinalbuphine sebacate group showed statistically sig-
nificant superiority compared with the placebo group in both the
modified intent-to-treat (209.93 ± 111.26 versus 253.53
± 108.49; P = 0.0052) and the per-protocol (207.46 ± 112.41 ver-
sus 254.91 ± 106.17; P = 0.0039) populations.75,80
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FIGURE 2
Risk assessment flow chart.

TABLE 1

Example of process steps and related parameters identified
during the first step of the risk assessment.

Process step Parameter

Compounding Excipient mixing time
Excipient mixing speed
Holding time
Transfer pressure
Transfer time

Filtration Differential filtration pressure
Filtration time
Filtration contact time

d P
High-level assessment of the scale-up and
manufacturing processes
According to current pharmaceutical guidelines,81 any pharma-
ceutical process should be designed to be capable of reproducible
performance. This means that, based on scientific data and
experimental studies, each manufacturer should demonstrate
that a medicinal product is routinely reproducible with the same
level of quality, efficacy, and safety for the patient. This puts a
strong focus on the understanding, control, and optimization
of the critical manufacturing process parameters (CPPs) during
the preliminary phase of development of a new drug and/or for-
mulation. These are defined as process parameters the variability
of which have an impact on a critical quality attribute (CQA)81,82

of the product and, therefore, should be monitored or controlled
to ensure that the process produces the expected results. More-
over, in line with current regulations, process understanding,
and challenges, they must be viewed and treated as a continuous
entity, starting in the development laboratory but continuing
throughout the life-cycle of the medicine and being a conspicu-
ous part of the registration and industrialization processes.
Guidelines and Best Practices documents82 offer advice and tools
for how to put this approach into place, indicating how critical
process parameters can be investigated, quantified, and assessed
during the scale-up phase and consolidated during the commer-
cial supply process. This focus becomes even more important
when the manufacturer must use a complex environment, such
as one of those described in this review, suitable for reproposing.

The approach is described in the following steps (Fig. 2): the
first stage is the definition of the CPPs, starting from a clear
understanding of the chemistry of the API together with the for-
mulation. As soon as the CPPs have been defined, the second
stage is the analysis of how they can affect the CQAs, posing a
risk for the efficiency, safety, and quality profile of the product.
The third stage is the quantification of those risks, which then
makes possible the fourth step, during which mitigating actions
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with appropriate levels of commitment, and priorities are
defined and executed.

With the aim of offering a concrete example of this risk man-
agement approach, these four steps are further illustrated here
below, together with examples of their application.

First stage: through a deep technical review of the process
flowchart carried out by a pool of experts belonging to several
different sectors (i.e., R&D, quality, engineering, production,
and analytic), each process unit operation and equipment train
parameter is listed and characterized based on normal operating
parameters (NORs), process acceptance ranges (PARs), and edge
of failure (EOF) (Table 1).

Second stage: via a Failure Mode, Effects and Criticality Anal-
ysis (FMECA) or similar tool [80], an assessment of risk of impact
on CQA, based on experimental data, scientific literature, or the
team (Table 2) carries out documented evidence coming from
similar manufacturing processes.
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TABLE 2

Example of FMECA application during the second step of the risk assessment.

Process step Parameter Impacted
CQAs

Failure mode

Compounding Excipient mixing
time

Compounded
solution pH

Incorrect mixing parameters could lead to incomplete dissolution of excipients. Their
concentrations in the solution will change, impacting chemical characteristics of micro-
environment. Moreover, in case of stabilizing excipients, their lower concentration will
negatively impact impurity profile of API

Osmolarity
Viscosity
Assay
Impurity profile

Filtration Filtration
differential
pressure

Filtered
solution sterility

Differential pressure higher than operative range can create shear stress on API, leading to
degradation; moreover, aggregation can occur because of increased pressure

Particle size
distribution
Assay
Impurity profile

Filtration Filtration contact
time

Filtered
solution

Prolonged contact time with components of filtration medium can increase extractable levels.
Those foreign chemical entities can then react with excipients or APIs, generating leachables

Assay
Impurity profile

TABLE 3

Example of the severity, probability, and detection scales used for the third step of the risk assessment.

TABLE 4

Example of a Risk Priority Number Grid used during the fourth
step of the risk assessment.

RNP Risk
definition

Action needed

RNP > 12 Very high
risk

Challenge parameter during development
with QbD or comparable scientifically
sound approach

3 < RNP < 12 Moderate
risk

Appropriate justification or modeling
studies are needed before moving to
scale-up, clinical/registration, or
commercial process phase

RNP < 3 Low risk Further parameter investigation is not
considered necessary because it holds
constant during scale-up, clinical/
registration or commercial process phase
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Third step: each identified risk is then quantified (Table 3)
based on severity, probability, and detection. Severity (S) of the
risk considers the potential impact on a patient’s health; Proba-
bility (P) is defined as the frequency of occurrence of the event
considering the experience acquired during the process develop-
ment; and Detection (D) is the probability of detecting the events
if they occur, based on the control system in place.

Fourth step: the severity, probability, and detection of each
risk are mathematically combined to calculate the Risk Priority
Number (RPN) and are prioritized using an appropriate matrix
grid. Scientifically sound (TR-65 PDA) mitigation actions are then
taken for risk mitigation (Tables 4 and 5).

The current approach shows how to properly set the basis of a
sound, reproducible manufacturing process, which guarantees
the quality, safety, and efficacy of a medicine. Regular applica-
tion of this approach during the product life-cycle also offers
an excellent tool for change management, identifying optimiza-
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TABLE 5

Example of mitigation action plan identified to reduce risks.
a

bYellow shading: XXX; red shading XXXX.
a Abbreviations: D, detection; P, probability; RPN, Risk Priority Number; S, severity.
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tion or additional controls to be implemented to increase the
robustness of the supply chain, as laid down by current
regulations.

Concluding remarks
A search through the available literature shows that drug delivery
technology is a suitable tool for repurposing active substances
currently in clinical use and administered by parenteral routes
for treating pain, both systemic and local. The various cited
examples that can be found on the market relate to different drug
delivery systems, such as micro- and nanosystems (i.e., liposomes
and nanoemulsions), together with long-acting formulations,
such as biodegradable and nonbiodegradable polymer implants,
in situ-forming implants, and oil-based solutions. The common
advantage of all these types of drug delivery system is better
patient compliance, this being a major driving force behind their
design.

Nanoemulsions have been shown to be extremely advanta-
geous in overcoming drawbacks arising from drug substance
properties, such as in the propofol formulation. LAI, such as crys-
tal suspensions, implantable or injectable dosage forms, based
either on biodegradable or nonbiodegradable polymers or in situ-
gelling systems, allow the reduction of the dosing frequency,
decrease adverse effects, and maintain stable plasmatic
concentrations.

Moreover, some drug delivery systems, such as polymeric
implants, can take advantage of the specific physiopathology
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U

of inflamed tissues and of the enhanced vascular permeability
effect to address encapsulated molecules to the target site.

As highlighted in this review, the aim of repurposing active
substances that are already in use can be both economic and time
saving, even to the point of allowing the exploitation of abridged
registration procedures. However, repurposing a formulation
study using drug delivery systems faces the challenge of develop-
ing a scalable and reproducible manufacturing process. This must
be developed according to current pharmaceutical guidelines and
on a risk-assessment basis, which must be followed starting from
the first product design steps. The main challenges are the mul-
tiple and complex steps involved in a manufacturing process,
and the concerns arising from materials such as polymers and
solvents involved in the formulation.

In a future innovation regarding manufacturing processes, it
could be advantageous to overcome certain manufacturing-step
challenges, such as lyophilization and sterilization processes.
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