
PRESERVING, RESTORING, AND PASSING DOWN VIDEO-GAME
MUSIC FROM THE PAST: THE CASE OF DIRECTMUSIC

Luca A. Ludovico, Alberto Mattea
Laboratory of Music Informatics (LIM)

Department of Computer Science
University of Milan

luca.ludovico@unimi.it

Davide A. Mauro
Department of Computer and

Information Technology
Marshall University

maurod@marshall.edu

ABSTRACT

Video-game music is a form of art that is gaining increas-
ing interest, not only in the technological field but also
in musicological research and in the area of Digital Hu-
manities. Characterized by vanishing technological sup-
port and by the discontinuing of the software and hard-
ware once used for its reproduction, the establishment of
archives and standards that allow the fruition of such ar-
tifacts become of crucial importance. The goal of this
project is to preserve, restore and pass down video-game
music currently available only in an obsolete format. Our
main case study will revolve around Microsoft DirectMu-
sic technology, adopted in the 90s for composing music
for video games and later discontinued. This work can be
seen as a first effort at a larger goal that includes a discus-
sion related to the philological process of what needs to be
preserved and how, and the creation of accessible archives.

1. INTRODUCTION

Unfortunately, unlike other forms of musical expression,
video-game music is often linked to digital products whose
life cycle comes to an end. Not only are commercial prod-
ucts such as video games withdrawn from the market, but
the technologies necessary for their execution (hardware
architectures, operating systems, etc.) soon become obso-
lete, preventing the experience of the heritage of musical
pieces from the past.

In this sense, the case of DirectMusic is particularly rel-
evant. First released by Microsoft in 1996, it became a
component of the Microsoft DirectX API. Its goal was to
support music and sound effects and provide flexible in-
teractive control over the way they are played. In 1999,
DirectMusic was introduced as part of version 6.1 of the
DirectX library and included in Microsoft Windows oper-
ating systems. The first operating system embedding Di-
rectMusic was Windows 98 Second Edition. A few years
later, DirectMusic was deprecated (e.g., it was not avail-
able to Windows Vista 64-bit applications), thus making
many video-game soundtracks unavailable to new users.

Copyright: © 2022 Luca A. Ludovico, Alberto Mattea et al.

This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

In our opinion, the artistic quality, technical characteris-
tics, and historical considerations make some musical art-
works worthy of being preserved. The goal of the project
is to preserve, restore and pass down video-game music
currently available only in an obsolete format. Our main
case study will revolve around the DirectMusic technology
by Microsoft. Adopted in the 90s and used for composing
music for video games, it was later discontinued, making
it impossible to access such artworks.

This paper is structured as follows: in Section 2 we will
address the importance of preserving video-game music,
in Section 3 we will analyze the specifications of the Di-
rectMusic file format, in Section 4 we will provide details
about the design and implementation of a suitable software
tool to convert DirectMusic soundtracks into currently in-
use standard formats (e.g., MIDI), and, finally, in Section
5 we will draw conclusions and list some directions for fu-
ture work.

2. PRESERVING VIDEO-GAME MUSIC

The first question to answer is what do we want to preserve
of the original composition.

Dealing with classical music, for example, would be quite
straightforward: usually, there is a reference score, namely
a list of music symbols, that provides a logical represen-
tation of any expected performance. Needless to say, the
audio rendering of a given score can greatly vary from per-
formance to performance, depending on the interpretation
and the technical skills of musicians, nevertheless, the re-
sult is somehow predictable. Even in this well-established
field, debates among experts may emerge, e.g., when a
piece presents multiple versions, or performance practices
diverge from written music. Other genres and composi-
tion techniques, for example, jazz or aleatoric music, are
less prone to an unambiguous interpretation of a reference
score. In these cases, preserving the original composition,
or even choosing a paradigmatic performance, can become
a hard task.

Non-linear media and dynamic environments such as
those of video games clearly emphasize this problem [1].
When the music is rendered in real-time thru the algorith-
mic manipulation of some building blocks, completely dif-
ferent renderings of the same soundtrack are possible, of-
ten depending on the in-game performances of the player.
A large number of different music and sound elements
can coexist within a unique mixture, and the piece du-

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

556

ration itself becomes an unknown parameter. For exam-
ple, sound samples can be triggered unaltered at specific
points in time (e.g., ªGame Overº sound) while a non-
deterministic engine combines and manipulates small ex-
cerpts or whole music sections, originating from symbolic
formats, computer-driven performances, or sound samples.

Going back to the example of traditional music, there are
basically two ways to identify music information: i) as it
regards symbolic content, gaining access to the score; ii) as
it concerns audio content, referring to available recordings.
Please note that score availability would allow not only the
preservation of symbolic content, but also the production
of new audio content; and, on the other side, the availabil-
ity of audio performances in absence of the original score
would give the possibility to reconstruct symbolic infor-
mation, at least to some extent. An example is provided by
the transcriptions of jazz improvisations.

Once again, the scenario of video-game music is far more
complex. In fact, in most cases, there is no fixed score and
no reference performance. While a rendering can be gener-
ated and captured during the game-play phase (assuming it
is still technically possible to run such a game), this might
not be enough to capture the richness of the original com-
position. Yet, for many video games, gaining access to the
source code and the engine used for their creation is impos-
sible, so recordings remain the only viable solution when
the entire artifact cannot be preserved.

Now, after what should be taken into consideration, a sec-
ond research question is emerging: how can we preserve
it?

The subject of digital preservation, intended here in gen-
eral terms, has been addressed in a great number of scien-
tific works. For example, in a paper dating back to 2001,
Chen discussed the so-called paradox of digital preserva-
tion: digital information is expected to be maintained in-
tact, but it is accessed in a dynamic use context and, unfor-
tunately, it is plagued by short media life, obsolete hard-
ware and software, slow read times of old media, and de-
funct documentation and technologies [2]. In 2006, Glad-
ney enunciates the principles for digital preservation, de-
fined as ªthe mitigation of the deleterious effects of tech-
nology obsolescence, media degradation, and fading hu-
man memoryº, addressing prominent epistemological is-
sues, communication-related problems, and big challenges
(e.g., persuading information providers to write metadata)
[3]. Another relevant work in this field was authored in
2018 by Owens, who presented the theory and craft of dig-
ital preservation starting from the traditions and consider-
ing the nature of digital objects and media [4].

As mentioned before, providing a comprehensive review
of the scientific literature would be out of scope. In the rest
of the paper, we will mainly focus on the format chosen to
preserve video-game music. The characteristics that such a
format should be present are: being standard and currently
in use, being well documented and possibly open, present-
ing no patent or royalties, and having a long-time future
perspective. In addition, we will also address the goal of
passing down preserved music works by implementing a
dedicated web platform.

The choice of the most suitable format can be also driven
by the characteristics of the domain to be described. In our
case, the context is video-game music whose score is not
available and, in general, not uniquely defined, and whose
audio rendering may be greatly influenced by the hardware
in use and the player’s on-the-fly performance.

A possible approach is analyzing the problem from mul-
tiple points of view and trying to preserve as much in-
formation as possible. In this sense, formats aiming at a
comprehensive description of music, such as IEEE 1599,
MEI, and MusicXML/MNX, can be employed [5]. Focus-
ing on IEEE 1599, this XML-based standard in its first
version was characterized by a 6-layer structure able to
accommodate general, logic, structural, notational, per-
formance, and audio information. In the context of this
work, this implies the possibility to encode metadata (gen-
eral layer), symbolic aspects (logic layer), notated music
(notational layer), computer-driven performances (perfor-
mance layer), audio excerpts (audio layer), and even rela-
tionships between music objects (structural layer) within a
single document. Moreover, IEEE 1599 can be profitably
used as an interchange format, too [6].

Another approach when the original asset is not present at
all or not available in a standard and in-use format consists
in designing an ad-hoc process to acquire as much infor-
mation as possible and encode it in a current, easily acces-
sible representation. In this paper, we will follow the latter
approach and employ the Standard MIDI Files (SMF) for-
mat to this goal. The aforementioned challenges are com-
pounded with issues related to copyrights. It is not always
clear, looking at software from ten, twenty, or thirty years
ago, what happened to the copyright holders and how to
acquire those rights.

On one hand, we have game developers and publishers
who use licensed music in their products, and, on the other,
we have composers and sound designers that are hired for
specific titles, and those compositions exist only for the
video game.

While it is true that in recent times more and more video-
games soundtracks are released independently from the
original game this does not cover the entire industry.

3. THE DIRECTMUSIC FORMAT

3.1 History

In 1995 Microsoft introduced DirectX, a set of application
programming interfaces (APIs) with the aim of handling
tasks related to multimedia, especially game programming
and video. DirectX allowed developers of games and
other interactive content to access specialized hardware
features without having to write hardware-specific code
[7]. Among this collection of APIs, the DirectSound one
was intended to provide a low-latency interface to sound
card drivers. Since it was essentially a low-level interface,
it soon became clear that a higher level of abstraction was
needed to simplify and standardize the process of sound
and music creation.

To this end, in 1996 the DirectMusic API was introduced,
initially released as an ActiveX control called Interactive

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

557

Music Architecture (IMA) [8]. DirectSound focused on the
capture and playback of digital sound samples, while Di-
rectMusic managed message-based musical data. An on-
line article describing the new possibilities of the format
can be found in [9].

During its lifetime, such a format was used by many
composers and programmers. A non-comprehensive list
of video games, which includes major publishers, can be
found in a dedicated discussion forum dating back to 2002
[10].

Nevertheless, the lifetime of the DirectMusic API was
relatively short. In 2006, only 10 years after its official
release, it became deprecated. Consequently, not only Di-
rectMusic-compatible video-game music was no more pro-
duced, but the already existing compositions utilizing such
a technology quickly met a fate of decline and abandon-
ment. The goal of this work is to preserve, revive, and pass
down this heritage.

3.2 Data Structures

The file encoding is based on the Resource Interchange
File Format (RIFF) bitstream format [11], employing data
structures known as chunks for storing data. A chunk is
a fragment of information that contains a header carrying
some parameters (e.g., the type of chunk, its size, etc.) fol-
lowed by a variable area containing the data payload. The
structure of a RIFF file is very simple: it can be repre-
sented as a tree, where each element (chunk) has an id, a
dimension, possibly a type, and a payload. Unlike a normal
tree, where each node has a list of pointers to its subnodes
and subnodes reside in a separate area, in RIFF each chunk
contains the subchunks in its payload. The file is therefore
presented as a single root (or top-level) chunk that con-
tains all the others, and the header of this chunk is also the
header of the file. Many multimedia file formats, such as
PNG, IFF, MP3, WAV, and AVI, are chunk-based.

In DirectMusic, the main structures contained in the RIFF
file are known as Forms, whose most common types are:

• Segment, the container for an entire musical excerpt;

• Style, carrying the information on patterns that can
be dynamically combined at run time;

• Track, a list of music events or data to control the
performance;

• Band, used to define an instrument;

• Reference List, a mechanism to connect either dif-
ferent files or Forms of a file.

A Segment represents an entire piece of music. From
a technical point of view, it is a chunk with its id set to
RIFF. A Segment is usually stored in a separate file, with
the extension .sgt (for playback only) or .sgp (for editing
with DirectMusic Producer). Within the segment, there is
a header, which indicates how the song should be played
(start and end timestamps, loops, etc.), and the payload is
a list of one or more Tracks.

The concept of track in DirectMusic is more generic than
in MIDI: there are many types, and, despite being grouped

Figure 1. The structure of the DirectMusic API. [12].

under a common umbrella, each type has different behav-
ior. Thus, for a parser, it is fundamental to check the fcc-
Type field in the header. Among the most important Track
types, it is worth mentioning objects that are simple lists of
events (seqt), those that give information on tempo changes
(tetr), those that execute commands that can alter the re-
production (cmnd), and those that contain reusable styles
and patterns (sttr). All Tracks are read simultaneously dur-
ing playback, and events, commands, tempo changes, etc.
have an absolute timestamp that defines when they should
occur.

One of DirectMusic’s strengths is native support for dy-
namic music, a composition generated on the fly based on
the current situation in the game. This result is achieved
with the use of patterns, namely short musical sections that
are automatically selected, combined, and transposed on
the chords chosen by the composer. The fundamental pa-
rameter that controls such a process is called groove, i.e. a
number that should give a measure of the intensity of the
situation: for example, a high value of groove is typical in
a battle or in the fight against the final boss. The groove
level can also be varied within the song itself, with a com-
mand given by a cmnd track: in this case, the aim is simply
to build variations of music themes automatically, so as to
ease the composer’s work.

3.3 Technical Remarks

The structure of the DirectMusic API is shown in Figure 1
As it concerns sound synthesis, music can be performed

either in hardware, using the Microsoft GS Wavetable SW
Synth, or in a custom synthesizer. Thus, audio tracks are
rendered by a virtual synthesizer that allows for unlimited
channels and rich control messages, expanding the concept
of discrete Control Change available in MIDI.

Concerning virtual musical instrument programs, Direct-
Music adopts DLS [13], a set of standardized file formats

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

558

DMP sgt2wav Ficedula libdmusic
Licence proprietary free unknown free
Runtime DirectX DirectX DirectX independent
Operating System Windows 32 bit Windows Windows Windows/Unix

DM Support
complete

(play and modify)
complete

(only play)
complete

(only play)
subset of DirectMusic 8

Status abandoned abandoned abandoned under development

Retrieval
waveforms and MIDI
subset of sound events

waveforms waveforms waveforms

Table 1. Comparison between software solutions that support DirectMusic.

for digital musical instrument sound banks developed first
by the Interactive Audio Special Interest Group (IASIG),
and then by the MIDI Manufacturers Association (MMA).
DLS is a versatile format, which in addition to samples,
can also define synthesized instruments and supports trans-
formations such as envelopes. The sound font is connected
to the Segment through a Form of type Reference List; the
single instrument is instead identified through a set of Band
Track and Band. Although a documented standard, the
DLS format is no longer widespread today, and software
support is also limited, especially on Linux. For this rea-
son, in a context of preservation, it is preferable to convert
DLS sound fonts into the universally supported SF2 for-
mat.

4. THE DIRECTMUSIC CONVERTER

In this section, we will first review some already existing
solutions to convert DirectMusic music pieces, and then
we will describe our proposal.

4.1 Background

There are a number of solutions currently available to ren-
der and export original DirectMusic files, but they all have
specific drawbacks or limitations. A first distinction con-
cerns the methods that rely on Microsoft’s runtime and
those that don’t. Almost all software that uses DirectMu-
sic access it through the Software Development Kit and
the runtime provided by Microsoft within DirectX. This
means that their functioning is inextricably linked to Mi-
crosoft’s choice to maintain support and backward com-
patibility. Furthermore, this aspect precludes the use of
DirectMusic on operating systems other than Windows.
This category embraces, in addition to game engines, plu-
gins that allow you to listen to DirectMusic pieces through
general-purpose media players (an example is a plugin for
Winamp developed by user Ficedula from the Final Fan-
tasy community), dedicated reproducers/converters such as
sgt2wav, and DirectMusic Producer.

DirectMusic Producer (DMP) is the original software
provided by Microsoft for editing. Last updated in 2002,
nowadays even finding a working copy of the software can
become a challenge, and it will most likely require a legacy
installation of Windows. DMP allows exporting a render-
ing of the performance in a WAV file at the cost of the
original ªstructureº of the document. On the contrary, it is
possible to capture MIDI events during a performance.

Another software is sgt2wav, a command-line application
for Windows. Written in C++, it just requires the DirectX
runtime and an audio device. A rendering of the perfor-
mance is exported with the same limitations as DMP. This
software will also cease to work when Microsoft will dis-
continue the DirectMusic support in DirectX.

There are also a few independent projects that try to re-
implement the format support from scratch, covering op-
erations from parsing to rendering. They are unrelated to
support policies, a specific operating system, and version,
but, in general, they offer a lower level of compatibility.
The only significant example of this category is libdmusic,
an Open Source (MIT License) library that rewrote from
scratch the support for the DirectMusic format. For this
reason, it is limited to a subset of the functionalities avail-
able in version 8. Like the other solutions mentioned here,
its goal is to provide a rendering of the output.

A comparison between the mentioned approaches is pre-
sented in Table 1.

4.2 dmproj

Our proposal for extracting and preserving information
from the DirectMusic format relies on software developed
in Python 3.x, called dmproj. The source code is available
on Zenodo under GNU General Public License v3.0. 1

The software has been conceived with a modular archi-
tecture:

• The riffparse module recursively parses a RIFF file
in order to extract the chunks and their (potential)
subchunks.

• The dmparse module receives in input a chunk and
exposes the underlying structure (e.g., a Segment);

• The dm2midi module, finally, takes care of generat-
ing MIDI events from a Segment. It is important to
note that there might be the need to generate multi-
ple MIDI messages for a single DirectMusic ªeventº
(e.g., control change messages that correspond to a
curve described with only one command).

The output of dmproj is a Standard MIDI File (SMF) type
1 [14]. There are multiple advantages to adopting such a
format. First, even if standardized decades ago, it is still
in use, being supported by many media players and often

1 https://doi.org/10.5281/zenodo.5952340

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

559

RIFF 42926 DMSG / * Root RIFF s t r u c t u r e , o f t y p e segment (. s g t f i l e) * /
. segh 24 / * Segment h e a d e r * /
. g u i d 16 / * Gl o b a l u n i q u e i d e n t i f i e r , used by t h e D i r e c t M u s i c r u n t i m e t o l o a d t h e a p p r o p r i a t e segment s * /
. LIST 116 s g d l / * Segment d a t a l i s t (undocumented) * /
. . segd 104
. v e r s 8 / * F i l e v e r s i o n * /
. LIST 148 UNFO / * G e n e r i c m e t a d a t a (name , comment , e t c) f o r t h e whole f i l e * /
. .UNAM 18
. . UCMT 110
. LIST 42562 t r k l / * Track l i s t * /
. . RIFF 236 DMTK / * Chord t r a c k * /
. . . t r k h 32 / * Track h e a d e r (s p e c i f i e s t h e t r a c k t y p e) * /
. . . LIST 172 c o r d / * L i s t o f c h o r d s * /
. . . . c r dh 4
. . . . c r db 132
. . . . c r d t 8
. . . c t d c 3
. . RIFF 72 DMTK / * Tempo t r a c k * /
. . . t r k h 32 / * Track h e a d e r (s p e c i f i e s t h e t r a c k t y p e) * /
. . . t e t r 20 / * L i s t o f tempo changes and c o r r e s p o n d i n g t imes t amp * /
. . RIFF 1110 DMTK / * E v e n t s t r a c k * /
. . . t r k h 32 / * Track h e a d e r (s p e c i f i e s t h e t r a c k t y p e) * /
. . . LIST 30 UNFO / * G e n e r i c m e t a d a t a (name , comment , e t c) f o r t h e t r a c k * /
. . . . UNAM 18
. . . s e q t 876 / * E v e n t s c o n t a i n e r * /
. . . . e v t l 744 / * Note e v e n t s * /
. . . . c u r l 116 / * C o n t r o l e v e n t s * /
. . . LIST 136 p s q l / * P r o p r i e t a r y undocumented s t r u c t u r e used i n t e r n a l l y by DMP. Doesn ’ t a f f e c t t h e a c t u a l music * /
. . . . psqc 48
. . . . cvau 4
. . . . cvsu 8
. . . . cvsu 8
. . . . cvsu 8
. . . . cvsu 8
. . [. . .] / * Othe r e v e n t s t r a c k s (u s u a l l y one p e r v o i c e / c h a n n e l) * /
. . RIFF 28300 DMTK / * Band t r a c k (e x t e r n a l e n c a p s u l a t i o n) * /
. . . t r k h 32
. . . RIFF 28248 DMBT / * Band t r a c k (a c t u a l) * /
. . . . LIST 28236 l b d l / * Band l i s t * /
. LIST 776 lb nd / * Band (e x t e r n a l e n c a p s u l a t i o n) * /
. b d i h 4
. RIFF 752 DMBD / * Band (a c t u a l) * /
. g u id 16 / * Gl o b a l u n i q u e i d e n t i f i e r * /
. LIST 24 UNFO / * G e n e r i c m e t a d a t a (name , comment , e t c) f o r t h e band * /
. UNAM 12
. LIST 684 l b i l / * I n s t r u m e n t l i s t * /
. LIST 242 l b i n / * I n s t r u m e n t * /
. b i n s 40 / * I n s t r u m e n t p r o p e r t i e s (a l l o w e d range , channe l , volume , t r a n s p o s i t i o n , e t c) * /
. LIST 142 DMRF / * Soundfon t r e f e r e n c e * /
. r e f h 20
. g u i d 16
. d a t e 8
. name 20
. f i l e 18
. v e r s 8
. j z f r 32
. [. . .] / * Othe r i n s t r u m e n t s * /
. [. . .] / * Othe r bands * /

Figure 2. Commented dump of a DirectMusic music piece (excerpt).

used also for interchange purposes. In addition, with re-
spect to WAV files, SMFs are much lighter, as they con-
tain commands to instruct a synthesizer in producing au-
dio instead of containing audio samples. This approach
can also represent a drawback since the final performance
is deeply influenced by the quality of audio components
(in particular, the MIDI synth) and the availability of high-
quality sound samples. Nevertheless, the representation of
a performance in terms of commands instead of a fixed,
pre-calculated sequence of samples is closer to the original
approach of DirectMusic. Finally, MIDI performances are
not burdened by performing rights.

Conversion of all DirectMusic’s features to MIDI re-
quires going beyond the limits of the single standard MIDI
file. For example, a music piece could employ more than
16 channels or include waveforms encapsulated directly or
through an external reference. For the former problem,
a possible solution is to divide the DirectMusic song into
several MIDI files based on blocks of 16 channels (or 15, if
you want to respect the convention that reserves Channel
10 for percussion). To overcome the latter problem, you

can export the waveforms in a sound font and insert the
suitable control-change and program-change commands in
the event flow. Despite these limitations, much of the orig-
inal information can be kept, thus offering a much more
adequate recovery tool than the alternatives.

4.3 Example

In order to demonstrate the efficacy of the proposed solu-
tion, we have converted a .sgp file into a .mid file. Both
files are publicly available, 2 together with a sound font to
be loaded in the MIDI synth for reconstructing the original
sounds.

Figure 2 shows the dump of the original music piece, lim-
ited to an excerpt for the sake of brevity. Some comments
have been introduced to make data structures clearer to the
reader.

In this case, the composition is based on a Segment only,
thus the conversion can be complete.

The difference in size between the original (41.9 KB) and

2 https://lim.di.unimi.it/media/smc2022 examples/cityfast.zip

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

560

the destination file (6.7 KB) shows that the .sgp format was
not very efficient at encoding information.

5. CONCLUSIONS AND FUTURE WORKS

In this contribution, we approached the problem of the
preservation of video-game music both from a technical
and technological point of view and from a philosophical
one. Answering the questions of what and how we are go-
ing to preserve this cultural heritage informed us on the
technical decisions that have to be made in the implemen-
tation stage.

We looked at the case study of DirectMusic, a format that
had certain popularity but is now extinct. We presented
its characteristics and developed software that allows for a
conversion from this format to a currently supported one
(MIDI).

The natural development of this project consists in sup-
porting all DirectMusic features. In this sense, the main
directions are:

1. The extension to the next version of the format, the
one used in conjunction with DirectX 8 and 9. Ver-
sion 9 does not introduce really significant changes,
so the two versions can be considered essentially the
same. The main changes concern the addition of
new fields at the bottom of some data structures. It
would therefore be necessary to compare the headers
supplied together with the related SDKs to under-
stand the differences and expand the related classes
within the decoder;

2. The full support of styles and patterns, which are
currently implemented as stubs. A known limita-
tion of the software is the ability to convert only
sequence-based music pieces, which can be (and ac-
tually are) transformed into MIDI without loss of in-
formation. In order to extend its potential, the soft-
ware should implement the random choice of the
pattern to be played, the setting of the groove level,
and the transposition through chords. In this way,
the piece would be converted in only one of its pos-
sible forms since MIDI does not manage the varia-
tions. A solution could be to generate all the possi-
bilities;

3. The management of more atypical types of curves
used in control messages, such as sinusoidal ones.
Even if little used in real games, they are still part
of the format and allow interesting creative possibil-
ities.

After improving the conversion tool, the next step will
be to organize an archive that allows these heterogeneous
materials to be stored, searched, and experienced by users.

While the software presented here is just a first step in a
bigger effort, we hope it will elicit a conversation around
the topic of the preservation of the digital heritage of video
games music.

Acknowledgments

This project has been partially supported by the contribu-
tion of the Marshall University Faculty Senate Research
Committee (FSRC) Funding.

6. REFERENCES

[1] K. Collins, ªAn introduction to the participatory and
non-linear aspects of video games audio,º Essays on
sound and vision, pp. 263±298, 2007.

[2] S.-S. Chen, ªThe paradox of digital preservation,º
Computer, vol. 34, no. 3, pp. 24±28, 2001.

[3] H. M. Gladney, ªPrinciples for digital preservation,º
Communications of the ACM, vol. 49, no. 2, pp. 111±
116, 2006.

[4] T. Owens, The theory and craft of digital preservation.
Johns Hopkins University Press, 2018.

[5] A. Baratè, G. Haus, and L. A. Ludovico, ªState of the
art and perspectives in multi-layer formats for music
representation,º in Proceedings of the 2019 Interna-
tional Workshop on Multilayer Music Representation
and Processing (MMRP 2019). IEEE CPS, 2019, pp.
27±34.

[6] A. Baratè, L. A. Ludovico, D. A. Mauro, and F. Simon-
etta, ªOn the adoption of standard encoding formats
to ensure interoperability of music digital archives:
The IEEE 1599 format,º in DLfM ’19: 6th Interna-
tional Conference on Digital Libraries for Musicology.
ACM, 2019, pp. 20±24.

[7] Microsoft, ªMicrosoft ships DirectX 5.0,º
https://news.microsoft.com/1997/08/04/
microsoft-ships-directx-5-0/, 1997, online; accessed
23 January 2022.

[8] T. Buttram, ªDirectX 9 audio exposed: Interactive au-
dio development, chap. beyond games: Bringing Di-
rectMusic into the living room,º 2003.

[9] T. Hays, ªDirectMusic for the masses,º Gamasu-
tra.com, 1998.

[10] B. Lynne, S. Bottcher, S. Maloney, S. Morgan,
J. Kaae, and D. Yackley, ªGames that use Direct-
Music,º https://www.freelists.org/post/directmusic/
Games-that-use-DirectMusic, 2002, online; accessed
23 January 2022.

[11] IBM Corporation and Microsoft Corporation, ªRe-
source Interchange File Format,º in Multimedia Pro-
gramming Interface and Data Specifications 1.0, 1991,
http://www.tactilemedia.com/info/MCI Control Info.
html, online; accessed 23 January 2022.

[12] Microsoft, ªDirectMusic API Documentation,º
https://docs.microsoft.com/en-us/windows-hardware/
drivers/audio/midi-and-directmusic-components,
online; accessed 30 March 2022.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

561

[13] S. J. Welburn and M. D. Plumbley, ªRendering audio
using expressive MIDI,º in Audio Engineering Society
Convention 127. Audio Engineering Society, 2009.

[14] MMA, The Complete MIDI 1.0 Detailed Specification.
Los Angeles, CA: MIDI Manufacturers Association
(MMA), 1996.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

562

