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Abstract

The depth-bounded approach seeks to provide realistic models of reasoners. Recog-
nizing that most useful logics are idealizations in that they are either undecidable
or likely to be intractable, the approach accounts for how they can be approximated
in practice by resource-bounded agents. The approach has been applied to Clas-
sical Propositional Logic (CPL), yielding a hierarchy of tractable depth-bounded
approximations to that logic, which in turn has been based on a KE/KI system.

This Thesis shows that the approach can be naturally extended to useful non-
classical logics such as First-Degree Entailment (FDE), the Logic of Paradox (LP),
Strong Kleene Logic (K3 ) and Intuitionistic Propositional Logic (IPL). To do this,
we introduce a KF/KI-style system for each of those logics such that: is formu-
lated via signed formulae, consist of linear operational rules and branching structural
rule(s), can be used as a direct-proof and a refutation method, and is interesting in-
dependently of the approach in that it has an exponential speed-up on its tableau
system counterpart. The latter given that we introduce a new class of examples which
we prove to be hard for all tableau systems sharing the V/A rules with the classical
one, but easy for their analogous KF-style systems. Then we focus on showing that
each of our KE/KI-style systems naturally yields a hierarchy of tractable depth-
bounded approximations to the respective logic, in terms of the maximum number
of allowed nested applications of the branching rule(s). The rule(s) express(es) a
generalized rule of bivalence, is (are) essentially cut rule(s) and govern(s) the manip-
ulation of virtual information, which is information that an agent does not hold but
she temporarily assumes as if she held it. Intuitively, the more virtual information
needs to be invoked via the branching rule(s), the harder the inference is for the
agent. So, the nested application the branching rule(s) provides a sensible measure
of inferential depth. We also show that each hierarchy approximating FDE, LP,
and K3, admits of a 5-valued non-deterministic semantics; whereas, paving the way
for a semantical characterization of the hierarchy approximating IPL, we provide a
3-valued non-deterministic semantics for the full logic that fixes the meaning of the
connectives without appealing to “structural” conditions.

Moreover, we show a super-polynomial lower bound for the strongest possible ver-
sion of clausal tableaux on the well-known class of “truly fat” expressions (which are
easy for KF), settling a problem left open in the literature. Further, we investigate
a hierarchy of tractable depth-bounded approximations to CPL based only on KF.
Finally, we propose a refinement of the p-simulation relation which is adequate to
establish positive results about the superiority of a system over another with respect
to proof-search.
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Sommario

L’approccio a profondita limitata mira a fornire modelli realistici di agenti razionali.
Constatando che le logiche piu utili sono idealizzazioni in quanto sono indecidibili
o probabilmente intrattabili, I’approccio mostra come possano essere approssimate
in pratica da agenti con risorse limitate. L’approccio ¢ stato applicato alla Logica
Proposizionale Classica (CPL), fornendo una gerarchia di approssimazioni a tale
logica, ognuna delle quali ¢ a profondita limitata e trattabile, che a sua volta si e
basata su un sistema KE/KI.

Questa Tesi mostra che 'approccio a profondita limitata puo essere esteso natu-
ralmente a utili logiche non classiche, come First-Degree Entailment (FDE), la Log-
ica del Paradosso (LP), la Logica di Kleene Forte (K3 ) e la Logica Proposizionale
Intuizionistica (IPL). A questo scopo introduciamo, per ognuna di tali logiche, un
sistema in stile KF/KI, con le seguenti caratteristiche: e formulato attraverso formule
segnate, consiste di regole operazionali lineari e regole strutturali di ramificazione,
puo essere usato come metodo di dimostrazione diretta o di refutazione, ¢ inter-
essante indipendentemente dall’approccio in quanto € esponenzialmente pitu veloce
della sua controparte in termini di tableau. Mostriamo tale superiorita introducendo
una classe di esempi che sono difficili per tutti i metodi basati sui tableau con le regole
classiche per i connettivi V e A, ma facili per i corrispondenti sistemi in stile KE. Poi
ci concentriamo sul mostrare che ognuno dei nostri sistemi in stile KFE/KI produce
naturalmente una gerarchia di approssimazioni alla rispettiva logica che sono a pro-
fondita limitata e trattabili, in termini del numero massimo consentito di applicazioni
annidate della regola (o delle regole) di ramificazione. La regola (le regole) esprime
(esprimono) una regola generalizzata di bivalenza, & (sono) essenzialmente una regola
(regole) di taglio e governa (governano) la manipolazione di informazione virtuale,
ovvero informazione che I'agente non possiede, ma assume temporaneamente come
se ne fosse in possesso. Intuitivamente, piu informazione virtuale deve essere uti-
lizzata attraverso la regola (le regole) di ramificazione, piu difficile & I'inferenza per
I’agente. Dunque, 'applicazione ripetuta delle regole di ramificazione fornisce una
misura della profondita dell’inferenza. Inoltre mostriamo che ogni gerarchia che ap-
prossima FDE, LP e K3 ammette una semantica non-deterministica a 5 valori; al
contempo, prepariamo la strada per una caratterizzazione semantica della gerarchia
che approssima IPL, forniamo una semantica non-deterministica a 3 valori che fissa
il significato dei connettivi senza fare appello a condizioni “strutturali”.

Inoltre, mostriamo un limite inferiore super-polinomiale per la versione piu forte
possibile dei tableaux clausali sulla ben nota classe di espressioni “veramente grasse”
(che sono facili per KE), risolvendo un problema lasciato aperto in letteratura.
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Dopodiche, studiamo una gerarchia di approssimazioni di CPL trattabili a profon-
dita limitata basata solo su KF. Infine, proponiamo un raffinamento della relazione
di p-simulazione che ¢ adeguato a stabilire risultati positivi riguardo alla superior-
ita di un sistema rispetto ad un altro in relazione al problema della dimostrazione
meccanica.
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Chapter 1

Introduction

Nowadays there is a plethora of phenomena regarded as falling in the domain of Logic.
The advent of non-classical logics, logical pluralism, and logical dynamics have at-
tracted the attention of researchers from diverse disciplines into the agenda in Logic.
These days, the computer scientist, the philosopher, the linguist, the mathematician,
and the cognitive scientist—to name some—find a common ground in Logic, having
a rather welcome and fruitful interaction, and expanding and diversifying the area in
doing so. One crucial result of this interdisciplinary interaction is a tendency to con-
ceive logical or rational phenomena as operations performed by embodied and situated
agents; that is, (commonly goal-oriented and interconnected) agents endowed with a
physical structure, situated in an exploitable environment, and so resource-bounded.
According to that tendency, a logic—broadly and intuitively conceived—*is a formal
and somewhat idealized description of a logical agent” [87], p. 144]. The latter being
an individual (human or artificial), a team formed by individuals, an institution, a
corporation, or the like.E] Such a tendency (i) appears explicitly already in the work
of Barwise and Perry [29], and Cherniak [44]; (ii) has been advocated and explored
by, e.g., van Benthem [I50, [151], Gabbay and Woods [87, [88], Morado and Savion
[121], 133], and Aliseda [II, 2]; and (iii) is ultimately reminiscent of Aristotle’s pursue
for profiting from the notion of inference in the theory of argument and reasoning|

Yet, “institutions rather than individuals are the embodiment of [for instance] inductive logics.
Much the same can be said for classical systems of deductive logic” [87) p. 156].

2By inference we shall mean the general process of drawing conclusions from a previously given
body of information. In contrast, even thought there is no consensus about what counts as a
(logical) consequence relation, we shall be working with an specific and narrow definition of it.
Naturally, according to such a definition, all those relations shall be counted as inferences, but
not vice versa. In particular, unlike consequence relations, inferences can be non-monotonic (e.g.,
abduction and induction) and even non-reflexive.
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Given that tendency, the centrality in Logic of notions such as truth-preservation,
logical consequence, and even inference has been questioned. Presumably, the no-
tion of information has gained more importance, serving as a sort of umbrella term
in the interdisciplinary investigations of logical phenomena. In turn, approaching
logics from an informational perspective have been put forward in a variety of ways.
Great part of this variety may be due to the, in turn, variety of ways in which
the bidirectional relation between logics and information have been accounted [see
152, 113]. Throughout this Thesis we will take that relation from information to
logics. However, beware that the motivation, formalization and justification in each
account of why and how logics can or should be approached in informational terms
varies considerably, as the very concepts of information and logics are intertwined.

1.1 The import of informational approaches in Logic

Some informational approaches to logics are well known. The notion of information
played a crucial role already in Hintikka’s approach to first-order logic; e.g., in his
theory of surface information and depth information, and in his game-theoretic se-
mantics [97, 98]. However, perhaps the most crystal-clear examples of informational
approaches are present in the semantics of some non-classical logics. Among the lat-
ter, a widely known example is present in the informational semantics for intuition-
istic logic as formulated by Beth [33] and Kripke [I07]. The models associated with
these semantics are intended to represent informational processes where an agent (or
a group of agents) progressively gains more information about a current information
state. Another notable example is the one constituted by the informational seman-
tics for relevance logics as given by Urquhart [146]. According to this semantics,
validity is defined in terms of certain valuations on a semilattice of possible pieces
of information. A third popular example is Belnap-Dunn intuitive informational in-
terpretation of First Degree Entailment (FDE, also known as Belnap-Dunn logic)
as a 4-valued logic in which “a computer should think” [7], [70, 30, B1]. This logic is
paraconsistent and, under Belnap-Dunn interpretation, is associated with restricting
the effect of inconsistencies that might be contained in databases.

Certainly, as specially pointed out by Dunn [71], informational approaches in
Logic have been pivotal in the very development of non-classical logics. In fact, at
least in great part, those approaches have become worthy of attention due to the
advent of non-classical logics as those mentioned in the previous paragraph, in which
the orthodox truth-theoretical and inferentialist approaches have resulted less suit-
able when providing corresponding semantics. Moreover, it has been argued, for
instance by Allo and Mares [6], that informational approaches to logics count as gen-
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uine alternatives to the truth-theoretical and inferentialist orthodox approaches, and
that the former is preferable to the latter in that it allows us to provide a particularly
attractive account of non-classical logics, logical rivalry and logical pluralism. As we
shall suggest below, allowing us to account for those three aspects of contemporary
Logic is a virtue we may expect from an informational approach.

Now, there is a highly-active and fast-growing entire field of research, founded by
van Benthem [I50] where the centrality of the notion of inference is in question: log-
ical dynamics. According to this fast-expanding field, inference is one among various
informational actions equally important within Logic. This field has been particu-
larly focused on the formal study of epistemic and doxastic phenomena. Roughly,
the hallmark of it is the study of how the attitudes of knowledge and belief modify
in virtue of new information. Yet, in its most updated version, most of the field is
focused on the study of how the distribution of knowledge and belief in multi-agent
settings evolves in virtue of how those agents exchange information. Clearly, this
field is pretty ambitious: it incorporates ampliative inference, belief revision, defea-
sible and non-monotonic reasoning, informational actions other than inference (e.g.,
questions, observations and dialogue), multi-agent and distributed systems, commu-
nication, and so on [see I5I]. In fact, apart from questioning the centrality of the
notion of inference, in this field, the corresponding direction of the relation between
logic and information seems more inclined to be from the former to the latter. That
is, prima facie, this field provides a logical account of informational dynamics, rather
than an informational account of logical dynamics. Nonetheless, it can be argued
that it does both and, more importantly, that narrower informational approaches—
as those restricted to inference—really engage with it [see B, B]. We shall suggest
that another virtue we may expect from an informational approach is for it to be
able to embrace logical dynamics.

In parallel, informationally oriented approaches have provided a suitable concep-
tual framework for a fast-growing trend to think of logical phenomena as operations
performed by embodied and situated agents; which can be traced back at least to
the work of Barwise and Perry [29], and Cherniak [44]. This “naturalizing” or “prag-
matizing” treatment of logical phenomena has been particularly adopted and fruitful
in Artificial Intelligence, Formal Epistemology, Cognitive Science, Game Theory,
and similar fields. Under such a conception of logical phenomena, accounting for
resource-boundedness of agents has acquired crucial importance when building mod-
els that aim to be more realistic: agents, no matter whether human or artificial,
have bounded cognitive and computational resources (time, memory, information,
attention, energy, etc.)E] Thus, we may also expect from an informational approach

3This is naturally related to a (correspondingly, programmed or instinctive) “economical” be-
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that it accounts for the cost of reasoning or computing—e.g., of making an infer-
ence or a decision. In the literature various informational approaches accounting
for resource-boundedness of agents have been proposed; some examples addressing
inference are: an approach based on awareness structures and on the distinction
between explicit and implicit knowledge was proposed by Levesque [112], and Fagin
and Halpern [74]; an approach drew on bringing closer logical inference and heuristics
via bridging notions such as cognitive economy was advanced by Morado and Savion
[1211, [133]; an approach directly based on computational complexity aspects—namely,
on proof size—was put forward by Artemov and Kuznetz [11], 12), [13]; an approach
that draws on the tradition of subjective probability was suggested by Parikh [123];
an approach based on the distinction between actual and virtual information that
an agent may entertain is the “depth-bounded approach”, introduced by D’Agostino
and co-authors [61], 59, 66, 57, 58], 60, 63]E|

Needless to say, some of those approaches are not incompatible with respect to
each other; however, it is not obvious whether some—Ilet alone all—of them admit
of a single conceptual framework either.ﬂ Leaving for future work a comparison with
other commensurable approaches, in this Thesis we shall restrict our analysis to
D’Agostino’s et al. depth-bounded approach. As argued throughout the Thesis, the
reason for this is that such an approach seems promising in that it offers a natural
and elegant account of resource-boundedness of agents and has shown flexible enough
to be applied to a wide range of reasoning phenomena and, ultimately, as to comply
with several virtues we may expect from an informational approach.

As we shall argue in the next section, accounting for logical phenomena from an
informational approach is not just a formal artifact for, e.g., providing non-classical
logics with suitable semantics. Rather, informational approaches allow for a better
philosophical account of the wide variety of contemporary practices in Logic [see
5]. The advent of non-classical logics, logical pluralism, and the dynamic turn in
Logic, together with the need of less idealized models of logical phenomena, call into

havior that agents tend to follow when performing an operation: agents tend to choose perfor-
mances that require less resource-consumption—resources currently or forseeably at their disposal,
of course. Game-theoretic settings offer a particularly suitable conceptual framework to account
for this latter aspect. See [87] 88 121, T33].

4An example of a more ambitious approach addressing not only inference, but also observation,
memory and communication, as performed by resource-bounded agents, has been proposed by Solaki
[139]. As might be expected, this approach draws on tools commonly used in dynamic epistemic
logic such as plausibility models and impossible-worlds semantics.

5Presumably, a general semantic framework where various approaches can be usefully articu-
lated is that of awareness structures, which is based on the distinction explicit-implicit knowledge,
to the effect that an agent may implicitly know that a sentence follows from a set of assumptions,
without being aware of it. See [137].

4
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question orthodox approaches to Logic. Having arisen in the very context of that
advent and need, informational approaches generally constitute natural accounts of
logical phenomena as nowadays conceived and investigated.

1.2 Unraveling some virtues of informational ap-
proaches

Something labeled as an “informational approach” should have as its most basic
notion that of information. Accordingly, we may expect that an informational ap-
proach to logics should investigate the properties of logical phenomena using a con-
ceptual framework based on informational notions. In particular, when it comes
to inference, such an approach should provide its own conceptual framework and
not trace it upon truth-theoretic or inferentialist approaches. Thus, regardless the
nature of the formalism through which that approach may be formulated—be it
model-theoretic, proof-theoretic, game-theoretic, algebraic, or whichever else—such
an approach should be based on informational notions. The latter clearly presup-
poses that a particular approach does not need to be tied to a single formalism.
For instance, truth-theoretic or inferentialist approaches do not need to be tied to,
respectively, model-theoretic or proof-theoretic formalisms. This does not seem con-
troversial since it is only an emphasis on a clear distinction between formalisms and
their interpretations. Specifically, a distinction between formal and intuitive concep-
tions of inference; “something that roughly corresponds to the interaction between
pure and applied semantics where the former formalises the latter or the latter in-
terprets the former” [p. [0, 169].

In this sense, (at least) the basis of an informational approach should be neutral
regarding considerations about truth-conditions as well as inferential-conditions. As
a consequence, such an approach should allow us to naturally accommodate classical
as well as non-classical logics within it. What is more, beyond being a conceptual
tool to deal with a variety of logics, an informational approach should provide means
to account for the advent of non-classical logics, logical rivalry, and logical pluralism.

The starting point of a description of what virtues we may expect from an infor-
mational approach to logics is to spell out what the notion of “information” means
within this context. We shall not attempt an in-depth analysis of this primitive and
intuitive notion except for the following remarks. As stated in the relevant litera-
ture, this a highly polymorphic notion, much as the way it relates to logics. For
instance, Floridi [84] has claimed that (factual semantic) information must be true.
This is called by him “veridicality thesis”, which basically says that an agent x is
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informed that p only if p is true: I,p — p. As Dunn [69] has pointed out, Floridi’s
claim has more to do with technical considerations about dealing with what Floridi
himself called the Bar-Hillel-Carnap (BHC) paradox than with natural language
considerations. Further, Dunn argued—and we agree with him—that it is part of
the pragmatics of the concept “information” to expect information to be true, but it
is not part of its semantics, i.e., of the literal meaning of the concept.

Dunn [69, [71] thinks of information as “what is left from knowledge when you
subtract, justification, truth, belief, and [...] the thinker” [69, p. 589]. Roughly
speaking, Dunn conceives information as any kind of semantic content. Taking a step
forward in the degree of generality, Allo [3] 4 [5] thinks of information as the outcome
of successful modelling (in particular, in the design of logical theories), where a model
is the result of adopting a level of abstraction (LoA, for short). Remarkably, Allo
proposes a relational conception of information: it depends both on the environment
and on the kind of agents under consideration. Subscribing with this relational
conception, we think of information as independent of justification, truth, belief,
but not the agent. Specifically, we conceive actual information as content which is
practically (meaning feasibly, as we shall explain throughout the Thesis) accessible
to the agent and with which she can operate; regardless whether or not that content
is true, believed, or justified.

Now, as Allo and Mares point out [6, B]—just like other approaches to the notion
of inference—informational approaches are based on a platitude about what it means
to “follow from”; namely, on what they called “content-nonexpansion platitude” (CN,
for short)ff]

CN: A follows from I' iff the content of A does not exceed the combined
content of all the members in I';

which is clearly the ezplanandum and not the ezplanans. Informational content is
almost invariably associated with a certain proportion of a given logical space: the
proportion that is ruled out by that information. According to the standard or-
der of explanation, the construction of such logical space is completely based on
the identification of possibility with consistency, and thus of necessity with incon-
sistency of negation. Consequently, the corresponding logical space contains only
possibilities that are both consistent and complete; situation which is entirely in
tune with truth-theoretic principles. Therefore, under such order of explanation, it
is hard to construct a logical space constituted of finer distinctions without rejecting

SNote that in [6, [3], Allo and Mares use “logical consequence” to refer to what here we call
“inference”. Again, here we shall take the former notion to denote something much narrower than
the latter does.
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such standard principles. Nevertheless, as Allo and Mares have argued, inverting
the usual direction of explanation, informational content is not defined relative to
a pre-given logical space, rather it is addressed in terms of the LoA at which the
agents in question access and use information.

Basically, the inversion of the usual direction of explanation consists in taking
considerations about logical discrimination (i.e., how finely propositions are individ-
uated [I0I]) as conceptually prior to considerations about deductive strength. In
fact, this inversion occurs at two levels. First, information does not depend anymore
on a prior account of meaning, rather it is used to naturalise meaning. Second,
information is no longer explained in terms of the notion of logical possibility, but
directly in terms of how information—that is available in an environment—is ac-
cessed and used. Since the first is familiar from ecological realism as well as from
situation semantics, the novelty of the proposal of Allo and Mares lies on the second.
According to their proposal—and we also follow them on this point—different logics
correspondingly formalise different ways of accessing and using information, as well
as lead to different ways of carving out the logical space.

In the first place, the way agents carve out contents by specifying a logical space
is determined by the information that is available to them. The notion of logical
discrimination captures what can be distinguished in a given logical system and,
according to Allo and Mares’ proposal, constitutes the main criterion for the con-
struction of the corresponding logical space. For instance, unlike classical logic,
intuitionistic logic discriminates between A and ——A, and paraconsistent (e.g., rele-
vance) logics allow us to discriminate between A A=A and B A =B. Put differently,
those non-classical logics allow for finer distinctions than classical logic does. This
latter situation is reflected by the inverse relation between deductive strength and
discriminatory power: the more a logic proves, the fewer distinctions (or discrimina-
tions) it registers [101] p. 225])[]

Agents can tell apart contents more or less finely and what counts as the correct
LoA when doing this can only be determined once their purpose is clearﬁ According
to orthodoxy, there is only one “logical” way to discriminate contents: in terms of
their truth-conditions. This, together with the also orthodox view that such condi-
tions can only be assigned in accordance with the classical truth-tables, leads to a
logical monism. Nonetheless, some non-classical ways of discriminating contents—
as those mentioned above present in paraconsistent and intuitionistic logics—are as

"There are exceptions to this relation [see [T01], but all the logics we shall address in the Thesis
comply with it.

8That is, as particularly emphasized by Allo [3| 4] 5], how the logical space is carved out depends
on pragmatic/extra-logical criteria; namely, on the purpose of the agents’ modelling.
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logical or rational as the classical way of doing so. This latter claim is supported by
various considerations, some of which are directly related to the usefulness of non-
classical logics, and others to how agents choose a logical system. When adopting a
logical system to model or assess an argument, the agents’ choice is between deduc-
tively strong classical logic—alternatively, a contra-classical logic [see 100, [73]—and
deductively weaker sub-classical logics—respectively, a corresponding subsystem. If
the former has undesired consequences, the agents retreat to the latter. As pointed
out above, by adopting a deductively weaker logic, (generally) the agents obtain some
additional discriminatory power in return. Thus, the moral is that when evaluating a
logic, agents must balance the inversely proportional virtues of logical discrimination
and deductive strength to decide which logic is the most suitable for a given purpose.

In the second place, the notion of available information seems suitable of being
analyzed in terms of how agents access and use information in their environment.
The importance of the notions of access and use in the analysis of what counts
as available information lies in the relational conception of information mentioned
above: how agents access or fail to access certain information is tied to the distributed
nature of it. Agents are not able to access all information at once and, due to that,
using information often amounts to combining information which was accessed in
different circumstances. We can plausibly relate the various ways in which agents
access and combine information from different circumstances to different “reasoning-
styles” and, in turn, relate these styles to different logical systems. For instance, as
Allo and Mares put it [6l 3]:

1. When agents have global access (i.e., access all accessible information at once)
to maximally consistent bodies of information, and the process of combining
information is cumulative, then the corresponding reasoning-style is in tune
with classical logic.

2. In case of local access with consistency driven cumulative use via incomplete
informational states (e.g., retaining access to the information obtained in pre-
vious states) the resulting reasoning style is in accordance with intuitionistic
logic.

3. When there is local access with non-cumulative use via the presence of (pos-
sibly incomplete and inconsistent) situations—without, thereby, always hav-
ing access to the totality of the information agents used—the corresponding
reasoning-style can be captured by a relevance or other substructural logic.

The corresponding types of environment on focus are respectively: possible worlds,



1.2. Unraveling some virtues of informational approaches

proof-stages and situations)] Thus, following Allo and Mares, we can re-phrase CN
in more accurate terms:

CN*: For A to follow from I" the information that A may not exceed the
information that is accessible in any environment where the information
that T is accessible as well [6, p. 173].

Thus, one of the virtues we may expect of an informational approach is that it
accommodates the advent of non-classical logics, logical rivalry, and logical pluralism
within it and, more importantly, that it also allows us to account for all of them. In
fact, as Allo emphasizes, “the main virtue of this type of approach is the connection
it establishes between two main concerns in logical (and other types of formal) mod-
elling: the ability to extract information from our model (inference), and the ability
to distinguish between relevant properties of the model (discrimination)” [3], p. 23].
As he also says, this latter virtue is the clue to show that informational approaches
really engage with logical dynamics. The abilities of extracting information from a
model and of making some distinctions in a model are concerns clearly present in
the development of dynamic epistemic and doxastic logics:

Extracting information from an epistemic or doxastic model is what we
do when (al) we assign beliefs or ascribe knowledge to an agent, and
(b1) we predict the effect of certain actions on their knowledge or beliefs.
Distinguishing relevant features of a model is what we do when (a2) we
compare or contrast the epistemic states of different agents, and (b2)
compare the effect of different types of actions [3, p. 26].

So, the inverse relation between deductive strength and discrimination underly-
ing informational approaches to logics is compatible with logical dynamics in the
following sense: when the inference at issue is powerful, the corresponding agents
seem highly knowledgeable according to the model; whereas, when the underlying
inference is more discriminating, intuitively distinct knowledge or belief-states are
not collapsed by the model. However, although this compatibility seems plausi-
ble, it also seems quite reductive. The strength of dynamic epistemic and doxastic
logics comes precisely from the wide range of informational actions that they can
cover. Arguably, those logics represent cases where an increase in discriminatory
power does not transparently correspond to a decrease in deductive power; thus,
not being in harmony—if not in a contrived way—with the aforementioned inverse

9Clearly, in the classical case, these informational conditions boil down to truth-theoretical
conditions.
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relation. Accordingly, the dynamic turn in Logic represents a challenge for infor-
mational approaches. However, as Allo [3] points out, that challenge does not seem
insurmountable: First, the centrality of CN* might have to be reconsidered. Second,
the way in which deductive strength and logical discrimination are related will have
to be correspondingly generalised.

Now, orthodoxy has it that logics are uninformative. The orthodox interpreta-
tion of CN, inherited to CN*, tells us that the validity of purely deductive inference
depends exclusively on the condition that the information carried by the conclusion
of an inference is already “contained” in the information carried by its assumptions—
i.e., in the initial information explicitly possessed by the agent. That is, according to
the received view, purely deductive reasoning is analytic. However, this view com-
pletely disregards the computational and cognitive cost or effort needed to “extract”
the conclusion from the assumptions. In fact, such an interpretation of CN and CN*
clashes with the fact that most interesting and useful logics are either undecidable or
likely to be intractable. For instance, classical first order logic and the main systems
of relevance logics (T, E, R) are undecidable [45] [145] [147], Intuitionistic Proposi-
tional Logic (IPL) is PSPACE-complete [I40], and CPL and FDE are both co-NP
complete [47, [148]. These computabilty and complexity results strongly suggest that
many interesting logics are far from being uninformative. More specifically, they
suggest that the conclusion of certain complex inferences may convey information
that is not contained in the assumptions in the objective sense that there is no—
and probably there will never be—feasible procedure for extracting that information
from the information conveyed by the assumptions. So, in that sense, these latter
inferences should be regarded as synthetic[l]

Most useful and interesting logics are uninformative only for highly idealized—
e.g., logically omniscient—agents. We cannot realistically assume that a rational,
yet resource-bounded, agent be informed of all conclusions in principle obtainable
from the information she explicitly possesses. Put differently, we cannot expect a
real agent—no matter whether human or artificial—to be always able to recognize in
practice that a certain conclusion follows from a given set of assumptions. This is a
source of major difficulties in research areas—such as Economics, Al, Cognitive Sci-
ence and Philosophy—that are in need of less idealized, yet theoretically principled,
models of logical agents with bounded cognitive and computational resources. We
suggest that another virtue we may expect from an informational approach is that
it provides means to model realistic resource-bounded agents, from both the cog-

0Tncidentally, this defies the persistent dogma of empiricism according to which all logical in-
ferences should be analytic. See [57), [T10].
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nitive and computational viewpoints[l] That is, we may expect that informational
approaches allow us to drop highly idealized assumptions about agents’ inferential
capabilities in a theoretically principled way. In particular, these approaches may
provide means to solve the well known anomalies that the orthodoxy has raised;
namely, the BHC paradox, the enduring scandal of deduction, and the problem of
logical omniscience[?]

As any formal model, logics involve a good deal of idealized assumptions and,
thus, they are not intended to faithfully represent the actual inferential power of real
agents. Their theoretical character lies on a purpose-based equilibrium between their
normative component—which allows us to disregard, e.g., cognitive biases or distor-
tions on the agents’ behavior or performance—and their descriptive component—
whose level of faithfulness depends on the corresponding modelling goal. However,
even from a prescriptive viewpoint, the requirements that logics impose on the agents
are too strong. Thus, from this perspective, logics are seen as limiting normative
models to which approzimating models should converge. To put it with D’Agostino:
the appeal to an “idealized reasoner” has usually the effect of sweeping under the
rug a good deal of interesting questions, including how idealized such a reasoner
should be. Idealization may well be a matter of degree [56l p. 19]. Thereby, we may
expect that—regardless being informational or not—an approach to logics account-
ing for resource-bounded agents provides means to define a hierarchy of increasingly
idealized logical agents, in terms of correspondingly stronger consequence relations.
In turn, such a hierarchy of approximations to the “perfect reasoner”—classical or
not—should provide all the flexibility required by a suitable model of practical ra-
tionality.

1.3 The basics and origin of the depth-bounded
approach

The depth-bounded approach constitutes an informational approach to Logic that
seeks to provide more realistic, but still theoretically principled, models of resource-
bounded agents. The approach departs from the fact that, as mentioned above, most
interesting logical systems are either undecidable or likely to be intractable. Based
on the idea that those systems are idealizations, the approach aims to define how
those systems can be approrimated in practice by realistic resource-bounded agents.

1 Of course, logical models involve kinds of idealizations other than computational or cognitive,
but we are addressing only the latter here.
12See [56] for a recapitulation of these anomalies.
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Extending some ideas of Gabbay [85, 87, [86] and related to some research in
Computer Science and Al (see Section [2.4{ for references), D’Agostino and co-authors
[611, 59, 56, 67, B8, [60), 63] have pointed out that the normative ideal that the ortho-
doxy imposes over logical agents can only be approzimated in practice. In D’Agostino
words: From this point of view, it makes sense to require as in [86] that a logical
system consist not only in an algorithmic or semantic characterization of a logic L,
but also in a definition of how this logic L can be approzimated in practice by realistic
agents, no matter whether human or artificial [58, p. 80]. Thus, D’Agostino’s and co-
authors introduced the depth-bounded approach as applied to CPL, which provides
an account of how this logic can be approximated in practice by resource-bounded
agents. This was done in two moves: (i) by providing a semantic and proof-theoretic
characterization of a tractable 0-depth approximation and (ii) by defining an infinite
hierarchy of tractable k-depth approximations, which can be naturally related to a hi-
erarchy of realistic resource-bounded agents, and admits of an elegant proof-theoretic
characterization.

A key idea underlying the depth-bounded approach to CPL is that the meaning
of a connective is specified solely in terms of the information that is actually possessed
by an agent, i.e., information practically accessible to her and with which she can
operate. This kind of information is called actual, and we shall use the verb “to
hold” as synonymous with “to actually possess”. The semantics is ultimately based
on intuitive, albeit non-deterministic, 3-valued tables that were first put forward by
W.V.O. Quine [129] to capture the “primitive” meaning of the logical constants. The
values have a natural informational interpretation (“accept”, “reject”, “abstain”).
The proof-theoretic characterization given in [59, 58] is based on introduction and
elimination (intelim) rules that, unlike those of Gentzen-style natural deduction,
involve no “discharge” of hypotheses. The 0-depth approximation consists of the
consequence relation associated with the intelim rules only, is computationally easy
(tractable) and corresponds to Quine’s non-deterministic semantics. The depth of
CPL-inferences is measured in terms of the maximum number of nested applications
of a single branching rule, which is a Classical Dilemma rule called PB (“Principle of
Bivalence”). PB governs the manipulation of virtual information, i.e., hypothetical
information that an agent does not hold, but she temporarily assumes as if she
held it. Intuitively, the more times such virtual information needs to be invoked via
PB, the harder the corresponding inference is for any agent who is able to perform
at least 0-depth inferences, both from the computational and the cognitive point
of view. Thus, the nested applications of that rule provide a sensible measure of
inferential depth. In essence, each k-depth logic corresponds to a limited capability of
manipulating virtual information. The underlying intuition is that we cannot expect

12
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that an agent using a limiting logic L effectively perform all the valid inferences of L,
but only those that are within the reach of its limited computational and cognitive
resources.

Within the approach, the inferential depth associated with an agent is not in-
tended to be interpreted as an upper bound on the inferential power of her. Rather,
it is understood as the maximum depth for which it is guaranteed that, if she holds
the information explicitly carried by the assumptions, she holds the information ex-
plicitly carried by the conclusion; the latter already carried by the assumptions but
(in general) only implicitly. It is worth noting that an agent may not be aware
even of easy consequence of her assumptions and there is still a difference between
implicit and explicit information. Besides, even implicit information that can be
feasibly extracted from explicit one requires consumption of resources. Neverthe-
less, the depth-bounded approach is not focused on the distinction between explicit
and implicit information, but on the distinction between two kinds of implicit infor-
mation. One kind is what we call actual information which the agent can feasibly
extract by using only information that she holds. The other kind is what we call
virtual information that, in turn, essentially requires the simulation of potential in-
formation that the agent does not hold. As recalled in the next Chapter, it turns
out that virtual information may also be feasibly extracted whenever, precisely, the
nested use of virtual information is limited.

Now, the proof-theoretic characterization of the depth-bounded approach to CPL
is interesting in its own right. It is half-way between a classical version of natural
deduction—which mirrors the classical meaning of the connectives and not their intu-
itionistic meaning as Gentzen’s original rules—and the method of semantic tableaux.
Concretely, it results from combining the classical proof systems KE and KI, which
were introduced in [117) [TT8 119], and were shown in [53], 54, 65] to be computa-
tionally and proof-theoretically advantageous—especially with respect to standard
cut-free refutation systems such as analytic tableaux [e.g., [I38]. The hallmark of
KE and K[—as well as the system resulting from combining them—is that they
reduce the amount of branching to a minimum by making all branches mutually
exclusive. Accordingly, they have a single branching rule—the rule PB mentioned
above—and the rest of their rules have all a linear format. While the latter rules are
operational, PB is structural in that does not involve any specific logical operator;
besides, PB is essentially a non-eliminable cut rule. Thus, it turns out to be quite
natural to investigate the subsystems that result from limiting the applications of
that single structural rule. So, in [59, 58], the system resulting from combining KF
and KI—henceforth dubbed intelim method—is used to provide a proof-theoretic
characterization of a hierarchy of tractable depth-bounded approximations to CPL.

13
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Namely, the operational rules are taken as fixing the meaning of the connectives
solely in terms of actual information, and require no “discharge” of temporary as-
sumptions. In turn, the depth of inferences is measured in terms of the maximum
number of nested applications of PB that are allowedH

The basic, 0-depth, logic of the hierarchy of approximations to CPL yielded by
the approach is identified with the logic of the inferences that can be drawn by using
only actual information, and whose validity can be determined on the sole basis of the
informational meaning of the connectives. In turn, the k-depth logics are the logics
associated with inferences whose validity cannot be justified solely by the meaning
of the connectives and requires, if only temporarily, the introduction of virtual infor-
mation allowed up to a number a number of times k. This latter information is not
even implicitly contained in the information carried by the assumptions. Thereby,
only the 0-depth logic complies with CN* above, in that its valid inferences are an-
alytic in the strict sense of being justified only by virtue of the way in which the
language is immediately used. In fact, the inferences associated with such a logic
convey no information at all by definition, and so are in tune with the tenet that
analytic inferences are utterly uninformative: the conclusion is “contained” in the
assumptions. However, the valid inferences of the 0-depth logic are only a subclass of
the valid inferences of CPL and, therefore, the sense of “analytic” they characterize
is stricter than the general one regarding full CPL. While such a full logic is most
likely intractable, the 0-depth logic is tractable; i.e., the valid inferences of the lat-
ter can be recognized in feasible (polynomial) time. Put differently, the problem of
deciding if the conclusion is “contained” in the assumptions—indeed, the discovery
of a strictly analytic proof of the conclusion from the assumptions—is tractable, as
we would expect from any sensible notion of “containment”.

By contrast, the inferences of the k-depth logics are synthetic and so do not com-
ply with CN*. This in the twofold sense that their validity does not depend solely
on the meaning of the connectives and their conclusion conveys information that
is not even implicitly contained in the information carried by the assumptions—in
an objective, not merely psychological sense. Accordingly, besides being related to
increasingly levels of cognitive effort or computational cost, the levels of the hier-
archy of approximations yielded by the approach can be naturally associated with
degrees of syntheticity of inferences. Still, crucially, each k-depth logic (for fixed k)
inherits the tractability of the basic logic—yet the complexity of the decision proce-

13By contrast, in Gentzen-style proof systems, some of the “discharge” rules of natural deduction,
as well as their counterparts in the sequent calculus, make essential use of virtual information. Given
that in Gentzen-style systems cut is eliminable, no hierarchy of approximations can be defined by
limiting the application of the cut rule.
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dure grows with k. Thereby, the depth-bounded approach provides means to model
resource-bounded agents, whose inferential power is related to increasingly stronger
consequence relations which are all tractable—while their limit remains, of course,
intractable.

The hierarchy of tractable approximations to CPL yielded by the approach—as
well as ideas thereof—have been further investigated and applied in recent works.
For example: in [52, 56] it has been outlined how the approach provides means to
solve the BHC paradox, the enduring scandal of deduction, and the problem of logical
omniscience; the hierarchy has served as a basis for defining approximations of belief
functions [25], probabilities [27] and their qualitative counterpart [26]; a multiagent
setting for the approach started to be explored in [46]; and a concrete application of
the approach in the context of answer set programming was introduced in [24]. There
is also ongoing research exploring extensions of the approach to classical first-order
logic and epistemic logics [64] [110].

1.4 The Thesis contribution

The depth-bounded approach to CPL, as remarked in [58], is the first step of a more
general research program that aims to define similar approximations to first-order
logic and to a variety of non-classical logics. A preliminary step of the first order case
can be found in [64]. In this Thesis we first reassess the depth-bounded approach to
CPL focusing on its proof-theoretical basis, and then show that the approach can
be naturally extended to cover (at least some) propositional non-classical logics.

The Thesis starts by succinctly recalling the main notions and motivations under-
lying the approach. After recalling some basic working definitions, non-deterministic
semantics are motivated via Quine’s theory of the “primitive” meaning of the (clas-
sical) connectives [129], and formal definitions, together with few basic properties
thereof, are recalled as stated by Avron and co-authors [e.g., 22]. General aspects of
the theory of relative complexity of proof systems are briefly recalled in turn. This
is done in terms of the usual tool for comparing the power of those systems, i.e.,
the p-simulation relation introduced by Cook and Reckhow [49]. Besides, the notion
of approximation system is motivated and defined in terms of accounting for the
resource-boundedness of realistic agents.

The rest of Part I of the Thesis is devoted to recall and reassess the depth-bounded
approach to CPL. We do this with a special focus on the proof-theoretic basis of
the approach which, again, is a proof system resulting from the combination of the
systems KE and KI, here dubbed intelim method. Our main reason to pay special
attention to the proof-theoretic basis is that it is interesting independently of the

15



Chapter 1. Introduction

approach. Namely, it was shown by D’Agostino and Mondadori [53] 54, [65] that the
intelim method is computationally and proof-theoretically advantageous, especially
with respect to standard cut-free refutation systems such as analytic tableaux. We
recall the main results regarding the computational advantages of the intelim method
in terms of the p-simulation relation and focused on the subsystem KFE of the method,
as those results were originally stated in [53], 54, 65]. (KE alone is a well-known proof
system for CPL and has been widely and fruitfully studied in the area of automated
reasoning [e.g., [79] [76, [42].)

Then, we prove new lower bounds on analytic tableaux, which strengthen and
extend the results given by by D’Agostino and Mondadori about the superiority of
KFE over analytic tableaux, and settle a problem hitherto left open in the literature.
Namely, we introduce a class of examples in the pure disjunction-conjunction frag-
ment of the language, and prove a super-polynomial lower bound on that class of
examples for all tableau methods sharing the V and A rules with classical tableaux.
These include known tableau methods for a variety of logics; for instance, tableaux
for First Degree Entailment (FDE) [e.g., b3, 81, the Logic of Paradox (LP) and
Strong Kleene Logic (K3) [e.g., 82 127, [15], and Intuitionistic Propositional Logic
(IPL) [e.g., 79, B0]. On the other hand, our new examples are easy for KE-style
(and so KFE/KI-style) variants of those tableau systems. Moreover, we show a
super-polynomial lower bound for the strongest (in terms of the p-simulation rela-
tion) possible version of clausal tableaux on the class of “truly fat” expressions used
by D’Agostino in [54] to state a super-polynomial lower bound for simple clausal
tableaux (by contrast, as it is well-known, the “truly fat” expressions are easy for
truth-tables and KF). As explained in Section , this settles a problem left open
in [115, 116, ©].

Part I continues by recalling how the depth-bounded approach was applied to
CPL by D’Agostino and co-authors [e.g., [61], 56l 57, 58]. Although our presentation
of such an application is mostly focused on the proof-theoretic underpinning provided
by the intelim method, we also recall the semantical characterization of the hierarchy
of approximations yielded by the approach. Namely, a 3-valued non-deterministic
semantics which ultimately stems from Quine’s theory of the “primitive” meaning of
the connectives. Our special focus on the proof-theoretic underpinning at that point
of Part I is due to the fact that the characterization in terms of the non-deterministic
semantics seems to suggest an exponential blow up. Indeed, the tractability of the
approximations yielded by the approach was shown via their proof-theoretic char-
acterization. We close Part I by investigating how the approach can be applied to
CPL taking as a proof-theoretic basis only KE. Concretely, following a suggestion
by D’Agostino and Mondadori [65], we define a hierarchy of depth-bounded approx-
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imations based on KF. Besides, we provide a semantical characterization of this
latter hierarchy in terms of a corresponding 3-valued non-deterministic semantics.
Although arguably less natural than the analogous hierarchy based on the intelim
method, the hierarchy based on KE may be still preferred for potential uses in au-
tomated reasoning[t]

Part II is devoted to show that the depth-bounded approach can be naturally
extended to (at least some) propositional non-classical logics. Concretely, we extend
the depth-bounded approach to FDE, LP, K3 and IPL. Despite all these logics
admit of intuitive informational interpretations, they are all likely to be computa-
tionally intractable. The first three (many-valued) logics are closely related to each
other and are all co-NP complete; while IPL is PSPACE-complete. We approach
each of these four logics by means of a corresponding KFE/KI-style system such that:
(i) is formulated in terms of signed formulae, where the signs have an intuitive in-
formational interpretation; (ii) has linear introduction and elimination rules, which
fix the meaning of the connectives; (iii) has branching structural rule(s) expressing a
generalized rule of bivalence; (iv) can be used as both a direct-proof and a refutation
method; (v) obeys the subformula property. Given the new lower bounds proven
in Section [3.3] these systems are interesting independently of the approach mainly
because they have an exponential speed-up on their tableau counterparts.

Then we focus on showing that each of our KFE/KI-style systems naturally leads
to defining an infinite hierarchy of tractable depth-bounded approximations to the
corresponding logic, in terms of the maximum number of nested applications that
are allowed of the branching rule(s) [')] The latter is (are) essentially cut rule(s) which
intuitively govern(s) the manipulation of virtual information, as opposed to the intro-
duction and elimination rules that intuitively govern the use of actual information.
The key intuition is that the more virtual information needs to be invoked via the
branching rule(s), the harder the inference is for the agent, both from the cognitive
and computational viewpoints. Thus, the nested application of those rules provides a
sensible measure of inferential depth, and so the levels of the corresponding hierarchy
can be naturally related to the inferential power of agents.

Furthermore, we show that, in the case of the many-valued logics, each hierarchy
admits of a 5-valued non-deterministic semantics. Regarding IPL, we pave the way
for a non-deterministic semantics suitable for the resulting hierarchy by providing
an alternative 3-valued non-deterministic semantics for full IPL which specifies the

14 KFE with limited bivalence was also investigated by Finger and Gabbay [e.g., 75} [76], but their
approach is different to ours.

15In the case of the many-valued logics, tractability of the approximations is proven; whereas,
in the case of IPL, it is (for now) only conjectured.
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meaning of the connectives without appealing to any “structural” condition.[zgl

In Part III, we come back to the general issue of the relative complexity of proof
systems. We argue that the p-simulation relation, although certainly adequate to
establish negative results, is misleading to establish positive results about the su-
periority of a proof system over another with respect to the problem of mechanical
proof. In a nutshell, we are usually interested in knowing not only that a system ad-
mits short proofs in cases in which another does not, but also how hard it is to find
such short proofs. A natural way of measuring the difficulty of finding the solution
of a problem within a given formal system is in terms of the amount of information
required to obtain it. This amount of information is, in turn, inversely related to
the probability of finding the required solution “by chance”, using the rules of the
formal system completely “at random”. So, it seems natural to measure the relative
difficulty of finding short proofs within two proof systems in terms of the relative
frequency with which such short proofs are found when we apply the rules of the
system “blindly”.

Based on these intuitions, we propose a way of enhancing the p-simulation relation
and produce results which are more relevant to the problem of mechanical proof.
Specifically, we define a preorder relation, called p-emulation, which is more adequate
than p-simulation to capture the intuitive meaning of “more efficient” when referred
to non-deterministic algorithms. In fact, we show that “S; p-emulates S; but not
viceversa” is a good rendering of the intuitive notion of “Sj is a refinement of S;”, thus
allowing for relevant positive results about the relative efficiency of logical systems.
Moreover, we also show how such results can be made stable via a stronger relation
that we call monotonic p-refinement. Further, we test our definitions and results
thereof with a case study: KF vs. Smullyan’s (binary) tableaux.

16Part of our results on the hierarchy of approximations to FDE has been presented at Logica
2021 and submitted for publication in the proceedings as a joint paper with Prof. D’Agostino.
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Chapter 2

Preliminaries

2.1 Basic working definitions

Let £ be some propositional language, each of its connectives having a specific nat-
ural number as its arity. O-ary connectives are called propositional constants. In
turn, let F/(L£) and At(L) respectively be the set of well-formed and atomic formu-
lae of L. We use p,q,r, ..., possibly with subscripts, as metalinguistic variables for
atomic L-formulae; A, B,C, ..., possibly with subscripts, for arbitrary L-formulae;
and I'; A, A, ..., possibly with subscripts, to vary over sets of L-formulae[[| We shall
assume that all propositional languages share the same set of atomic variables and,
so, we shall identify a language £ with C(L). Now, by a literal we mean, as usual,
a formula which is either an atomic variable (positive literal) or the negation of
an atomic variable (negative literal). In turn, a clause is a disjunction of literalsﬂ
Finally, the complement of a formula A, is equal to =B if A = B and to Bif A = —B.

Definition 2.1.1. For every formula A:
o A subformula of A is defined inductively as follows:

1. A is a subformula of A.
2. If =B is a subformula of A, then so is B.

3. For every binary operator o, if B o (' is a subformula of A, then so are B
and C.

'For readability, when L is clear by the context, we will omit the prefix £ in “£-formula(e)”.

2Given that classical disjunction is commutative and idempotent, in all logics with a classical
disjunction, a clause can be regarded as a finite set of literals and denoted simply by listing its
elements.
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4. Nothing else is a subformula of A.
o A proper subformula of A is any subformula of A that is different from A.

o An immediate subformula of A is any proper subformula of A that is not a
proper subformula of any proper subformula of A.

We denote by sub the function that maps any given set I' of formulae to the set of
all its subformulae, and by at the function that maps any given I' to the set of its
atomic subformulae. Moreover, we define the degree of a L-formula A as the number
of occurrences of connectives in A.

Now—as the plethora of phenomena counted as “logical” witnesses—there is no
universally accepted definition of (logical) consequence nor of logic or logical sys-
tem (see [86] for a comprehensive definition). As a working definition, in the con-
text of this Thesis we shall call consequence relation on a language £ any relation
o C 2F() x F(L), satisfying the following conditions:

Reflexivity: If AeT, then I'A.
Monotonicity: If T'vA, then I'U AV A.

In turn, a Tarskian consequence relation (Ter for short) on L is a consequence rela-
tion on L satisfying the following additional condition:

Cut for sets: If ')A for every A € A and I' U A B, then I'vB.

An L-substitution is a function o : F(L£) — F(L) such that for every n-ary connec-
tive ¢ and formulae Ay, ..., A,

o(o(Ay),...,0(A,)) ifn>0
o itn=20

o(o(Ar, ..., An)) :{

A Tarskian propositional logic is a pair L=(L, ~p), where L is a propositional lan-
guage and |~y is a Ter on £ satisfying the following additional condition:

Structurality: If Ty A, then o(T') ey, (A) for every L-substitution o [

3Where o (T) is short for {o(A)| A €T},
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Definitions 2.1.2. Let |~ be a Ter for £. |~ is finitary if for every I' and every
A such that I'vA, there is a finite A C I" such that ApA. In turn, a Tarskian
propositional logic (£, |~y ) is finitary if so is .

In a finitary Tarskian propositional logic, the following “restricted” version of
transitivity suffices:

Cut (Transitivity): If T~ A and T'U {A}~B, then T'|~B.

Since finitariness is essential for practical reasoning—where a conclusion is always
derived from a finite set of assumptions—throughout the thesis we are interested
only in finitary logics.

2.2 Background on non-deterministic semantics

2.2.1 Motivation and key idea

An early case of non-deterministic semantics—closely related to the depth-bounded
approach to CPL—can be found in Quine’s The Roots of Reference [129] E] There
he outlined a dispositional theory of what he called the “primitive” meaning of the
connectives and observed that this semantics fails to be truth-functional. More
generally, he suggested that a sentence is analytic for the native speakers of a language
when: (i) they learn its truth in the very process of learning how to use the words
occurring in it, or (ii) when they can obtain it from such basic analytic truths via
inference rules whose validity is also learned in the same process of learning the words.
In particular, Quine argued that we learn the meaning of the logical words by “finding
connections of dispositions” [129] p. 78]. While the governing circumstances that fix
the meaning of negation are simple—mnamely, we learn to assent (respectively dissent)
to A exactly when we dissent (respectively assent) to A—the cases of conjunction
and disjunction are not that straightforward:

A governing circumstance that goes far towards fixing its meaning is that
a conjunction commands assent when and only when each component
does. [...] It is in dissent that the rub comes. [...] The circumstances
of dissent from a conjunction have to be mastered independently of the
excessively simple rule of assent. Still, one of the rules of dissent is simple
enough: the conjunction commands dissent whenever a component does.

4See [22, 19] for a comprehensive list of references on non-deterministic semantics.
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g assent abstain dissent g assent abstain dissent

p p
assent assent abstain dissent assent assent  assent assent
abstain abstain ? dissent abstain assent ? abstain
dissent dissent  dissent dissent dissent assent abstain dissent

Table 2.1: Quine’s incomplete 3-valued tables for conjunction (left) and disjunction
(right)

[...] Conjunction has its blind spot, however, when neither component
commands assent or dissent. There is no direct way of mastering this
quarter. In some such cases the conjunction commands dissent and in
others it commands nothing. This sector is mastered only later, in theory-
laden ways. Where the components are “it is a mouse” and “it is a
chipmunk”, and neither is affirmed nor denied, the conjunction will still
be denied. But where the components are “it is a mouse” and “it is in the
kitchen”, and neither is affirmed nor denied, the conjunction will perhaps
be left in abeyance. [...]

Alternation [disjunction], like conjunction, has its blind quarter where
neither component commands assent or dissent. We might assent to the
alternation of “it is a mouse” and “it is chipmunk” or we might abstain

[129, p. 76-77).

Quine’s proposal calls for a 3-valued logic that fails to be fully truth-functional, in
that the truth-tables for conjunction and disjunction are incomplete.ﬂ The latter are
reproduced in Tab. [129, p. 77].

According to Quine’s proposal, these incomplete tables yield conjunction and
disjunction operators which are “more primitive than the genuine truth-functional
conjunction and disjunction, in that they can be learned by induction from obser-
vation of verdictive behaviour” [129, p. 78]. According to the tables, some logical
laws may qualify as analytic and some other may not. For instance—concerning
the intuitionist—Quine observes that the law of excluded middle is not bound up
with the very learning of “or” and “not”, as described by the tables, and indeed
cannot be derived from them. Thus, “it lies rather in the blind quarter of alter-

5In fact, Quine refers to the corresponding tables for the connectives as “verdict tables”; the
“verdicts” being assent, dissent and abstention.
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2.2. Background on non-deterministic semantics

nation. Perhaps [...] should be seen as synthetic” [129] p. 80]. Quine relates this
situation—according to which some logical laws are not bound up with the learning
of the logical words—to the enduring disagreement on them[f]

The semantics introduced by Quine was independently re-proposed—with no ap-
parent connection with the intuitive interpretation given by Quine—by Crawford and
Etherington [51]. Specifically, they re-introduced such a 3-valued non-deterministic
semantics for investigating tractable inference and claimed (without proof) that it
provides a characterization of (an extension of) unit resolution. As we shall explain
in Chapter 3, this 3-valued non-deterministic truth-tables and ideas thereof are per-
fectly in tune with the depth-bounded approach as applied to CPL. In this section,
however, we focus on the fact that Quine’s and Crawford-Etherington’s proposals are
particular cases of the key idea underlying non-deterministic semantics. Namely, for
instance, in Quine’s tables the entries in which both arguments have the value “ab-
stain” yield two alternative possible values, meaning that the value of the compound
sentence is not uniquely determined by the values of its immediate subformulae but
can be either of the two possible values.

The general theory of non-deterministic semantics has been articulated and exten-
sively investigated by Avron and co-authors [e.g. 20] 21, 16} 17, 18, 22, 19], who have
used those semantics particularly for studying proof-theoretic properties of Gentzen-
style sequent calculi. The primary notion of such a theory is that of non-deterministic
matriz (Nmatriz) which, in turn, is a natural generalization of the notion of ordinary
many-valued matrix. The principle of truth-functionality (also known as, composi-
tionality) is basic in many-valued logic in general, and in classical logic in particular.
This principle dictates that the truth-value of a complex formula is uniquely deter-
mined by the truth-values of its subformulae. Nevertheless, as Avron and Zamansky
say—and as exemplified by Quine’s considerations above—*“real-world information
is inescapably incomplete, uncertain, vague, imprecise or inconsistent, and these
phenomena are in an obvious conflict with the principle of truth-functionality” [22]
p. 227]. The notion of Nmatrix provides a possible solution to this problem by re-
laxing the principle of truth-functionality. Namely, in Nmatrices, the truth-value of
a complex formula can be chosen non-deterministically out of some non-empty set
of options. Thereby, non-deterministic semantics is non-truth-functional, as opposed
to deterministic semantics. However, as shown by Avron and co-authors, the se-
mantics of Nmatrices shares with the semantics of ordinary (deterministic) matrices
important properties such as compactness, decidability (in the finite case) and, more

61t is well know that Quine changed his mind considerably on the analytic-synthetic distinction
along his career. On this point and for a philosophical criticism of Quine’s proposal in [129)], see
[92].
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importantly, analyticity.

2.2.2 Basic notions and properties

In this subsection we briefly recall formal definitions of some basic notions of non-
deterministic semantics as stated by Avron and co-authors.

Definition 2.2.1. A non-deterministic matriz (Nmatriz) for £ is a triple M =
(V,D,0), where:

e ) is a non-empty set of truth-values;

» D is a non-empty proper subset of V (whose elements are called the designated
elements of V);

« O is a function that associates an n-ary function & : V* — 2V \ {(} with every
n-ary connective ¢ of L.

We say that M is (in)finite if so is V.
Definitions 2.2.2. Let M be an Nmatrix for L.

e An n-ary connective ¢ of L is non-deterministic in M, if there are some
T, ..., Ty, € V, such that &(zq, ..., x,) is not a singleton.

o M isa proper Nmatrix if at least one of the connectives of L is non-deterministic
in M. In turn, M is strictly proper if that connective has arity n > 0. M is
deterministic if it is not proper.

Definitions 2.2.3. Let M be an Nmatrix for L.

o A partial M-valuation for L is a function v : F/(L)* — V for some F(L)* C
F(L) satisfying the following conditions:

— The set F(L£)* is closed under subformulae; i.e., sub(F(L£)*) = F(L)*.

— For each n-ary connective ¢ of L, the following holds for all Ay,..., A, €
F(L)*
0(6(Ar, s An)) € S(V(AL), - 0(A,)). (2.1)

« A partial M-valuation is a (full) M-valuation if its domain is F'(L).
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2.2. Background on non-deterministic semantics

Remark 1. Note that the only difference between Nmatrices and ordinary (deter-
ministic) matrices is that in the case of the latter we have ‘=’ rather than ‘€’ in
condition (2.1). Indeed, when taking an Nmatrix as a generalization of a matrix,
the latter is viewed as a special type of an Nmatrix in which each ¢ always returns
a singleton. In such a case, each ¢ can be treated as a function ¢ : V* — V. Thus,
when there is no risk of confusion, we shall identify singletons of truth-values with
the truth-values themselves.

Remark 2. As in many-valued deterministic semantics, in non-deterministic seman-
tics, each formula has a defined truth-value. That is why 0 is excluded from being
a value of ¢. However—as exemplified in the depth-bounded approach below—the
absence of any defined truth-value for a formula can still be simulated within the non-
deterministic formalism by introducing a special truth-value L representing exactly
this case.

Proposition 2.2.4 (Analyticity, [18]). Let M be an Nmatriz for L, and v be a
partial M-valuation. Then v can be extended to a (full) M-valuation.

Definitions 2.2.5. Let M be an Nmatrix for £. The Ter induced by M, Epy, is
defined by: I' Fy A if for every partial M-valuation v, if (v(B) is defined and)
v(B) € D for all B € T', then (v(A) is defined and) v(A) € D. We denote by
Ly = (L£,Enm) the Tarskian propositional logic induced by ME]

Theorem 2.2.6 (Compactness, [21]). For every propositional language £ and
any finite Nmatrix M for L, the Ter induced by M, Eq, is finitary.

Definitions 2.2.7. Given a Tarskian propositional logic L = (£, ;) and a Nmatrix
M for L, we say that:

o L is sound for M iff I')~; A implies I' Fpq A;
o L is complete for M iff I' Epq A implies 'y 4;
e L is characterized by M iff L is both sound and complete for M.

Theorem 2.2.8 (Decidability, see [19]). Let I' be a finite set of formulae, A a
formula, and M a finite Nmatriz for L. Then the question whether I' E,q A is
decidable.

"This and the following definition can be analogously and respectively formulated w.r.t.
(multiple-conclusion) Scott consequence relation and Scott propositional logic. On this point see
the references to Avron et al.
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Remark 3. Because of analyticity I' Eq A is decidable whenever I" and M are finite.
Namely, when assesing whether or not I' Fy; A, analyticity allow the search to be
restricted to partial M-valuations whose domain is sub(I' U {A}). This, together
with the finiteness of I' and M, assures that the search space is also finite and, thus,
that the corresponding algorithm always terminates.

Notation 2.2.9. To simplify reading, in what follows we shall omit the prefix or
subscript ‘M’ in the notions above.

2.3 Background on computational complexityf]

2.3.1 Absolute and relative complexity

Computational Complexity Theory can be seen as a refinement of Computability
Theory. While the latter theory studies which problems can or cannot be decided (or
computed, or solved) in principle—meaning, within a finite, yet unbounded, amount
of resources such as time and space—the former theory studies which problems can
or cannot be decided within a bounded amount of resources. In Complexity Theory,
there is a working assumption—known as the Cobham—-Edmonds thesis—according to
which the class of tractable (or feasible, or practically solvable) problems is identified
with the complexity class P of the problems that are decidable by a conventional
(deterministic) Turing machine within polynomial time; i.e., whitin a number of
steps bounded above by some fixed polynomial in the length of the input.

Roughly, the justification underlying the Cobham—Edmonds thesis is that, as the
length of the input grows, exponential time algorithms require resources that quickly
go beyond any practical constraint. Needless to say, an exponential time algorithm
may be preferable in practice to a polynomial time algorithm with running time, say,
(10n)0%_ Nonetheless, the notion of polynomial time computability is theoretically
robust and useful, mainly because it is invariant under any reasonable model of com-
putation. In fact, this latter aspect is backed up by an analogue of the Church-Turing
thesis in the context of complexity. Namely, the Invariance Thesis, saying that a
Turing machine can simulate any “reasonable” model of computation with at most
a polynomial increase in time and space. Moreover, polynomial time computability
is invariant under any reasonable selection of “encoding scheme” for the problem
at issue. Finally, there is increasing evidence—particularly coming from the theory
of NP-completeness—according to which, problems encountered in practice that are
not purposely constructed to defy the power of our computational devices, tend to be

8This section is based on Chapter 4 of [53].
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either intractable or decidable within time bounded by a polynomial of reasonably
low degree.

Now, more specifically, the elements of complexity classes—such as P—are lan-
guages. The vast majority of computational problems can be taken as language-
recognition problems. Namely, problems asking whether or not a word over a given
alphabet belongs to some distinguished set of words. An important example taken
from Logic consists in that the problem of determining whether a propositional for-
mula is a tautology (i.e., valid) in CPL can be identified with the set TAUT of all the
words over the alphabet of propositional calculus which express classical tautologies.
So, an algorithm solving that problem is one deciding for every given word over the
alphabet, whether or not it belongs to TAUT. In this sense, P can be defined as
the class of the languages which can be recognized within polynomial time by some
(deterministic) algorithm. Now, when non-deterministic models of computation are
considered, the analogue of P is the class NP. The notation ‘NP’ stands for “non-
deterministic polynomial time”, since such a class was originally defined as consisting
of the problems decidable within polynomial time by some non-deterministic algo-
rithm. However, nowadays it is customary to (equivalently) define NP as the class of
all languages L such that, for every word w € L, there is a proof of its membership
in L which is bounded above by some polynomial function of the length of w [see
13).

As it is well known, the main role played by propositional logic in Complexity
Theory lies on the following results due to Cook and Reckhow:

Theorem 2.3.1 ([47]). There is a deterministic polynomial time algorithm for the
classical tautology problem iff P = NP.

Theorem 2.3.2 ([49]). There is a non-deterministic polynomial time algorithm for
the classical tautology problem iff NP is closed under complementation; i.e., iff P =
co-NP.

Regarding the first result, most researchers in Complexity Theory conjecture that P
=# NP. That conjecture implies that no proof procedure can be uniformly tractable
for the whole class of classical tautologies—although, a proof procedure may be
tractable for certain infinite subclasses of such a class, of course. As for the second
result, it involves the notion of proof system rather than that of proof procedure.
The following definitions are adapted from Cook and Rechow’s [49, [50]: let X be a
finite alphabet. With ¥* we denote the set of all finite strings or “words” over the
alphabet . A language L is defined as a subset of ¥*; i.e., a set of strings over a
fixed alphabet 3. The length of a string = is denoted as |z|.
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Definition 2.3.3. If ¥, and ¥, are finite alphabets, a function f : 37 — X3 is in
F if it can be computed by a deterministic Turing machine in time bounded by a
polynomial in the length of the input.

The class F of functions computable in polynomial time allow us to make precise
the vague notion of “feasibly computable function”.

Definition 2.3.4. If L C ¥* a proof system for L is a function f : ¥ — L for
some alphabet X1, where f € F and f is onto.

That f € F ensures that, when given an alleged proof—i.e., a string over »;—
there is a tractable method of checking whether or not it really is a proof, and if so,
of what it is a proof. For instance, a proof system S is associated with a function f
such that f(z) = A whenever x is a string of symbols standing for a legitimate proof
of Ain S. When z does not stand for a proof in S, then f(z) is taken to denote
some fixed tautology in L; say, in the case of CPL, p V —p.

Definition 2.3.5. A proof system f is polynomially bounded if there is a polynomial
p(n) such that for all y € L, there is an x € 33 such that y = f(z) and |z| < p(|y]).

In the above definition, f(z) = y is to hold if x is a proof of y. So, the definition
characterizes a proof system such that, for every element of L, there is a “short”—
i.e., polynomially bounded—proof of its membership in L. On the one hand, that
a proof system is polynomially bounded does not imply—unless P=NP—that there
is a proof procedure based on it—mamely, a deterministic version—that is also so.
Still, that a proof system is not polynomially bounded does imply that there is no
polynomially bounded proof procedure based on it.

A key observation about polynomially bounded proof systems, due to Cook and
Reckhow, is as follows:

Theorem 2.3.6 ([49]). There is a polynomially bounded proof system for the clas-
sical tautology problem iff NP = co-NP.

The question of whether a proof system is polynomially bounded or not concerns
its absolute complexity. It has been shown that, for example, most conventional
proof systems for CPL—such as analytic tableaux (and so Gentzen-style cut-free
systems in tree form) and resolution—are not polynomially bounded, by presenting
for each system some infinite class of hard eramples that have no polynomial-size
proofs.ﬂ Those results have the following crucial consequence for the use of proof

9More specifically, they are called “hard” in the sense that any S-proof showing that z € L
must be infeasibly long relative to the size of .
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systems for automated deduction: a complete proof system should not be expected
to be tractable. Rather, either completeness is given up for attaining tractability—
by, e.g., restricting the language—or heuristics guiding the proofs are adopted. In
fact, the results regarding most conventional proof systems imply that, when we
are seeking for proofs expressible as formal derivations in some of those systems,
the option of heuristics alone is not sufficient. Thus, we should do both, give up
completeness and be prepared to use heuristics.

Now, although the existence of a polynomially bounded proof system for CPL is
regarded as highly improbable—since it is strongly suspected that NP # co-NP—the
importance of the complexity analysis of proof systems is by no means restricted to
questions of absolute complexity. There are many interesting questions regarding
their relative complexity, which are computationally significant even when the sys-
tems have been proven intractable. Differences between proof systems do not boil
down to those caused by applied heuristics, but crucially include questions of relative
efficiency between them. In fact, as far as automated deduction is concerned, when
choosing an appropriate system to start with, considerations of relative complexity
are prior to any heuristic one. For instance, considerations of relative efficiency are
important when intractable proof systems for CPL considerably differ with respect
to the extension and type of the subsets of TAUT for which they are polynomially
bounded.

2.3.2 Relative complexity and simulations

Although not directly related to problems such as NP;CO—NP, questions of relative
complexity of proof systems have some relevance to the more practical problems of
investigating mechanized proof-search strategies and constructing efficient automatic

theorem provers. In fact, solving questions such as NPZco-NP seems still distant. By
contrast, significant progress has been made in classifying the relative complexity of
well known proof systems, as well as in proving lower bounds for restricted systems.
Now, when studying the relative complexity of proof systems, some basic qualitative
notions require to be given quantitative versions. Let S be a proof system for a
propositional logic. With

Thg A

we denote that there is a proof m of A from I' in system S such that |7| < n; where,

as usual, |7| denotes the length of m intended as a string of symbols over the alphabet
of S.
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Now, suppose that, given two systems S and S’, there is a function ¢g such that
forall T', A,
n g(n)
['Fg Aimplies I' g A. (2.2)
In relative complexity, we are interested in the rate of growth of g for particular
systems S and S’. Then, positive results concerning the relation in (2.2) are usually
obtained via simulation procedures:

Definition 2.3.7. If f; : ¥ — L and f; : ¥§ — L are proof systems for L, a
simulation of fi in fy is a computable function h : X7 — 33 such that fo(h(x)) =
fi(z) for all z € X[

In turn, negative results concerning (2.2) consist of lower bounds for the function g.

Now, an important case of the relation in (2.2) occurs when g(n) is a polynomial
in n, i.e., g € F. This can be shown by giving a simulation function h such that for
some polynomial p(n), |h(z)| < p(]z|) for all z. Thus, in such a case, we say that S
polynomially simulates or p-simulates S’. The simulation h is then a function that
translates proofs in S’ into proofs in S, and preserves tractability. More specifically,
if follows from the definitions that:

Proposition 2.3.8. If a proof system S’ for L p-simulates a polynomially bounded
proof system S for L, then S’ is also polynomially bounded.

It is easy to see, given that F is closed under composition, that the p-simulation
relation is reflexive and transitive (i.e., a preorder), and so its symmetric closure is an
equivalence relation. Thereby, proof systems can be ordered by means of p-simulation
and been put into equivalence classes with respect to their relative complexity. In
turn, systems which belong to the same equivalence class can be considered as having
“essentially”—meaning, up to a polynomial—the same complexity or efficiency. In
contrast, if S p-simulates S’ but not the other way round, we can say that—as far
as the length of proofs is concerned—S9 is essentially more efficient or powerful than
S’. For example, S may be polynomially bounded for every L ¢ TAUT for which S’
is polynomially bounded but not viceversa; in such a case, S has a larger “practical”
scope than 5.

Cook and Reckhow [49, [50] started the study of the relative complexity of proof
systems. Since then, some open problems have been solved while some others have
been raised [see[I49]. Results in the Cook’s and Reckhow’s tradition concern primar-
ily questions about proof-length; so, they are not directly concerned with the very

10We assume that the language of both proof systems is the same. For an even more general
definition not containing this assumption see [I31].
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important question—at least from the practical point of view—of the complexity
of proof-search. Put differently, results stated in terms of the p-simulation relation
concern the relative length of minimal proofs in different systems. So, those results
are scarcely informative about the relative difficulty of proof-search. In a nutshell,
“easy” proofs may be rather hard to find! In that sense, considerations regarding the
size of the search space in which such “easy” proofs are to be found turn out to be
crucial. On the one hand, sometimes it is possible to define systematic procedures
to efficiently explore the corresponding search space. In such a case, a speed-up
in proof-length can imply a similar speed-up in proof-search. On the other hand,
such systematic procedure may not be available to us and the existence of shorter
proofs may not helpful for designing more efficient proof procedures. Thereby, the
importance of those results for automated deduction must be assessed case by case.

2.4 The approximation problem

As mentioned in Section most interesting and useful logics are either undecidable
or likely to be intractable. So, only highly idealized agents would be always able to
recognize in practice that a certain conclusion follows from a given set of assump-
tions. Real resource-bounded agents, in contrast, cannot be expected to be informed
of all conclusions potentially obtainable from the information they explicitly possess.
Nonetheless, idealization may well be a matter of degree; that is, the capability of
correctly recognizing validity or inconsistency may well vary from one agent to an-
other. For instance, any human agent who understands the (e.g., classical) meaning
of ‘=’ can recognize the validity of modus ponens; however, fewer agents are able to
correctly make inferences involving complex case reasoning and very few are able to
prove theorems from a mathematical theory.

As other types of formal modelling, a logic generally involves a big deal of ide-
alization and, as such, is not intended to faithfully describe the actual inferential
behavior of rational agents. In words of Gabbay and Woods:

A logic is an idealization of certain sorts of real-life phenomena. By their
very natures, idealizations misdescribe the behaviour of actual agents.
This is to be tolerated when two conditions are met. One is that the
actual behaviour of actual agents can defensibly be made out to approz-
imate to the behaviour of the ideal agents of the logician’s idealization.
The other is the idealization’s facilitation of the logician’s discovery and
demonstration of deep laws [87, p. 58].
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This leads to what D’Agostino et al. [e.g., 59, 56], 87, 86] have called the approz-
imation problem which, in the context of logical systems, can be concisely stated as
follows:

Approximation problem: Can we define in a natural way a hierarchy of
logical systems that indefinitely approximate a given ideal [lJogic in such a
way that these approximations provide useful formal models of the logical
competence of different resource-bounded agents? [56, p. 5].

As D’Agostino also points out, robust solutions to this problem are likely to
have a significant practical impact in all research areas—such as Philosophy, Al,
Cognitive science and Economics—that are in need of less idealized, yet theoretically
principled, models of reasoners with bounded cognitive and computational resources.
However, those solutions require “an imaginative re-examination of logical systems
as they are usually presented in the literature” [59, p. 44]. This given that, for
instance, standard proof-theoretic formalisms—such as natural deduction, tableaux,
and sequent calculi—are structurally inadequate to define in a natural way a measure
of the difficulty of inferences. For instance, one crucial requirement that a formalism
defining such a measure should satisfy is that the meaning of the logical operators—
as given by the operational rules—remains the same throughout the hierarchy of
approximations to the “goal” logic at issue. Thereby, an agent may still be credited
with understanding the meaning of a finite set of sentences—say, the axioms of a
theory—even when she is unable to draw all the conclusions which are in principle
obtainable from it[l1]

Despite its practical and theoretical importance, the approximation problem has
been scarcely addressed in the logical and philosophical literature. However, ap-
proximations to (full, or fragments of) CPL via tractable subsystems of increasing
inferential power has received some attention in Computer Science and Al le.g.,
4T), 134, 114, 51, 66, 135, (75, [77, 78, [76l, 109]. While these contributions are closely
related to each other, they have been given in a rather scattered and differently mo-
tivated way. Logic still lacks a robust and general foundations for an approximation
theory. D’Agostino’s et al. depth-bounded approach constitutes a step towards such
a theory, by trying to provide a single proof-theoretical and semantic framework for
some of the main ideas of those contributions.

As recalled in the next Section, the approach has already been shown apt as
to provide an adequate solution to the approximation problem in the case of CPL

"' The kind of approximation problem stated above concerns computational idealizations typi-
cally made by logical models. Needless to say, these models involve other kinds of idealizations
which, in turn, give rise to other kinds of approximation problems.
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and, simultaneously, as to provide means to solve the well known anomalies that
the corresponding orthodox semantics and proof-theory have raised (again, logical
omniscience, BHC paradox and the scandal of deduction). More specifically, the
approach leads to defining, in a natural way, a hierarchy of tractable depth-bounded
consequence relations that infinitely approximate CPL; hierarchy that appears to be
a plausible model for representing rational agents with increasing, albeit bounded,
cognitive and computational resources. Accordingly, it allow us to define degrees of
logical omniscience, which may be naturally related to increasingly idealized agents,
in terms of correspondingly stronger consequence relations. Thus, the approach
allows us to characterize in a natural and uniform way such a hierarchy of approx-
imations to the “perfect reasoner”—which hitherto has been restricted to be the
classical one—and so provides the flexibility required by a suitable model of practi-
cal rationality.

Although there is nothing apparent that prevent us to extend the depth-bounded
approach—or other approaches based on approximations—to finitary non-Tarskian
logics (and even to broader phenomena studied in logical dynamics), the thesis will
be restricted to finitary Tarskian propositional logics, leaving the rest for future
research. Thus, we formally define the notion of approximation with respect to that
kind of logics:

Definition 2.4.1. Let L be a finitary Tarskian propositional logic (£, |~y ). An ap-
proximation system for L is a triple &7 = (P, <, {Ra}acp), where (P, <) is a directed
set, called the parameter set, and { R, }acp is a family of consequence relations on £
such that:

e a < [ implies R, C Rg;
o for each a € P, R, is decidable in polynomial time;
® UaEP Ra = lNL

We shall call L the limiting logic of the approximation system &7. Each relation R,
is an approrimation to L.

Naturally, approximation systems are of practical and theoretical interest when-
ever the limiting logic is known or conjectured to be intractable.
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Chapter 3

Tractable depth-bounded
approximations to CPL

3.1 Introduction

The depth-bounded approach was first put forward by D’Agostino and co-authors as
an “informational view” of CPL, accounting for how this logic can be approximated
in practice by resource-bounded agents. As mentioned in Chapter 1, a key idea
underlying the approach when applied to CPL is that the meaning of a logical
operator is specified solely in terms of the information that is actually possessed by
the agent under consideration. In turn, that an agent actually possesses information
means that this is information practically accessible to her and with which she can
operate—e.g., in decision making. We call this kind of information actual, as opposed
to potential information that is available to the agent only in principle[l| Besides, we
use the verb “to hold” as synonymous with “to actually possess™

As already briefly discussed in Chapter 1, the approach leads to an infinite hier-
archy of tractable depth-bounded approximations to CPL, which can be naturally
related to the inferential power of the agents. This hierarchy admits of an intuitive 3-
valued non-deterministic semantics and an elegant proof-theoretic characterization.

!This distinction between actual and potential information is already present in the work of
Hintikka. As well-known, he related what he labelled the “scandal of deduction” to the undecidabil-
ity of first-order logic, which implies some inescapable uncertainty about the validity of inferences
involving quantifiers. According to him, if we take seriously the “old important idea” that infor-
mation consists in reducing uncertainty, then “[r]elief from this sort of uncertainty ought to be
reflected by any realistic measure of the information which we actually possess (as distinguished
from the information we in some sense have potentially available to us) and with which we can in
fact operate” [99] p. 229].
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The latter is half-way between a classical version of natural deduction—which mir-
rors the classical meaning of the connectives and not their intuitionistic meaning as
Gentzen’s original rules—and the method of semantic tableaux. Concretely, as men-
tioned in Chapter 1, it results from combining the classical proof systems KFE and
KI. Here we refer to the system obtained by such a combination as intelim method.
It is this proof-system which allows us to measure the depth of inferences in terms of
the maximum number of nested applications of a single structural rule that are al-
lowed. This rule—called PB as it expresses the Principle of Bivalence—is essentially
a (non-eliminable) cut rule, that governs the manipulation of virtual information;
i.e., information that an agent does not hold, but she temporarily assumes as if she
held it. Intuitively, the more virtual information needs to be invoked via PB, the
harder the inference is for the agent. In this sense, the nested applications of that rule
provide a sensible measure of inferential depth. This naturally leads to defining an
infinite hierarchy of tractable approximations to CPL, where the inferential power
of agents is naturally bounded by their limited capability of manipulating virtual
information.

In what follows we first recall the proof-theoretic basis for applying the depth-
bounded approach to CPL, and then we recall the application itself together with
the 3-valued non-deterministic semantics associated to it. We have three reasons
for such an order of presentation: (i) The proof-theoretic basis is interesting in its
own right since it is more efficient—and, presumably, more natural—than other
proof system for CPL such as analytic tableaux and Gentzen’s cut-free sequent
calculus. (ii) The characterization of the hierarchy of approximations in terms of
the 3-valued non-deterministic semantics seems to suggest an exponential blow up.
Indeed, the tractability of the approximations yielded by the approach was proven
via their proof-theoretic characterization. (iii) That order of presentation matches
the historical development of the approach to CPL.

3.2 The proof-theoretic basis

The proof systems KFE and KI were introduced by Mondadori [117, 118 [1T9]. Later
on, D’Agostino and Mondadodri [53], [65] investigated their relative complexity, show-
ing that those systems linearly simulate each other and that both dominate clausal
analytic tableaux in terms of the p-simulation relation. Specifically, they showed that
even the analytic restriction of KE can p-simulate clausal analytic tableaux but not
vice versa. Moreover, D’Agostino [54] showed that clausal analytic tableaux cannot
even p-simulate the truth-tables method. As we shall explain below, KF is a refu-
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tation system which is a variant of analytic tableaux, but essentially more efﬁcientﬂ
Regarding K1, it is a direct-proof system which can be regarded as a proof-theoretic
version of the truth-tables method, but essentially more efficient. Namely, KI can
p-simulate the truth-tables method [see 53] but the truth-tables method cannot p-
simulate K7 [120]. In turn, combining KE and KI yields the proof system that
here we have dubbed intelim method. This latter proof system (i) is half-way be-
tween a classical version of natural deduction and analytic tableaux; (ii) constitutes
the proof-theoretic basis of the depth bounded approach to CPL; (iii) enjoys the
computational advantages of its subsystems KFE and KIE|

3.2.1 KF

KFE has an exponential speed-up on both analytic tableaux and Gentzen’s cut-free
sequent calculus, even if KE's analytic restriction—which yields only refutations with
the subformula property—is considered. Moreover, KF was proposed not only as a
more efficient alternative to those systems, but also as a more natural one. Namely,
unlike those proof systems and via a cut rule, KF can represent the use of auxiliary
lemmas in proofs (which are an inherent part of the mathematical activity), and
properly express the bivalence of classical logic. Below we just recall briefly KE
and its computational efficiency advantages, but these advantages are—as might be
expected—closely related to its being more natural in the above sense. So, the latter
is left implicit in our brief presentationﬁ

In what follows we shall use signed formulae (S-formulae, for short); namely,
expressions of the form T A or F A, where A is a formula. As recalled below, KE
(as well as KT and the intelim method) can indifferently be presented in terms of S-

2The relative complexity results in [53] 54} 65] were originally stated disregarding distinct types
of analytic tableaux. It was later on that Massacci [I15] [IT6] gave the unexpected result that
binary tableaux can present an exponential speed-up over clausal ones. We shall recall the difference
between those types of tableaux, as well as Massacci’s result, in Subsection[3.3.2] More importantly,
in the same Subsection, we shall show that KF (and so both KT and the intelim method) dominates
also binary tableaux. In fact, we shall show that KE dominates the strongest possible version
of clausal tableaux called unrestricted tableaux and, somewhat surprisingly, that the latter are
dominated even by the truth-tables method.

3Further, the normalization of the intelim method [55] [58] implies that such a method still has
an exponential speed-up on analytic tableaux and on cut-free sequent proofs even when only normal
intelim proofs and refutations are considered.

4For a detailed account of why KFE should be regarded as a more natural proof-theoretic char-
acterization of CPL see [53] 65]. See also [59] [63] for an analogous observation when comparing
a “fully fledged” natural deduction version of KE with Gentzen-Prawitz style natural deduction
systems for CPL.
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formulae or usual formulae. However, we shall recall and consider the signed version
because it relates more directly to the KFE/KI-style proof systems for non-classical
logics we shall introduce and use in Part II of this Thesis. Whereas in the case
of CPL the use of S-formulae in KFE/KI systems is optional, in the case of non-
classical logics it is indispensable. We shall use ¢,, 0, ..., as variables ranging over
S-formulae, and X,Y, Z, ..., as variables ranging over sets of S-formulae. Besides, we
continue using A, B, C, ..., as variables ranging over (unsigned) formulae, and T', A,
A,..., as variables ranging over sets of formulae. So, we shall write TI' to denote
{TA|A €T}. Besides, let us use S as a variable ranging over {T,F }. In turn, we
say that the unsigned part of an S-formula is the unsigned formula that results from
it by removing its sign. Given an S-formula ¢, we denote by " the unsigned part
of ¢ and by X* the set {¢"|¢ € X}. In the context of CPL intuitively, T A means
“Ais true” and F A means “A is false”. Formally:

Definition 3.2.1. A classical (i.e., Boolean) valuation v satisfies an S-formula T A if
v(A) = true and an S-formula F A if v(A) = false. A set X of S-formulae is satisfiable

if there is a classical valuation v which satisfies all its elements.

Thus, the truth-value of T A is the same as that of A, whereas the truth-value of F A
is the same as that of =A. In turn, we say that the conjugate of T A is F A and vice
versa.

Now, the hallmark of KF is the reduction of the amount of branching to a min-
imum by making all branches mutually exclusive. Accordingly, KF has only one
branching rule expressing the classical Principle of Bivalence, and the rest of its rules
have all a linear format. Indeed, KE is more efficient than other proof systems for
CPL because the application of its unique branching rule allows us to avoid many
redundant branchings in the corresponding trees. Specifically, KF includes the set
of linear elimination rules displayed in Table 3.1} In these rules, we shall refer to
the premise containing the connective that is to be eliminated as major and to the
other premise as minor. This set of rules is not complete for CPL. Completeness
is achieved by adding only the following branching rule, called PB given that it
expresses the Principle of Bivalence:

TA|FA

So, PB allows us to append both T A and F A as sibling nodes at the end of any
branch of the tree, generating two new mutually exclusive branches. Essentially, PB
is a classical cut rule which is not eliminable, but whose use—as recalled below—can
be restricted so as to satisfy the analytic cut property (i.e., subformula property).

Definitions 3.2.2.
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TAVEB TAVEB

FA FB FAV B FAV B

TB TA FA FB
FAAB FAANB

TA TB TAAB TAANB

FB FA TA TB
TA— B TA— B

TA FB FA— B FA— B

TB FA TA FB

T-A F-A

FA TA

Table 3.1: Elimination rules for the standard CPL connectives

o Let X = {p1,....,0m}. Then T is a KE-tree for X if there exists a finite
sequence (71, 7z, ..., T) such that 77 is a one-branch tree consisting of the se-
quence (¢1,..., om), Tn = T, and for each i < n, T;;1 results from 7; by an
application of an elimination rule to preceding S-formulae in the same branch,
or by an application of PB.

o A branch of a KFE-tree is closed if it contains an S-formula and its conjugate;

otherwise, it is open.

o A KE-tree is closed when all its branches are closed; otherwise, it is open.

A KFE-tree is a KFE-refutation of X if T is a closed KE-tree for X.
A KE-tree T is a KE-proof of A from I' if T is a KE-refutation of TT'U{F A}.

A is KE-provable from I if there is KE-proof of A from T'.

A version of KFE for unsigned formulae is simply obtained by replacing each S-
formula T A with A and each S-formula F A with —=A, and modifying all definitions
in the obvious way. The soundness proof of KFE is essentially the same as that for
Smullyan’s tableaux [138, p. 25]. Since we shall often refer to these tableaux through-
out the Thesis, we recall their rules in Table We present the signed version for
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TAVB FAV B TAANB FAANB
TA|TB FA TA FA|FB
FB TB
FA— B
TA— B TA T-A F-A
FA|TB FB FA TA

Table 3.2: Smullyan’s tableaux rules

easier comparison but, analogously, an unsigned version obtains by replacing each
S-formula T A with A and each S-formula F A with = A

Proposition 3.2.3 (Soundness). If there is a closed KE-tree for X, then X is
unsatisfiable.

At some parts of the Thesis, we shall use Smullyan’s unifying notation [I3§] to
reduce the number of cases. This notation is summarized in the tables displayed in
Table [3.3] So, the elimination rules of KE can be “packed” into the following four
types of rules (where (!, i = 1,2 denotes the conjugate of 3;):

Rule A1 2 Rule A2 2
o7 €%)
B B
Rule B1 b1 Rule B2 35
B2 o

Under this notation, we say that a branch b of a KE-tree is E-complete if (i) for
every S-formula of type o occurring in b, both «; and «as occur in b; and (ii) for every
S-formula of type (8 occurring in b: (iia) if 5] occurs in b, then S5 occurs in b; (iib) if
B4 occurs in b, then ) occurs in b. In turn, we say that b is 3-complete if for every
S-formula of type 8 occurring in b and some ¢ = 1,2, either f3; or §; occurs in b. So,
b is complete if it is E-complete and [S-complete. Finally, a KE-tree T is completed
if every branch of T is either closed or complete[

5Moreover, signed versions of tableaux relate more directly to sequent calculi in that T -signed
formulae play the role of left-side formulae with respect to a sequent arrow, while F -signed formulae
play the role of right-side ones.

SRecall that the notion of Smullyan’s completed tableau is defined analogously in [138].
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« (03] (6%)
TAANB |[TA|TB 3 B B
FAVB |FA | FB FAANB |FA | FB
FA—-B|TA|FB TAvVB |TA|TB
T-A FA|FA TA—-B|FA|THB

F-A TA|TA

Table 3.3: Smullyan’s unifying notation

Now, the completeness of KE can be shown in several ways. However, proving
it by modifying the traditional completeness proof for the tableau method [see [13§]
allows also to show that KF remains complete even when its applications of PB are
restricted to be analytic ones. Namely, a KE-tree T for X is said to be analytic if
PB is applied in T only to (proper) subformulae of formulae in X “E] So, the analytic
restriction of KFE is the system in which the applications of PB are restricted to
subformulae of the formulae occurring above in the same branch. A proof modifying
the traditional completeness proof for tableaux is given in [53] [65] :ﬂ

Theorem 3.2.4 (Completeness, [53, 65]). If I' Ecpr A, then there is a closed
KE-tree for TT U {F A}.

Such a proof yields a subformula principle in the following form:

Corollary 3.2.5 (Analytic cut property). If X is unsatisfiable, then there is
a closed KE-tree T' for X such that all the applications of PB are analytic (i.e.,
preserve the subformula property).

The above corollary says that the analytic restriction of KE is complete. A con-
structive proof of this subformula principle, which yields a procedure for transforming
any KFE-proof in an equivalent KE-proof which enjoys the subformula property, is
given in [I1§]. The subformula property is a key property of logical systems in that it
allows us to search for refutations (or proofs) by analytic methods, i.e., by considering
solely deduction steps involving formulae that are “contained” in the assumptions
(or also the conclusion in the case of proofs). This implies a drastic reduction of the
search space which is crucial for the purpose of automated deduction. When it comes

"The elimination rules are obviously analytic in that the conclusion of their application is always
a signed subformula of the major premise.
8See [117] for a proof d la Kalmar.
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FA

TA TB FB
TAVB TAVB FAVB

TA

FA FB TB
FAANB FAANDB TAANB

TA

FA TB FB

TA— B TA— B FA— B

TA FA

FoA T4

Table 3.4: Introduction rules for the standard CPL connectives

to propositional logics, this search space is finite for each putative inference, paving
the way for decision procedures. In the case of KFE, the subformula property assures
that a bound can be imposed on the applications of PB—which could potentially be
applied to arbitrary formulae—with no loss of deductive power.

3.2.2 KI

A direct-proof system for CPL can be obtained if instead of considering the analytic
elimination rules of KF, we consider the synthetic introduction rules displayed in
Tab. 3.4, Analogously to the analytic rules, the set of synthetic rules is not complete
for CPL. Again, completeness is obtained by adding an unique branching rule:
PB. The introduction rules together with PB constitute the system KI and yield
definitions of Kl-tree, as well as of closed and open branches and trees, which are
analogous to those in Def. In turn:

Definitions 3.2.6.

A Kl-tree T is a KI-proof of A from I' if T is a KI-tree for T I" such that T A occurs
in every open branch.

A is KIl-provable from I' if there is a KI-proof of A from T'.
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A version for unsigned formulae is obtained, as before, by changing all F’s into —,
and deleting all T’s. The soundness of the rules constituting K7 can be immediately
verified. Besides, KI is a complete proof system for CPL and remains complete if
the applications of the unique branching rule PB are restricted to atomic formulae
occurring either in the assumptions or in the conclusion. Moreover, the applications
of the introduction rules can be restricted, without loss of completeness, to subfor-
mulae of the assumptions or of the conclusion. For this completeness results and and
an overview of KT see [53]. Thus, KT also enjoys the subformula property.

3.2.3 KFE/KI: the intelim method

Combining KF and KI yields a system that is half-way between a classical version
of natural deduction—which mirrors the classical meaning of the conectives and not
their intuitionistic meaning as Gentzen’s original rules—and the method of semantic
tableaux [see 5], b8]. As we shall recall in the next section, that system constitutes
the proof-theoretical basis for applying the depth-bounded approach to CPL. How-
ever, the system is interesting in its own right and so we recall it independently and
before of such an application.

We shall refer to KI’s introduction rules together with KFE’s elimination rules
as intelim rules. This combination of rules is what makes that the system defined
on their basis resembles natural deduction and—as shown below—can be used as
a direct-proof method as well as a refutation method. Namely, the intelim rules
generate intelim sequences; i.e., finite sequences (1, ..., ) of S-formulae such that,
for every ¢ = 0, ..., n, either ; is an assumption or the conclusion of the application
of an intelim rule to preceding S-formulae. Of course, intelim rules are not complete
for CPL. Completeness is obtained by adding solely the branching rule common
to KE and KI: PB. By adding PB to the stock of rules, proofs and refutations are
represented by downward-growing trees—which brings the method somewhat closer
to tableaux.

Definitions 3.2.7.

o Let X = {¢1,...., om}. Then T is an intelim tree for X if there is a finite
sequence (71, 7z, ..., T,) such that 77 is a one-branch tree consisting of the se-
quence (©1,..., m), Tn = T, and for each i < n, T results from 7; by an
application of an intelim rule to preceding S-formulae in the same branch, or
by an application of PB.

e A branch of an intelim tree is closed if it contains both T A and F A for some
A; otherwise, it is open.
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Ani ntelim tree is closed if all its branches are closed; otherwise, it is open.

An intelim proof of ¢ from X is an intelim tree T for X such that ¢ occurs in
all open branches of 7.

A is intelim-provable from I' if there is an intelim-proof of T A from TT.

An intelim refutation of X is a closed intelim tree T for X.
o ['is intelim-refutable if there is an intelim refutation of TT'.

Observe that, according to the above definitions, every refutation of X is, simulta-
neously, a proof of ¢ from X, for every ¢.

Then, some features of the method of intelim trees are: (i) like in natural deduc-
tion, it has both introduction and elimination rules; (ii) intelim trees can be used
as a direct proof method as well as a refutation method; (iii) all the operational
rules are linear and there is only one branching rule corresponding to the Principle
of Bivalence. In turn, the soundness and completeness of the method of intelim trees
trivially follows from the soundness and completeness of its subsystems, KF and KI.
Moreover:

Definition 3.2.8. We say that an intelim proof T of ¢ from X (an intelim refutation
of X) has the subformula property (SFP) if, for every S-formula ¢ occurring in T,
YP* € sub(X" U {p"}) (" € sub(X™)).

Given the properties of its subsystems KF and KI, it is far from surprising that
the intelim method enjoys the SFP:

Proposition 3.2.9 ([565]). Every intelim proof of ¢ from X (intelim refutation of
X ) can be transformed into an intelim proof of ¢ from X (an intelim refutation of
X ) with the SFP.

As mentioned above, the SFP allows us to search for proofs or refutations by
taking into account solely inference steps involving formulae that are “contained”
in the assumptions—or also the conclusion in the case of proofs. Particularly, in
the method of intelim trees, the SFP ensures that we can impose a bound on the
applications of PB, which could potentially be applied to arbitrary formulae, without
loss of completeness. Similarly, a bound can be imposed on sensible applications of
introduction rules, which could potentially be applied ad infinitum producing ever
more complex formulae. [See 5559, 68]. Apart from the SFP, normalization of proofs
for the system of intelim trees is shown in [55], (58], and normalization of proofs of a
(“fully fledged”) natural deduction variant is shown in [63].
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3.3 Relative complexity issues

In this Section we first recall that KE, KI, and the intelim method can linearly sim-
ulate each other. Then we recall some results, given by D’Agostino and Mondadori,
comparing the efficiency of those systems with that of other proof systems for CPL.
Most of these results are recalled with respect to KFE, as they were originally stated.
However, it is implied that analogous results hold for KI and the intelim method
(given the linear simulation just mentioned). More importantly, we prove new lower
bounds on analytic tableaux which strengthen D’Agostino’s and Mondadori’s previ-
ous results, and settle a problem left open in the literature.

3.3.1 Some previous results

Let us begin by recalling few working concepts. The length of a proof x, denoted by
|z|, is the total number of symbols occurring in z (intended as a string). Now, the
A-complexity of x, A\(x), is the number of lines in the proof z; each “line” being a
formula, a sequent, or any other expression related to an inference step, depending
on the system under consideration. Besides, the p-complezity of x, p(x), is the length
(correspondingly, total number of symbols) of a line of maximal length occurring in
x. These complexity measures are connected by the relation |z| < A(z) - p(x). The
A-measure suffices to settle negative results about the p-simulation relation, but it
does not generally suffices for positive results. However, it may be adequate also for
positive results whenever the p(x)-measure is not to significantly increased by the
simulation procedure at issue. Since the results we recall below involve only proce-
dures of that kind, in what follows we shall neglect the p(x)-measure and identify
the complexity of a proof system with its A(z)-measure.
The following was proven by D’Agostino:

Theorem 3.3.1 ([53]). KE and KI can linearly simulate each other. Moreover, the
simulation preserves the subformula property.

Since the intelim method is constituted by KE and KI, and nothing else, the above
immediately implies:

Corollary 3.3.2. Both KE and KI can linearly simulate the intelim method and vice
versa. Moreover, the simulation preserves the subformula property.

As mentioned above, most of the results below are recalled in terms of KF, as they
were originally stated. However, the reader should bear in mind that analogous
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results hold for KT and the intelim method, according to Theorem [3.3.1]and Corollary
3.3.2

Now, the complexity of the truth-table method for a given formula A is often
measured by the number of rows in the complete truth-table for that formula; i.e.,
2% where k is the number of distinct atomic variables in A. However, a more ac-
curate measure of the complexity of truth-tables takes into account also the length
of the formula to be tested. More specifically, given a decidable logic L that can
be characterized by means of m-valued truth-tables, the complexity of the decision
procedure for L based on those tables is essentially O(k - n - m*); where n is the
length of the input formula and £ is the number of distinct variables in it. This is
an upper bound which stems immediately from a semantic characterization of L. In
the case of CPL, where m = 2, this upper bound is essentially O(k - n - 2¥). Since
the truth-table procedure can plausibly be regarded as the most basic semantical
and computational characterization of CPL, O(k - n - 2*) can also plausibly be taken
as a natural upper bound on the classical tautology problem. So, let us say that a
proof system for CPL is standard if its complexity is O(n¢-2¥), where n is the length
of the input formula, ¢ is a fixed constant, and k£ the number of distinct variables
occurring in the formula. Equivalently, we may say that a proof system is standard
if it p-simulates the truth-tables method.

As we shall see below, analytic tableaux, and their equivalent cut-free sequent
calculus in tree form, are not standard. By contrast:

Theorem 3.3.3 ([53|, 65]). The analytic restriction of KE is a standard proof sys-
tem. In fact, for every tautology A of length n and containing k distinct variables,

there is an analytic KE-refutation T of 0 U{F A} with \(T) = O(A\(T)) = O(n - 2%).

Where, of course, A\(T) denotes the number of nodes in a KE-tree T .
Now, KF is more efficient than analytic tableaux, even in the domain of analytic
deduction. Namely:

Theorem 3.3.4 ([53, [65]). The analytic restriction of KE p-simulates binary an-
alytic tableaux. In fact, if there is a binary analytic tableauz proof T of A from T,
then there is analytic KE-proof T' of A from T' such that A\(T") < 2X(T).

Theorem 3.3.5 ([53},65]). Clausal analytic tableauz cannot p-simulate the analytic
restriction of KFE.

As we shall recall in the next Subsection, the latter result was obtained by showing a
class of examples which are “hard” for clausal analytic tableaux but “easy” for KF.
In fact, the same class of examples is also easy for the truth-tables method and thus:
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Theorem 3.3.6 ([54]). Clausal analytic tableaux cannot p-simulate the truth-tables
method (i.e., clausal analytic tableauz are not standard).

In turn, another class of examples due to Cook and Reckhow [49]—also recalled in
the next Subsection—are hard for the truth-tables method but easy for KE. Thereby:

Theorem 3.3.7 ([53}, 65]). The truth-table method cannot p-simulate KEF]
Now, a couple of results comparing KF with refinements of analytic tableaux are:

Theorem 3.3.8 ([65]). The analytic restriction of KE linearly simulates binary
analytic tableaur with merging.

Theorem 3.3.9 ([65]). The analytic restriction of KE linearly simulates binary
analytic tableauzr with lemma generation.

In turn, given the close relation between analytic tableaux and Gentzen’s cut-free
sequent calculus, is far from surprising that:

Theorem 3.3.10 ([65]). KE can p-simulate the cut-free Gentzen sequent calculus,
but not vice versa.

Finally, KE can linearly simulate natural deduction (in tree form). Besides, the
simulation procedure preserves the subformula property:

Theorem 3.3.11 ([53], 65]). If there is a natural deduction proof T of A from T,
then there is a KE-proof T' of A from T such that X(T") < 3X(T) and T’ contains
only formulae A such that A occurs in T .

3.3.2 Three forms of analytic tableaux

Relative complexity results are often obtained by showing a class of examples that
are “hard” for one of the systems being compared but not for the other. As we shall
recall below, that is the case of Theorems [3.3.5 above. In Subsection [2.3.2]

9The analogous result for KI is straightforward in that KI can be viewed as a uniform im-
provement of the truth-table method. Namely, K1 remains complete when the applications PB are
restricted to atomic formulae. Thus, it is clear that, when testing a formula A for tautologyhood,
KI can be used as a straightforward simulation in tree form of the method of truth-tables. However,
if the atomic applications of PB are postponed until no further application of an introduction rule
(over the set of subformulae of A) is possible, it may well be the case that we stop expanding a
branch before PB has been applied to all the atomic formulae. This kind of procedure is equivalent
to a “lazy evaluation” of Boolean formulae via partial truth-assignments.
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we explained that the usual tool for comparing proof systems is the p-simulation
relation. Informally, we say that two proof systems are equally powerful (from the
complexity viewpoint) if they can p-simulate each other. Accordingly, we say that
a proof system S’ is more powerful than other proof system S whenever S’ can p-
simulate S but not vice versa; i.e., if we can map every S-proof of a formula A into
an S’-proof of A by means of a polynomial function (in the size of the S-proof) but
not vice versa[l9l Of course, if S’ can p-simulate S, then for every formula A, the
length of the shortest S’-proof of A must be bounded above by a polynomial function
of the length of the shortest S-proof of A. Thus, whenever there is an infinite class
H of formulae with S’-proofs of size O(f(n)), and it can be proven that the length
of their shortest S-proofs cannot be bounded above by any polynomial function of
f(n), then it follows that S cannot p-simulate S’. In other words, if for a class of
formulae H there is a superpolynomial lower bound (in the size of the formulae) on
every S-proof, whereas there are “short” polynomial S’-proofs, then we can conclude
that S’ is more powerful than S. In such a case, we say that the formulae in H
are “hard” for S but “easy” for S’. Therefore, that a system is more powerful than
another is often proven by exhibiting a class of formulae that are hard for the latter
but easy for the former.

In [49], Cook and Reckhow introduced a class of examples that they conjectured
to be hard for analytic tableaux, but later proven by Massacci [115], [116] to be easy for
them, provided binary and not clausal analytic tableaux are considered. More specif-
ically, Cook and Reckhow conjectured those examples to have only exponential size
analytic tableaux refutations, but Massacci showed them to have quasi-polynomial
size binary analytic tableaux refutations. Below we shall briefly recall the examples
as well as Massacci’s result, but let us first recall the difference between clausal and
binary analytic tableaux underlying such a result.

Clausal tableaux are a particular case of n-ary tableaux. In turn, the latter differ
from binary tableaux in their branching rules. In order to recall the rules of n-ary
tableaux, we first enrich the language to include expressions of the form A, V...V A,
and Ay A ...\ A, where Ay, ..., A, are all formulae. Then, the rules are displayed in
Table[3.5] Now, the rules of binary tableaux are the standard ones given by Smullyan
[138] (Table[3.2)above), which we conveniently consider in its unsigned version at this
point. We recall the branching binary rules in Table [3.6] formulated in a way that
makes their difference with the n-ary rules crystal clear. On the basis of the rules in
Tabs. [3.5] and [3.6], the respective notions of n-ary or binary analytic tableau, closed
and open branch and tableau, refutation, and proof can be defined in the standard

10Tn some cases below, we discuss these notions and results thereof in terms of refutations instead
of proofs.
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A V.. VA, —(A1V...VA,) ——A
A || Ay - A A
-A,
(AN ANAY) AN NA,
—A || DA, Ay
Ay

Table 3.5: n-ary tableaux rules

AV ..V A, (AL A A A

A1|A1 V..V Ai—l vV Ai-i—l V..V An _|A7;|_\A1 V..V _‘Ai—l V _'Ai-i-l V..V _'An

Table 3.6: Branching binary tableaux rules

way le.g., [138].

Now, clausal tableaux are simply n-ary tableaux where all formulae are clauses
(disjunctions of literals). The key observation is that, when the input formulae are
all clauses, each application of the V-elimination rule of n-ary (specifically, clausal)
tableaux requires the clause to be decomposed into its component literals in a single
step; whereas, the V-elimination of binary tableaux requires the clause to be decom-
posed into its immediate subformulae. So, when the set of input formulae is only
made of clauses, all nodes of an n-ary tableau—except for the initial ones storing
the input set of clauses—are labelled by literals; whereas, the nodes of a binary
tableau may also be clauses. Thereby, the difference between clausal and binary
analytic tableaux boils down to the way in which clauses are represented, and to the
exact form of the decomposition rules that are used. In clausal tableaux, clauses are
represented as finite sets of literals and the corresponding rule requires a clause to
be decomposed into its component literals in one step. In binary tableaux, clauses
are represented as disjunctions built up from literals using a binary disjunction con-
nective, and the tableau rule is such that a formula A V B is decomposed into its
immediate subformulae A and B.

Let us now recall the class of examples introduced by Cook and Reckhow, as
well as Masacci’s result. This class consists of sets of clauses H,, associated with
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labelled binary trees of depth n as follows: consider a binary tree T where each node,
except the root, is labelled with a distinct literal, and sibling nodes are labelled with
complementary literals. Then, it is stipulated that, for each pair of sibling nodes,
the left-side node is labelled with a positive literal and the right-side one is labelled
with the corresponding negative literal. Now, each branch b is associated with the
clause containing exactly the literals in b. Thereby, the whole tree 7 is in turn
associated with the set H(7) of the clauses associated with 7’s branches. Finally,
let H, = H(T,) denote the set of clauses associated with the complete binary tree
of depth n. The tree with one node, Tj, is associated to the empty clause. We can
represented H,, as follows [53] [65], [TT15] [116]:

H,=U{£A'vV+ATl Vv +A4} Vv..VAL .},

where +A means A and —A means —A, and the subscript of A is a string of i — 1
‘+’s or ‘—’s corresponding to the sequence of signs of the preceding A7, j < i. Thus,
H,, contains 2" clauses and 2" — 1 distinct atomic formulae. For example:

H1 = {A, _|A},
Hy={A'Vv A% Al v A2 AtV A2 - AV —A% )

Each set H,, is, of course, unsatisfiable. Cook and Reckhow conjectured a lower
bound on the number of nodes of a closed tableau for the conjunction of all disjunc-
tions in H, which is exponential in the size of H,. Namely, they conjectured that
any closed tableau for such a conjunction has at least 22™ nodes, where ¢ > 0 is
some constant independent of n. Nevertheless, Massacci exhibited quasi-polynomial
size binary tableaux refutations for H,,, and pointed out that the lower bound con-
jectured by Cook and Reckhow holds only for clausal tableaux. A consequence of
Massacci’s result is that binary tableaux can present an exponential speed-up over
clausal ones; equivalently, the former can p-simulate the latter but not vice versa.
Specifically, Massacci’s showed that:

Theorem 3.3.12 ([115, 116]). The proof complexity of binary analytic tableaux for
H, is bounded from above by O(2"").

In turn, the following Theorem was proven by Cook and Urquhart, which, given
Massacci’s result above, implies a restricted version of Cook and Reckhow conjectured

lower bound{H]

U The first published proof of an exponential lower bound for clausal tableaux was given by
Murray and Rosenthal [I122]. Furthermore, an improved version of the proof published in [I49] is
given in [9].
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Theorem 3.3.13 ([149]). The proof complezity of clausal analytic tableauz for H,
is bounded from below by 29"

Moreover, Massacci observed that clausal tableaux can be simulated by binary
tableaux, and the resulting simulations are only twice as big as the original clausal
tableau proofs. So, combining this observation with the last couple of Theorems, it
follows that:

Theorem 3.3.14 ([115], 116]). Binary tableauz can p-simulate clausal tableaur but
not vice versa.

Now, D’Agostino and Mondadori [53, [65] pointed out that Cook and Reckhow
examples H,, are in fact hard for the truth-tables method since they involve 2™ — 1
distinct atomic formulae. D’Agostino and Mondadori also showed that, by contrast,
there are easy analytic KF-refutations of H,, which contain 2n+2"n — 2 nodes. They
describe the form of those KFE-refutations as follows:

[...] start with H,,. This will be a set containing m(= 2") disjunctions of
which m/2 start with A! and the remaining m/2 with its negation. Then
apply PB to —A!'. This creates a branching with —A! in one branch
and ——A! in the other. Now, on the first branch, by means of m/2
applications of the rule EV1 we obtain a set of formulae which is of the
same form as H,_;. Similarly on the second branch we obtain another
set of the same form as H,_;. By reiterating the same procedure we
eventually produce a closed tree for the original set H,, [65, pp. 307-308].

This shows that the truth-table method cannot p-simulate (the analytic restric-
tion of) KE in “non-trivial” cases (Theorem [3.3.7 above); i.e., cases where the ex-
ponential blow up in the truth-table method depends on the logical form of the
expressions and not only on the large number of variables. Remarkably, as pointed
out by D’Agostino and Mondadori [65], p. 308], this class of examples illustrates an
interesting phenomenon: while the complexity of the corresponding KFE-refutations
is not affected by the order in which the elimination rules are applied, in certain
cases it may be highly sensitive to the choice of formulae to which we apply PB;
let us refer to the latter as PB-formulae. “Wrong” choices can increase the size of
the refutations up to an exponential factor, when “short” refutations are available if
different choices are made. In the examples H,, if PB is always applied to the last
atomic variable in each clause, it is not difficult to see that the size of the refutation
trees becomes exponential. So, D’Agostino and Mondadori suggested an heuristic
principle to avoid this phenomenon (at least for the case where the input formulae
are in clausal form):
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Let ¢ be a branch to which none of the linear KF-rules is applicable. Let
S, be the set of clauses occurring in the branch ¢, and let p;, ..., py be the
list of all the atomic formulae occurring in Sg. Let N, be the number of
clauses C such that p; or =p; occurs in C'. Then apply PB to an atom p;
such that N, is maximal [65], p. 308].

When this principle is followed, “right” choices for the application of PB are
guaranteed. Naturally, as far as proof-search in KF is concerned, more sophisticated
criteria are needed to guide the choice of the PB-formulae. However, regardless how
such a choice is made, (the analytic restriction of) KE can never perform signifi-
cantly worse than the tableau method. The latter given that the simulation of the
binary tableau rules via KE-rules given in [53, [65] is independent of the choice of
PB-formulae. Nonetheless, good choices can sometimes be determinant for obtaining
essentially shorter proofs than those obtained by the tableau method. Still, there
are cases where how PB-formulae are chosen is unimportant. One of these cases
is provided by the well-known class of “truly fat” expressions, used in [54] to show
that clausal tableaux cannot p-simulate truth-tables (Theorem above), and in
[53, 65] to show that clausal tableaux cannot p-simulate the analytic restriction of
KFE (Theorem above). Let us denote this class by H EE So, the examples in Hj,
are easy for (the analytic restriction of) KE as well as for the truth-table method,
but hard for clausal tableaux. In [53, b4, [65], Hf was defined and used as follows:
Let py,...,pr be a sequence of k atomic variables. Then consider all the possible
clauses containing as members, for each ¢+ = 1,2, ..., k, either p; or —=p; and no other
member. There are 2% of such clauses. Now, let Hf denote the set containing these
2% clauses. Thus, the expression A\ Hf is unsatisfiable. For example, A HS is the
following expression in conjunctive normal form:

(1 Vp2) A(prV —p2) A (=p1 Vp2) A (=p1 V —p2).

So, this class of formulae owes its rather fancy name to the fact that the length
of a “truly fat” expression is large compared to the number of distinct variables in
it. Now, the key observation to compare the efficiency of clausal tableaux and truth-
tables by means of such a class is that while the complexity of the tableaux refutations
depends essentially on the length of the formula to be tested, the complexity of truth-
tables depends only on the number of distinct propositional variables that occur in

12The superindex ‘c’ stands for “classical” since in the next Subsection we shall introduce a
related class of examples which concerns both classical and non-classical proof systems.
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it. In fact, the complexity of the truth-tables method is not always exponential in
the length of the formula, but it is so only when the number of distinct variables
approaches the length of the formula. In particular, observe that for the class Hy,
truth-tables contain as many rows as clauses in the expressions, i.e., 2¥. Thereby,
this class is not hard for the truth-tables. By contrast, a superpolynomial lower
bound for clausal tableau refutations of this class was proven by D’Agostino:

Theorem 3.3.15 ([54]). Every closed clausal tableau for the set Hi contains more
than k! distinct branches.

Given that k! grows faster than any polynomial function of 2%, and there are 2% rows
in the truth-tables test of Hj, this implies that clausal tableaux cannot p-simulate
the truth-tables method (Theorem above).

Such a combinatorial explosion of clausal tableaux is not just an oddity due to a
careful choice of artificial examples but the result of a fundamental inadequacy: the
elimination of bivalence from the tableau method! The latter has the undesired con-
sequence that the possible cases enumerated in the tableaux test are not mutually
exclusive. When applying the tableaux branching rules for expressions in clausal
form, it is crystal clear that the branches do not stand for mutually inconsistent
alternatives. Consequently, when expanding the tree, we may (and very often do)
end up considering more cases than necessary. In contrast, bivalence is clearly incor-
porated in the truth-tables method where all the possible assignments are mutually
exclusive.

As recalled in Section given that KF properly expresses the Principle of Bi-
valence via PB, distinct branches of a KFE-tree define mutually exclusive alternatives;
i.e., contain mutually inconsistent sets of formulae. Consequently, the expressions in
H{ are easy also for (the analytic restriction of) KE. In fact, as shown in [53], [65],
the number of branches in a KE-tree for Hf is exactly 2¥7!, that is the number of
clauses in the expression divided by 2, and the refutation trees have size O(k - 2F).
This, together with the combinatorial explosion of clausal tableaux stated by Theo-
rem , implies that analytic tableaux cannot p-simulate (the analytic restriction
of) KE (Theorem above).

Now, Massacci’s result that binary tableaux dominate clausal ones in terms of the
p-simulation relation opened the question whether or not the factorial lower bound
for clausal tableaux with respect to the class Hj given by D’Agostino extends to
binary tableaux. Hence, it also opened the question whether or not Theorems [3.3.6]
and also hold for binary tableaux. In the next Subsection we shall show that
such a lower bound is indeed robust and extends not only to binary tableaux, but
to the strongest (in terms of the p-simulation relation) possible version of analytic
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tableaux in the domain of clauses as unique input formulae. These strongest possible
clausal tableaux were introduced by Arai, Pitassi and Urquhart [9], who called them
unrestricted clausal tableaux. We shall show below that, in fact, unrestricted clausal
tableaux cannot even p-simulate the truth-tables method.

Arai et al. [9] pointed out that Massacci’s result recalled above strongly depends
on the way in which clauses are parenthesized. Namely, the result depends on the
assumption that ‘v’ associates to the right. With that order of bracketing quasi-
polynomial size binary tableaux refutations of H, can be obtained, as shown by
Massacci. However, Arai et al. proved that on the assumption that ‘v’ associates
to the left, exponential size binary tableaux refutations are required, much as in the
case of (simple) clausal tableaux. This exponential separation in terms of bracketing
led Arai et al. to introduce a generalized version of clausal tableaux in which such
a separation does not hold, and called them wunrestricted clausal tableaux. The
difference between these generalized clausal tableaux with binary and clausal ones
again boils down to the way in which clauses are represented, and to the exact
form of the decomposition rules that are used. In the case of unrestricted clausal
tableaux, clauses are again taken as finite sets of literals but instead of insisting
on decomposing a clause in one step, arbitrary partitions of clauses are allowed.
Formally, an unrestricted clausal tableau for a finite set I' of clauses is a tree whose
root is labelled with I' and whose nodes of depth > 0 are labelled with clauses.
The latter are generated, starting from the clauses in I', by means of the following
liberalized decomposition rule:

C
Ci|...|Ch

where C1, ..., C, is any partition of C'. Applying the decomposition rule at a node
d with premise C' means that C' labels either d or a node occurring above d in the
same branch, and that the children of d are labelled with the clauses C4,...,C), in
accordance with the rule. In this context we say that C'is associated with d, although
d itself may be labelled with another formula. Again, the notions of closed branch
and tableau, and refutation are defined in the standard way.

Clearly, the liberalized decomposition rule of unrestricted clausal tableaux is more
powerful and flexible than either the clausal or the binary rule. In fact, Arai et
al. [9] showed that unrestricted clausal tableaux p-simulate both binary and clausal
tableaux but the p-simulation does not hold in the reverse direction for either system,
so that unrestricted tableaux are the most powerful variant of clausal tableaux as far
as the length of proofs is concerned. Besides, they proved a super-polynomial lower
bound for unrestricted clausal tableaux on Cook and Reckhow’s class of examples
H,, which, as we mentioned above, are hard also for the truth-tables method (but
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N

Tp1 Fp1
/N /N
Tpo Fp2 Tpo Fp2
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Tps Fps Tps Fps Tpsz Fps Tps Fps

Figure 3.1: 73: each branch corresponds to a total assignment to py, ..., pk.

easy for KF). In the next Subsection we shall show a super-polynomial lower bound
for unrestricted clausal tableaux on the class of examples Hj which, again, are easy
for the truth-tables and KFE. Thus, we shall show that even the strongest possible
version of clausal tableaux cannot p-simulate the truth-tables method and, thus, that
it is quite departed from the standard semantics of classical logic.

3.3.3 New lower bounds on analytic tableaux

Let pi1, p2, p3, ... be any enumeration of the atomic variables of a standard proposi-
tional language. For each given k € N, let T, be the tree of signed atomic formulae
that represents all possible assignments to the first k£ atomic variables. For example,
T3 is the tree in Figure 3.1l Consider now the first 2k — 1 atomic variables and let
T,; be the tree obtained from 75,1 by truncating each branch as soon as it contains
either k atomic variables signed with T or k atomic variables signed with F. For
example, 73" is the tree in Figure 3.2} Note that, since 2k — 1 is odd, each branch
contains k atomic variables signed with T or, otherwise, k£ atomic variables signed
with F. 7 contains O(c¥) branches (with ¢ = 4).
For each branch b of T, let the signed formula ¢, be defined as follows:

{F A{p:i | Tp; occurs in b} if b contains k atomic formulae signed with T
Yy =

T V{pi | Fp; occurs in b} otherwise
Now, let Hy = {¢p | bis in T, }. For example:

Hy ={Fpi Aps,Fpi Aps TpaVps, Fpa Aps, Tpi Vs, Tpr Vsl

The number of formulae in Hy, is equal to the number of branches in 7" and therefore
is O(cF). Moreover each formula contains k atomic variables.
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Tp Fp1
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Figure 3.2: 75" each branch corresponds to a partial assignment to py, ..., pog—1.

Consider the “quasi-clausal” tableau method based on the following n-ary expan-
sion rules (for every n € N):

Tpi [ To, Fpr |- [Fry '

n n

Where pi° is either the literal p; or the literal —p;. (Note that the signed formulae in
Hj, do not contain negative literals.)

Theorem 3.3.16. Any closed quasi-clausal tableau for Hj contains more than k!
branches.

Proof. Let h(d) be the number of nodes resulting from applications of the expansion
rules that occur in the path to the node d (i.e., not counting the nodes labelled with
the initial signed formulae). Let g(d) be the number of children of d that do not
generate immediately closed paths. Then, if d’s children result from the expansion
of a T-formula (an F-formula), g(d) = k — m, where m is the number of atomic
F-formulae (T -formulae) occurring in the path to d. Hence:

g(d) > k — h(d)

Thus, any closed quasi-clausal tableau contains more than [J*=) k —i = k! branches.

]
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Since k! cannot be bounded above by any polynomial in ¢, this implies that the set
of all Hy, is intractable for tableaux.

In turn, showing the inconsistency of Hj by means of the complete truth-tables
would require checking the 22*=! branches of 7,* and so the set of all Hj, for k € N
is tractable for the truth-tables. Thus, this is yet another class of examples showing
the mismatch between classical tableaux (or corresponding cut-free Gentzen systems)
and the standard semantics of CPL. The main interest of this specific class of ex-
amples is that it involves only the logical operators A and V. Hence, these examples
are hard for any non-classical tableau method that adopts the A and V rules in (3.1)).

As we recalled above, in [IT5] [116], Massacci showed that in the context of classical
logic, clausal tableaux, in which every clause is decomposed in one go as in our quasi-
clausal tableaux, cannot p-simulate standard binary tableaux. This result appears to
put in question the significance of Theorem [3.3.16] However, we shall show that the
lower bound is robust and applies to binary tableaux as well as to quasi-clausal ones,
independently of how the atomic variables are associated to form binary disjunctions
and conjunctions and of the order in which they occur.

Let us say that a tableau 7 is non-redundant if (i) no branch of 7 contains two
or more nodes labelled with the same clause and (ii) for every node d, its labelling
formula is used at least once as premise of a rule application in the subtree generated
by d. It is straightforward to verify that:

Lemma 3.3.17. Fvery closed tableau T for a set I' of formulae can be transformed
into a closed non-redundant tableaw T for I such that |T'| < |T]|.

Therefore we can assume without loss of generality that tableaux are non-redundant.
Theorem 3.3.18. Any closed binary tableau for Hy, contains more than k! branches.

Proof. Let T be a closed binary tableau for Hy. In the context of this proof it is
convenient to view a tableau for H;, as a tree whose root is labelled with H; and whose
nodes of depth > 0 are labelled with signed formulae generated, starting from those
in Hy, by means of the usual (binary) tableau rules for signed formulae. Applying a
tableau rule at a node d with premise ¢ means that a S-formula p—using Smullyan’s
notation—Ilabels either d or a node occurring above d in the same branch, and that
the children of d are labelled with its components §; and f;. (Note that only (-
formulae can occur in a tableau for H.) In this context we say that the premise ¢
of the rule application is associated with d, although ¢ may be the labelling signed
formula of another node occurring above d. For each node d of a tableau, we denote
by ¢(d) the labelling formula of d.
We now define a sequence 7,,, ..., 7, based on T.
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o Base: 7,,. Let ¢ € Hy be the signed formula associated with the root of T, i.e.,
the two nodes of depth 1 result from applying a tableau rule to ¢. Given an
arbitrary atomic variable o, occurring in ¢. Let d,, be the node that contains
such occurrence of o;. Assign this atomic variable as distinguished atom to this
node and to every node in T resulting from applying the relevant tableau rule
to a node whose distinguished atom is 1. 7,, is the subtree generated by d,
with oy assigned to all nodes that descend from d,, as explained above.

o Step: Ts,,,. Given 75, (i < k), let d be the highest node with an assigned
distinguished atom such that neither of its children is assigned a distinguished
atom. This means that the children of d result from applying the relevant
tableau rule to a new signed formula ¢ in Hy. Let 0;,1 be an arbitrary atomic
variable occurring in ¢ and distinct from all oy, ..., 0; (for i < k such an atomic
variable always exists), and d,,,, the child of d that contains such occurrence
of o;41. Assign ;1 as distinguished atom to this node and to every node
in 7,, that results from applying the relevant tableau rule to a node whose
distinguished atom is 0y41. 7,,,, is the subtree generated by d,, with the new

distinguished atom oy, assigned to all the nodes that descend from d,,, .

Assuming that 7 is non-redundant, there is at least a branch of 7, that closes on
0;, i.e., the closure rule is applied to nodes labelled with S o; and its conjugate, S o;
descends from d,,. Let us call such a branch a o;-branch. Consider 7,, and observe
that different choices of o; lead to distinct o;-branches. In general, the o;-branches
are all distinct from all the o)-branches whenever o; # o;. Let o denote a sequence
of choices for o; (i < k). Hence, the difference between the set

B, = {o;-branches | 0; € 0,1 < k}

and the analogous set of a distinct sequence o’ of choices is always non-empty. Since
each signed formula in Hj contains k atomic variables there are at least k! different
choice sequences and, therefore, at least k! distinct sets B,. It follows that there are
at least k! branches in 7. O

The main interest of the class of examples Hj, is that it involves only the logical
operators A and V, with no restriction on the way in which S-formulae are formed,
provided they contain the same set of atomic variables. Hence, these examples are
hard for all non-classical tableau methods that share the A and V rules with classical
tableaux. These include known tableau methods for a variety of logics, for instance,
tableaux for FDE [e.g., 63, B1], LP and K3 [e.g.,[82, 127, [15], and IPL [e.g., 79, [80].
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Note that the proof makes no reference either to the way in which the atomic variables
are associated, or to the order in which they occur in disjunctions and conjunctions.

On the other hand, it can be verified that these examples are easy for KE (and
so for the intelim method). To see this, just observe that the very tree 7, used
to define the class Hp can be easily expanded into a closed KFE-tree for Hj that
contains the same number of branches as 7, and so these examples have polynomial
size KFE-refutations. Hence, this latter fact together with Theorem [3.3.18|imply that
KE-style systems can p-simulate the tableau methods which share the A and V rules
with classical (Smullyan-style) tableaux but the p-simulation does not hold in the
reverse direction.

Now, the same approach can be used to prove new lower bounds for classically
refutable sets of clauses using unrestricted clausal tableaux [9]. Recall that a literal
is either an atomic variable or the negation of an atomic variable and that (in all
logics with a classical disjunction) a clause can be taken as a finite set of literals. To
help readibility, In what follows we shall represent negative literals as p with p an
atomic variable. Moreover, we shall represent a clause by simply listing its literals
with no separators, e.g., p1Dyps will represent the clause {p1, Dy, ps}-

Let us go back to the tree 7 defined at the beginning of this Subsection (see
Figure [3.1| for 73). For each branch b of Ty let

Cy = {pi | Tp; occurs in b} U {p; | Fp; occurs in b}
and

H; ={C, | bis a branch of T}.

Now, within this context, clausal tableaux are tableaux that use the following

decomposition rule:
LyV ..V L,
Lol ] L

where each L; is a literal. So, clauses are decomposed in one go. Recall that un-
restricted clausal tableaux [9], on the other hand, are governed by the following
liberalized decomposition rule:

(3.2)

C
Cy|...|Ch

where C1, ..., C, is any partition of C'. Recall also that: (i) a factorial lower bound for
clausal tableau refutations of Hy was proven by D’Agostino in [54]; (ii) in [115] 1T6],
Massacci showed that clausal tableaux cannot p-simulate binary tableaux; (iii) in
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[9] Arai et al. showed that unrestricted clausal tableaux can p-simulate both binary
and clausal tableaux but the p-simulation does not hold in the reverse direction for
either system. It turns out that the factorial lower bound in [54] holds also for
unrestricted tableaux on the same class Hj of examples, so settling a problem left
open in [115] 116} 9.

Theorem 3.3.19. Any unrestricted clausal tableau refutation of Hy, contains at least
k! distinct branches.

We omit the proof that can be adapted from the proof of Theorem [3.3.18 In
turn, since Hj is easy for the truth-tables:

Corollary 3.3.20. Unrestricted clausal tableauzr cannot p-simulate the truth-tables.

The above Corollary is further evidence for the claim, put forward by D’Agostino
and Mondadori in [53, [65], that analytic tableaux and cut-free Genzen systems,
despite their widely acknowledged merits, exhibit startling anomalies both from the
computational and the semantic viewpoints, in that they cannot p-simulate the most
straightforward algorithm based on the standard semantics of CPL.

3.4 Tractable depth-bounded deduction

In KE, KI, and the intelim method, the operational rules are all linear and the only
branching rule is the structural rule PB. Thus, it is quite natural to investigate
the subsystems that result from bounding the applications of that single structural
rule. A suggestion in this direction for KFE appears already in [65]. However, KE
with limited bivalence was more thoroughly investigated only until [e.g., [75] [76].
The same idea applied to the intelim method started to be investigated in [55],
and led to what here we have called the “depth-bounded approach” to CPL le.g.,
611, 59, 56l 57, B8, 63].

In the intelim method, either the introduction or the elimination rules may be
regarded as redundant. This in the sense that both KE and KI are complete for
CPL—and, besides, they can linearly simulate each other. Nevertheless, there are
two reasons for using both introduction and elimination rules: (a) it allows for more
natural and shorter proofs, although not essentially shorter because the correspond-
ing simulation is polynomial; (b) it reduces the number of applications of PB that,
as we shall explain below, is key to define the notion of depth in the depth-bounded
approach to CPL. Accordingly, the latter was originally investigated as having the
intelim method as proof-theoretical basis, but it can be straightforwardly adapted to
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be based on KFE or KI alone. Below we first recall the approach to CPL as it was
originally investigated, and then we briefly discuss how a KFE-basis for it looks like.

3.4.1 Depth-bounded intelim deduction

As mentioned at the beginning of this Chapter, a key idea underlying the depth-
bounded approach to CPL is that the informational meaning of a logical operator
is specified solely in terms of the information that is held (actually possessed) by
the agent under consideration. Again, that an agent holds information means that
this is information practically accessible to her and with which she can operate. As
we shall recall in this section, the intelim method can be used as a natural basis
for applying the depth-bounded approach to CPL because: (i) the intelim rules can
be interpreted in a way in which they fix the meaning of the classical connectives
only in terms of the information which the agent holds; (ii) accordingly, the logic
characterized by the intelim rules—the basic (0-depth) logic of approximations to
CPL—is tractable; (iii) the nested applications of PB provide a sensible measure of
inferential depth, which naturally leads to defining an infinite hierarchy of tractable
depth-bounded approximations to CPL; (iv) such approximations can be naturally
related to the inferential power of the agent and admit of an intuitive, albeit non-
deterministic, 3-valued semantics that was first put forward by W.V.0O. Quine [129]
and whose values have a natural informational interpretation.

Given that a key idea underlying the approach is that the meaning of the logi-
cal operators is fixed exclusively in terms of the information that agents hold, the
approach crucially depends on the understanding of the notion of “holding informa-
tion”. Thus, within the context of CPL, some basic remarks regarding such a notion
are [see [57]: first, such a notion is understood in a “weak” ordinary sense, according
to which it may well be that the agent holds the information that A is true even if
A is in fact false, or vice versa. So, in turn, it is not assumed a “strong” notion of
information complying with, e.g., Floridi’s “veridicality thesis”, according to which
information must be truthful [84]. Second, the notion of “holding the information
that a sentence is true” is treated symmetrically to the notion of “holding the infor-
mation that a sentence is false”; however, the two notions are not complementary,
even when the underlying notions of truth and falsity are. Namely, not holding the
information that A is true is clearly not equivalent to holding the information that
A is false, even if we identify falsity with the lack of truth. Accordingly, it may well
be that for a given A, the agent neither holds the information that A is true nor the
information that A is false. On the other hand, when applying the depth-bounded
approach to CPL, it is assumed that no agent can hold both the information that A
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is true and the information that A is false, as that is taken to amount to holding no
definite information about A[' Third, that an agent holds information means that
this is information practically accessible to her and with which she can operate. This
can be made more precise by requiring that the notion at issue satisfies the following
condition:

Strong Manifestability. If an agent a grasps the informational meaning
of a sentence A, then a should be able to tell, in practice and not only in
principle, whether or not (s)he actually possesses the information that A
is true, or the information that A is false or neither of them [57, p. 412].

As recalled below, “in practice” in the condition above is to be interpreted in
the sense that the agent has a feasible procedure to decide whether or not she holds
the information that A is true or false, on the sole basis of the information that she
explicitly holds and of the meaning of the logical operators occurring in A.

We mentioned above that the rules of the intelim method make the latter to
resemble natural deduction—with no discharge rules. As it is customary in natural
deduction, those rules can be seen as definitions of the classical connectives if the
meaning of the latter is identified with the role they play in basic inferences—yielding
a proof-theoretic semantics. Indeed, those rules satisfy a form of the inversion princi-
ple [55,59], which plays a crucial role in the admissibility of a set of natural deduction
rules as definitions of the connectives. Such a principle essentially says that no infor-
mation can be obtained from applying an elimination rule to a sentence A that would
not have already been available if A had been obtained by means of an introduction
rule. In that sense, the introduction rules can be taken as sufficient for fixing the
meaning of the connectives, while the elimination rules can be taken ultimately as
“justified” in terms of the former. Further, observe that the intelim rules for disjunc-
tion and conjunction are dual of each other, and that a sentence and its negation are
treated in a symmetric way.

Now, we can re-interpret the S-formulae in the intelim rules in informational
terms as follows: the intended meaning of T A is “A is informationally true” or “the
agent holds the information that A is true”; whereas the intended meaning of F A
is “A is informationally false” or “the agent holds the information that A is false”["]

13 As recalled below, this assumption does not rule out the possibility of “hidden” inconsistencies
in an agent’s information state, but only of inconsistencies which can be feasibly detected by the
agent. Moreover, we shall drop such an assumption when we apply the depth-bounded approach
to paraconsistent logics in Ch. 6 below.

14 As pointed out in [58], in this context, ‘T’ and ‘F’ serve as propositional attitudes and so, in a
multi-agent setting, could be indexed by symbols ‘x,y, z, ...” denoting different agents. Thus, T ., A
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Thus, we re-interpret the intelim rules as follows: for all sentences A and B, any
agent holding the information about A and B above the line, thereby holds also
the information about A and B below the line. Alternatively—in terms of Quine’s
dispositional theory of the “primitive” meaning of the connectives mentioned in the
previous chapter—we might use the signs T and F to respectively mean assent and
dissent, based on the information the agent holds. In turn, we shall keep using
v,1, 0, ..., as variables ranging over S-formulae, and X, Y, Z, ..., as variables ranging
over sets of S-formulae. Also, recall that the unsigned part of an S-formula is the
unsigned formula that results from it by removing the sign T or F. Given an S-
formula ¢, we denote by ¢* the unsigned part of ¢ and by X* the set {¢"|p € X}.
Finally, we say that the conjugate of T A is F A and vice versa.

The basic (0-depth) logic of the hierarchy of depth-bounded approximations to
CPL is characterized by means of the intelim rules. In turn, such a basic logic is
identified with the logic that characterizes exactly all the classical logical inferences
that can be drawn by using only actual information—via the meaning of the connec-
tives. The intelim rules generate intelim sequences; i.e., finite sequences (g1, ..., pn)
of formulae such that, for every i = 0,...,n, either ¢; is an assumption or it is the
conclusion of the application of an intelim rule to preceding S-formulae. Again, the
intelim rules are not complete for CPL but—as we shall recall below— they are
only so for the basic (0-depth) logic. Completeness for full CPL is obtained by
adding the unique branching rule PB, which allows us to append both T A and F A
as sibling nodes at the end of any intelim sequence, generating two new (mutually
exclusive) branches. Thus, by adding PB to the stock of rules, proofs and refutations
are represented by downward-growing trees—bringing the method somewhat closer
to tableaux.

The intuitive informational meaning of PB is that one of the two cases must obtain
even if the agent has no actual information about which is the case. In this sense, we
call the information expressed by each conjugate S-formula virtual information; i.e.,
hypothetical information that an agent does not hold, but she temporarily assumes
as if she held it. So, each application of PB stands for the introduction of virtual
information about the truth or falsity of a formula A. We call the S-formulae T A
and F A introduced by an application of PB virtual assumptions. Besides, as recalled
above, PB is essentially a cut rule which is not eliminable, but its application can
be restricted so as to satisfy the subformula property. Furthermore, from the infor-

and F ;A would respectively mean “agent z holds the information that A is true (false)”. Even
though in this thesis we will be dealing with different sources informing an agent, we will not deal
with multi-agent settings of the depth-bounded approach. However, a multi-agent setting for the
approach started to be explored in [46].
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mational viewpoint of the depth-bounded approach, the main conceptual advantage
of this proof-theoretical characterization of CPL consists in that it clearly separates
the rules that fix the meaning of the connectives in terms of the information that
the agent holds (the intelim rules) from the single structural rule that introduces
virtual information (the PB rule).E] Intuitively, the more virtual information needs
to be invoked via PB, the harder the inference is for the agent, both from the com-
putational and the cognitive viewpoint. In this sense, the nested applications of PB
provide a sensible measure of inferential depth. This naturally leads to defining an
infinite hierarchy of tractable depth-bounded approximations to CPL in terms of
the maximum number of nested applications of PB that are allowed.

Thus, the 0-depth logic is simply the logic of the inferences that can be drawn
by using only actual information, and whose validity can be determined on the sole
basis of the informational meaning of the connectives. The latter is reminiscent
of Quine’s dispositional theory in that those inferences are justified only by virtue
of the way in which the language is immediately used in inference, without any
reference to metaphysical assumptions about the “world”. By contrast, the k-depth
logics, k > 0, are the logics of the classical inferences whose validity requires the
introduction of virtual information about the truth or falsity of formulae. That is, the
latter inferences require to make reference to the information-transcendent notions of
truth and falsity. These notions, in turn, are assumed to obey the classical Principle
of Bivalence: an “external reality” makes any sentence determinately either true
or false regardless of the agent’s holding any information about it. That Principle
is thus regarded as a metaphysical assumption which plays an indirect inferential
role in justifying inferences, and cannot be justified by means of the meaning of
the connectives. Thus, the Principle is not really a logical rule but a structural
assumption concerning the relationship between language and “world”.

Moreover, Bivalence is not the only metaphysical-structural assumption governing
the notions of classical truth and falsity. Another such an assumption is expressed
by the Principle of Non-contradiction: the “world” is such that no sentence can be
simultaneously true and false. In CPL, the negation of A means that A is false
and the falsity of any sentence, as its truth, is a relation between the sentence itself
and the postulated “external reality”. Therefore, in CPL Non-contradiction is, like
Bivalence, a structural assumption about the relationship between language and

15Cf.  Gentzen-style proof systems, where the “discharge rules” of natural deduction, as well
as their counterparts in the sequent calculus, make essential use of virtual information. Given
that in Gentzen-style systems cut is eliminable, no hierarchy of approximations can be defined by
controlling the application of the cut rule.
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“world”["®] Non-contradiction is regarded as an structural assumption in the intelim
method and expressed by the closure of a branch [see [55]. Thereby, according to the
depth-bounded approach, the semantics of CPL is not completely characterized by
the meaning of the connectives as it can be defined via an inferential approach. In
order for that semantics to be fully characterized the reference to the metaphysical,
information-transcendent, notions of truth and falsity is required.

Based on the definitions of Subsection [3.2.3] let us now recall the main definitions
and results expressing these intuitions.

Definitions 3.4.1. The depth of an intelim tree 7 is the maximum number of virtual
assumptions occurring in a branch of 7. An intelim tree T is a k-depth intelim proof
of ¢ from X (a k-depth refutation of X) if T is an intelim proof of ¢ from X (a
intelim refutation of X) and 7 is of depth k.

Note that a O-depth intelim tree is nothing but an intelim sequence. Thereby:

Definitions 3.4.2. For all ¢, X, ¢ is 0-depth deducible from X, denoted by X ¢ ¢,
if there is a 0-depth proof of ¢ from X. In turn, X is 0-depth refutable, denoted by
X Fy, if there is a 0-depth refutation of X.

Remark 4. We write X Fq to mean that X Fy ¢ for all . Below we use similar
notations with analogous intended meanings. Besides, as we shall discuss in the next
section, a stronger O-depth deducibility relation is defined as follows: A is 0-depth
deducible from T if there is a O-depth refutation of TTU{F A}. However, as explained
in the next section, such a stronger relation fails to satisfy cut and, thus, to be a
Tarskian cosequence relation. This stronger relation may still be preferred if cut is
not taken as a necessary condition for a logical consequence relation.

Notation 3.4.3. Let us use the same relation symbol ‘+y’ to denote 0-depth de-
ducibility and 0-depth refutability.

Proposition 3.4.4 ([59} 58]). The relation - is a structural Tarskian consequence
relation (Ter).

6By contrast, Non-contradiction is also an intuitionistic principle, but in intuionistic terms such
a Principle refers rather to the internal consistency of a mathematician’s mental representations.
More formally, in intuitionistic logic, Non-contradiction stems immediately from the meaning of the
negation connective: —A can be legitimately asserted only if one is able to provide a refutation of
A. Instead, classically, —A is true iff A is false. Hence, the meaning of —A is intertwined with the
metaphysical notion of falsity, and so is not amenable to epistemic characterizations.
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Besides, ¢ has no tautologies. This might be expected since a tautology is
usually described as “a conclusion of the empty set of assumptions”. There is no way
of extracting information from the empty set of assumptions without introducing
virtual information. Accordingly, tautologies appear only at depths & > 0, when the
use of virtual information is allowed, and the set of provable tautologies increases with
k. More importantly, on the basis that the intelim method enjoys the subformula
property (SFP) it can be shown that the O-depth logic is tractable—just as we
should expect since it intends to be the logic of actual information. In fact, given the
structure of intelim sequences—which involve no branching nor “case reasoning”—
the SFP ensures a straightforward feasible decision procedure for -y, and thus the
corresponding logic is in accordance with the Strong Manifestability condition above.
Namely, let |¢| denote the size of an S-formula ¢ (i.e., the total number of occurrences
of symbols in ¢), and the size of a finite set of S-formulae Y be defined as 3" ¢y [
and denoted by |Y|. Then:

Theorem 3.4.5 ([59]). Whether or not X ko ¢ (X ko) can be decided in time
O(n), where n = |X U{g}| (n=|X])[]

Although kg is ezplosive (i.e., when X is 0-depth refutable, X Fq B for any B),
0-depth refutability is stricter than classical refutability, for a set X may well be
0-depth non-refutable but classically refutable. More importantly, we can feasibly
detect that a set X of assumptions is 0-depth refutable and, therefore, we may
as well abstain of drawing bizarre conclusions on its basis. Thus, we always have
feasible means to ensure that a set X is 0-depth non-refutable—in which case
may be regarded as not explosive—even if X is classically refutable. In informal
terms—and reminiscent of Quine’s dispositional theory of the “primitive” meaning
of the connectives—t( stands for the “easy” inferences that (nearly) every agent
learns to make correctly in the very process of learning the meaning of the (classical)
connectives.

The 0-depth logic is simply the system of deductive reasoning with no virtual
information. For those classical inferences that cannot be justified solely by the
meaning of the connectives, we need to incorporate information that is not even
implicitly contained in the assumptions. Concretely, the k-depth logics are defined
in terms of the nested use of virtual information, allowed up to a number of times k.
Here the underlying intuition is that the more times virtual information is required,
the most difficult the corresponding inference is for the agent.

Now, the notion of k-depth deducibility depends not only on the depth at which
the use of virtual information is recursively allowed, but also on the subset of F'(L) on

17See also [55].
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which the introduction of virtual information is allowed. We call this subset virtual
space and define it as a function f of the set I' U {A} consisting of the premises I
and of the conclusion A of the given inference. Specifically, let F be the set of all
functions f on the finite subsets of F(£) such that: (i) for all A, at(A) C f(A); (ii)
f(A) is closed under subformulae, i.e., sub(f(A)) = f(A); (iii) the size of f(A) is
bounded above by a polynomial in the size of A i.e., |f(A)| < p(JA]) for some fixed
polynomial pEg] Distinguished examples of functions in F are the identity function
f(A) = A, sub and at. Note that, in general, f(A) may contain formulae that are
not in sub. For instance, the operation f that maps A to the set of all formulae of
bounded degree that can be built out of sub and at is also in F.

Put differently, the set of formulae that can be used as PB-formulae may be
bounded in a variety of ways without loss of completeness. The strictest option is
allowing as PB-formulae only atomic formulae that occur in I'U{A}. A more liberal
option is allowing only subformulae of the formulae in I' U {A}. Shorter deductions
can be obtained by further liberalizing the restrictions on the virtual space allowing
for deductions that do not enjoy the SFP (simply by permitting applications of PB
to formulae that are not subformulae either of the premises or of the conclusion),
but in which the virtual space is still bounded. The choice of an specific function to
yield suitable values of the virtual space for each particular deduction problem is the
result of decisions that are conveniently made by the system designer, depending on
the intended application. Such decisions affect the deductive power of each given k-
depth deducibility relation, and so the “speed” at which the approximation process
converges to the limiting logic at issue. In turn, the functions in F are partially
ordered by the relation < such that f; < fy iff, for every finite A, fi(A) C fo(A).
Thus, finally:

Definitions 3.4.6. For all X, ¢, and for all f € F,
. Xl—ggoifle—ogp;

e for k >0, X H o if XU{TA} H_, ¢ and X U{FA} FH_, ¢ for some
Ae f(X"U{e"}).
When X I—{ v, we say that ¢ is deducible at depth k from X over the f-bounded

virtual space. Note that the above definitions cover also the case of k-depth refutabil-
ity by assuming X I—£ as equivalent to X I—£ @ for all . Thus:

o X Hff X by

18Requirement (iii) is essential in order to define a hierarchy of tractable approximations to the
limiting logic under consideration; in this case, CPL.
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e for k>0, X H iff XU{TA}YH_, and X U{FA} F_, for some A € f(X").

When X l—ﬁ, we say that X is refutable at depth k over the f-bounded virtual space.

Now, it follows immediately from Def. [3.4.1] and [3.4.6| that:

Proposition 3.4.7. For all X, ¢ and all f € F, X . ¢ (X ) iff there is a
k-depth intelim proof of ¢ from X (a k-depth intelim refutation of X ) such that all
its PB-formulae are in f(X"U{p"}) (f(X")).

Notation 3.4.8. We shall abuse of the same relation symbol -/ to denote both
k-depth deducibility and k-depth refutability.

In the above Definitions M, the transition from H{_, to F/ is determined by
introducing virtual information about the truth or falsity of some A in the f-bounded
virtual space, and checking that in either case ¢ is deducible at the immediately lower
depth. Unlike F(, the relations |—£ are not Tarskian. However, they get very close
to being such, for they satisfy reflexivity, monotonicity, and the following version of

cut{™
Depth-bounded cut: If X I—f ¢ and X U {p} |—£ ¥, then X I—j-:rk 1.

Moreover, the relations |—£ may not be structural in that structurality depends on
the function f that defines the virtual space. For example, F"° is structural, while
2t is not. In general, structurality can be imposed by restricting the operations in
F to those such that, for all o and all A, o(f(A)) C f(o(A)). This is not satisfied
if f = at, but it is satisfied if f(A) = sub(A), or f(A) is the set of all formulae of
given bounded degree that can be built out of sub(A).
Now, in [58] the following is proven:

Theorem 3.4.9 (Generalized SFP, [58]). For every f € F, every intelim proof
of ¢ from X (every intelim refutation of X ), T, can be transformed into an intelim
proof of ¢ from X (an intelim refutation of X ), T', such that for every S-formula 1)
occurring in T,

Pt e (X" U{p"}) Usub(X™ U {p"})

if T' is a proof of ¢ from X, or

19Tn the terminology of [59], the depth-bounded deducibility relations that can be characterized
by simply limiting the nested applications of PB in the combined KE/KI system—that here we
have called “intelim method”—are the weak k-depth consequence relations.

70



3.4. 'Tractable depth-bounded deduction

P e f(X™) Usub(X™)
if T' is a refutation of X P

Of course, the above Theorem implies the usual SFP of the intelim method when
f = sub. So, the Theorem immediately suggests a decision procedure for k-depth
deducibility: to determine if ¢ is k-depth deducible from a finite set X apply the
intelim rules, together with PB up to a number £ of times, in all possible ways starting
from X and restricting to applications which preserve the SFP. If the resulting intelim
tree is closed or ¢ occurs at the end of all its open branches, ¢ is k-depth deducible
from X, otherwise it is not. On the basis of this, it can be shown that each I—£
inherits the tractability of kg, yet the complexity of the decision procedure grows
with £—and with the degree of the polynomial p that bounds the size of the virtual
space defined by f. Specifically:

Theorem 3.4.10 ([59, 58]). For each f € F and each k € N, whether or not
X H ¢ (X H) can be decided in polynomial time.

More specifically, when f < sub, the complexity of the decision problem is
O(n**2), where n = | X U {¢}| (n = | X]). In general, the complexity is O(p(n)*?)
where p is a polynomial depending on f}*'| Thus, for each fixed k, I—i admits of a
feasible decision procedure and thus in accordance with the Strong Manifestability
condition. Remarkably, tractability here is a sort of “by-product” of the approach’s
informational interpretation of the connectives which, in turn, makes no direct ref-
erence to computational complexity questions. More specifically, the tractability of
each approximation results from a notion of depth that applies to single proofs and
refutations. The measure of depth does not hinges on computational complexity, but
on the distinction between actual and virtual information; and so the tractability of
k-depth consequence is derivative. A consequence of this is, for example, that depth-
bounded deduction provides means to solve the problem of logical omniscience that
seem to overcome Parikh’s main objection against complexity-based approaches, ac-
cording to which, “[t]he issue of computational complexity can only make sense for
an infinite family of questions, whose answers may be undecidable or at least not in
polytime. But for individual questions whose answers we do not know, the appeal
to computational complexity misses the issue” [123], p. 462].

Now, the following result takes us to the issue of the semantics of the depth-
bounded approximations to CPL:

20Clearly, when f = sub, we obtain the usual SFP.
21Recall that, by definition, the virtual space is polynomially bounded.
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Proposition 3.4.11 ([59]). The 0-depth logic, (L,t), cannot be characterized by
any finite-valued deterministic matriz.

However, as recalled below, it can be shown that the 0-depth logic can be character-
ized by a 3-valued non-deterministic matrix (Nmatrix) ]

The classical meaning of the connectives is usually specified by the standard
truth-functional semantics that fix the conditions under which a sentence is true
or false in terms of the truth or falsity of its immediate constituents. In turn, as
we recalled above, the classical information-transcendent notions of truth and fal-
sity are assumed to obey Bivalence and Non-Contradiction. Such a way of fixing
the meaning of a connective is in tune with the traditional view of inference as a
truth-transmission device, but it is at odds with the view of logical inference as an
information-processing device.@ As argued in the introduction of the thesis, in or-
der to comply with the latter view, a semantics based on informational notions is
required. Moreover, in order to obtain models of less idealized (e.g., not logically
omniscient) agents, it is required a semantics based on the notion of actual informa-
tion, where the underlying notion of information is neutral w.r.t. truth and falsity.
Thus, the primary notions of such a semantics are not classical truth and falsity, but
informational truth and informational falsity; namely, holding the information that
a sentence is true, respectively false. These notions do not satisfy the informational
version of Bivalence: it certainly cannot be assumed that, for any A, either the agent
holds the information that A is true or holds the information that A is false. On
the other hand, when the depth-bounded approach is applied to CPL, it may be
reasonably assumed that Non-contradiction lifts to the informational level: no agent
can hold both the information that A is true and the information that A is false, as
that would be deemed to amount to possessing no definite information about A.@

In turn, the truth-values 1 and 0 are used to respectively denote informational
truth and falsity. When a formula A takes neither of these two defined truth-values,

2In [61, 59] the 0-depth logic is characterized in terms of other semantics; namely and re-
spectively, constraint-based semantics and modular semantics. In [59], the latter is shown to be
equivalent to the 3-valued non-deterministic semantics to be recalled below; whereas, in [56] it is
pointed out that the former is essentially equivalent to the other two. We found non-deterministic
semantics to be particularly suitable to carry out our investigation in this Thesis.

23In fact, the classical meaning of the connectives is overdetermined by the standard truth-
functional semantics and this fact is probably the reason why standard proof-theoretic semantics
for CPL are rather contrived. As recalled above, classical inferences are better construed as arising
from the interplay between a weaker basic semantics for the connectives—provided by the intelim
rules—and the purely structural Principles of Bivalence and Non-Contradiction.

24 As mentioned in footnote 10, we shall drop this assumption when we apply the depth-bounded
approach to paraconsistent logics.
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YR L Al 1 0 L
Ly {1 {1} L {1y {0y {Ll}
0 {1} {0} {L} 0 {0} {0} {0}
L {4y L4} L4y {0F {0, L}
= =1 0 1
1[0 L[ {1} {0} {L}
01 0 {1} {1} {1}
L)L L {1y {1y {1,1}

Table 3.7: 3N-tables

we say that its truth-value is unknownﬁ] Accordingly, a partial valuation v for
L ={V,A,—~,—} is a partial function v : F(£) — {0,1}. We denote by v(A) = L
whenever v is undefined for A. It is technically convenient to treat | as a third
truth-value and so we interpret it as denoting a third primary notion: z’gnomnce.[g_gl
Thereby, we take the three truth-values as partially ordered by the relation <, such
that < y (read “z is less defined than, or equal to, y”) iff z = L or z = y for
z,y € {0,1,L}. Thus, a 3-valuation v for L is a (total) function v : F(L£) —
{0,1, L}. Now, we pick out from the set of all 3-valuations those which agree with
the intended meaning of the connectives. We do this through the following Nmatrix,
which conservatively extends the standard matrix of CPL:

Definition 3.4.12. Let M3 be an Nmatrix for £, where V = {1,0, L}, D = {1}
and the functions in O are defined by the 3N-tables in Tab. [3.7]

Remark 5. The part of each 3N-table which involves solely defined truth-values—i.e.,
1 or 0—is respectively identical with a standard truth-table of CPL; let us refer to
this part of each 3N-table as its defined kernel. Now, in each 3N-table, the entries
involving | are established by the corresponding defined kernel as follows: In case
one component or two components of a complex formula are (respectively, is) L, we
are left with a case of underspecification where all possible truth-values are allowed.
Accordingly, when one or both arguments in a Mjs-function are (respectively, is) L,

25 Originally, D’Agostino [58] referred to the case where a formula does not have a defined truth-
value as a case of “informational indeterminacy”. However, here we find the term “unknown” more
appropriate.

26Related to the previous footnote, the reference to this third primary notion is also mentioned
here for the first time.
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the value of the function must include all the truth-values that are compatible with
the corresponding defined kernel. Now, a truth-value—w.r.t. the value of a Msj-
function involving | in its arguments—is compatible with the corresponding defined
kernel if, on the basis of the very defined kernel, such a truth-value does not imply
that one particular argument of those which are | had a defined truth-value instead.
In turn, that a Mjs-function has as value not a singleton—but a set of alternative
truth-values—means that the truth-value of the compound formula is not uniquely
determined by the truth-values of its immediate subformulae, but can be either of
the truth-values shown.

To illustrate these ideas take the truth-table for V: If one of the disjuncts is 1,
then—regardless of the truth-value of the other disjunct, including | —the disjuntion
is (uniquely) 1. Now, if disjunct A is 0 and disjunct B is L, the disjunction cannot
be 1 nor 0 because that would imply that disjunct B respectively was already 1 or
0; yet, the disjunction may well be L. In turn, when both disjuncts are L, the only
excluded truth-value for the disjunction is 0 as it would imply that both disjuncts
were already 0; however, 1 and L are both admissible truth-values for the disjunction.
The latter case amounts to the situation where the disjunction may be either 1 or
1 depending on whether or not the agent holds the additional information that at
least one disjunct must be truef’]

Remark 6. The close connection between Quine’s dispositional theory of the “primi-
tive” meaning of the connectives and the notions underlying Mz—in turn expressing
their informational meaning—should be apparent. That the agent holds the in-
formation that A is true (false) is plausibly tantamount to the agent being in the
disposition to assent (respectively, dissent) to A. Indeed, the 3N-tables associated
with M3 can be obtained from Quine’s incomplete 3-valued tables as follows: the
truth-value 1 (standing for informational truth) corresponds to Quine’s “assent”; 0
(representing informational falsity) corresponds to Quine’s “dissent”, and L (stand-
ing for unknown) corresponds to Quine’s “abstain”. In turn, Quine’s “blind spots”
correspond to the entries where there are two alternative possible truth-values, in-
dicating that the truth-value of the compound sentence is not uniquely determined
by the truth-values of its component sentences but can be either of the two truth-
values shown; which is in tune with Quine’s considerations. Finally, the material
conditional can be defined as usual, A - B := -AV B.

Now, as mentioned in Chapter 2, Quine’s semantics was independently re-proposed
by Crawford and Etherington, who used it for investigating tractable inference and

2TFor a concrete example of the latter case, think of your computer telling you that the user or
the password is wrong; you may do not know which is wrong, but you do know that at least one is
S0.
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for providing—without proof—a semantic characterization of an extension of unit-
resolution. Crawford’s and Etherington’s account of the inferences justified only by
the corresponding truth-tables is restricted to formulae in negation normal form;
whereas their semantics for classical valid inferences that are not justified solely by
those tables is based on a classical reductio ad absurdum that applies only to formu-
lae in clausal form. As recalled in what follows, the depth-bounded approach sup-
ports Crawford’s and Etherington’s intuition that their 3-valued non-deterministic
semantics may become the basic foundational tool for a general theory of tractable
approximations to CPL, but also show that the scope of that semantics is much
wider than what they envisaged, in that it is relevant to any logical formalism with
no syntactic restrictions.

Definition 3.4.13. A 3N-valuation is a 3-valuation v s.t. for all A, B:
L v(=A4) = 5(0(A));
2. v(Ao B) €s(v(A),v(B)).

Where o is V, A or —.

Remark 7. A 3N-valuation can be seen as describing an information state that is
closed under the implicit information that depends only on the informational meaning
of the connectives ¥ This is information that the agent holds and with which she can
operate, in the precise sense that she has a feasible procedure to decide, for every A,
whether the information that A is true, or the information that A is false, or neither
of them actually belongs to her information state.

In what follows we keep using S-formulae for the sake of uniformity, but recall
that, in the case of CPL, such an use is optional. We say that a 3N-valuation v
satisfies an S-formula T A if v(A) = 1 and an S-formula F A if v(A) = 0. Thus:

Definition 3.4.14. For all X and ¢,

e isa 0-depth consequence of X, X Fq ¢, if for every 3N-valuation v, v satisfies
 whenever v satisfies all the S-formulae in X.

e X is 0-depth inconsistent, X Fq, if there is no 3N-valuation v such that v
satisfies all the S-formulae in X.

Proposition 3.4.15 ([59, 58]). For every X, ¢,

28Intuitively, an information state represents the total information that an agent holds, either
explicitly or implicitly, on the basis of the intended meaning of the connectives.
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The 0-depth consequence relation F is a subsystem of CPL obtained by replacing
the notion of possible world with our weaker notion of information state; the latter
described by a 3N-valuation. Put differently, given that 3N-valuations are intended
to describe information states, rather than possible worlds, they are usually partial:
within a given information state some formulae may be assigned neither 1 nor 0,
representing the agent’s ignorance about their truth-value. Again, the 0-depth logic
is simply the system of deductive reasoning with no virtual information. The classical
inferences that cannot be justified solely by the meaning of the connectives require
the incorporation of information that is not even implicitly contained in the current
information state. Concretely, the k-depth logics, £k > 0, require the simulation
of wvirtual extensions of the current information state; extensions that are formally
defined through the notion of refinement:

Definition 3.4.16. Let v, w be 3N-valuations. Then, w is a refinement of v, v C w,
if v(A) K w(A) for all A.

Thus, 3N-valuations are partially ordered by the usual refinement relation, C.

Analogously to k-depth deducibility, the notion of k-depth consequence depends
not only on the depth at which the use of virtual information is recursively allowed,
but also on the virtual space. Thus the following definitions mimic Defs. [3.4.6f

Definitions 3.4.17. For all X, ¢, and for all f € F,
. XIZ{;goifin:Ogo;

e for k>0, X B o iff XU{TA} E/ | ¢ and X U{FA} H_, ¢ for some
Ae f(X"U{g"}).

Analogously to k-depth refutability, the above definitions cover also the case

of k-depth inconsistency by assuming X |=£ as equivalent to X I=£ @ for all .

When X Ef o (X E]) we say that ¢ is a k-depth consequence of X (X is k-depth
inconsistent) over the f-bounded virtual space.

In the above Definitions, the transition from ! to Ef 41 is determined by simu-
lating refinements of the current information state in which the truth-value of some
A in the f-bounded virtual space is defined, and checking that in either case ¢ is
satisfied at the immediately lower depth. That use of a defined truth-value for A,
which is not even potentially contained in the current information state, is what we
call virtual information.

Now, given Prop. and the close correspondence between Defs. [3.4.6] and
3.4.17] it is far from surprising that:
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Proposition 3.4.18. For all X, ¢ and all f € F,
XE o iff XH o

Now, we shall abuse of the same relation symbols Fy and |=§ to respectively
denote both 0-depth consequence and inconsistency, and k-depth consequence and
inconsistency (over the f-bounded virtual space). Given that Fq is monotonic, |=f §|=,];

whenever j < k. The transition from E/_, to E/ corresponds to an increase in the
depth at which the nested use of virtual information—restricted to formulae in the
virtual space defined by f—is allowed. Besides, note that l=§1§|=£2 whenever f; < fo.

Then, it is not difficult to show that each relation i=£ is an approximation to full CPL
in that the latter is the limit of the sequence of relations F{ as k —s co:

Proposition 3.4.19 ([59, 58]). For every f, the relation El .= Upey EL is the
consequence relation of CPL.

3.4.2 Depth-bounded KFE deduction

Given that both KF and KI are complete for CPL, and that in both the operational
rules are all linear and the only branching rule is PB, the application of the depth-
bounded approach to CPL—in terms of bounding the applications of PB—can be
based on either of them. In what follows, we briefly discuss how the approach to
CPL can be based on KFE; the case of KI being analogous.

Although arguably less natural than the proof-theoretical basis constituted by
the intelim method, the basis constituted by KF allows us to define an analogous
hierarchy of approximations to CPL. So, the intuitions and notions of the approach
can be, respectively, related and defined according to such a hierarchy. To begin with,
we take the elimination rules in Tab. as fixing the meaning of the connectives only
in terms of actual information. Specifically, we interpret S-formulae and those rules
in the same informational terms we did for the intelim method. Thus, we interpret
the elimination rules as involving only actual information and so they characterize
a corresponding O-depth logic. For recall that the latter is intended to be the logic
of the inferences that can be drawn by using only actual information, and whose
validity can be determined on the sole basis of the informational meaning of the
connectives. Accordingly, as we shall recall below, such a logic is tractable.

The elimination rules generate eliminative sequences. Namely, finite sequences
(¢1, ..., ) of formulae such that, for every i = 0, ..., n, either p; is an assumption or
it is the conclusion of the application of an elimination rule to preceding S-formulae.
The elimination rules are not complete for CPL but precisely, as we shall show below,
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just for the 0-depth (basic) logic in the hierarchy of approximations. As before,
completeness for full CPL is obtained by adding only PB. With the addition of PB,
deductions are represented by downward-growing trees. Naturally, we interpret PB
in the same informational terms as above. So, each application of PB stands for
the introduction of virtual information about the truth or falsity of a formula, and
the S-formulae T A and F A introduced by an application of PB are called virtual
assumptions. As before, the nested applications of PB leads to defining an infinite
hierarchy of tractable depth-bounded approximations to CPL. Sepcifically, the k-
depth logics, & > 0, are the logics of the classical inferences whose validity requires the
introduction of virtual information. As before, a key intuition is that the more virtual
information needs to be invoked via PB, the harder the inference is for the agent.
The nested applications of PB provide a sensible measure of inferential depth. Thus,
the obtained hierarchy can be naturally related to the inferential power of the agents
and, as we shall show below, admit of a 3-valued non-deterministic “informational”
semantics.

Now, KF allows us to define a direct as well as an indirect notion of deducibility;
the latter via refutability.

Definitions 3.4.20. For all X, ¢,

o A direct KE-proof of ¢ from X is a KE-tree T for X such that ¢ occurs in all
open branches of T.

o A KFE-refutation of X is a KE-tree T for X such that every branch of 7T is
closed.

Note that, according to the above definitions, every KFE-refutation of X is, simulta-
neously, a direct KE-proof of ¢ from X, for every (. This is so because there are
no open branches and the condition that ¢ occurs at the end of all open branches is
vacuously satisfied.

Thus, we say that:

Definitions 3.4.21. The depth of a KFE-tree T is the maximum number of virtual
assumptions occurring in a branch of 7. A KFE-tree T is a k-depth direct KE-proof
of p from X (a k-depth KE-refutation of X) if T is a direct KE-proof of ¢ from X
(K Erefutation of X) and T is of depth k.

Note that a 0-depth KE-tree is nothing but an eliminative sequence. Thus:
Definition 3.4.22. For all X, p and I, A,
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o @ is O-depth directly KE-deducible from X, X ¢ ¢, if there is a 0-depth direct
KFE-proof of ¢ from X.

e X is O-depth KE-refutable, X ¢, if there is a 0-depth KFE-refutation of X.
o Ais 0-depth KE-deducible from I', T' Fgpoy A, if TT U {F A} .

Notation 3.4.23. Along the thesis we shall abuse of the same relation symbols F,
k > 0, to denote different, yet analogous, relations. However, the context will always
rule out any ambiguity and make clear in what sense those relations are analogous. In
the present context, we use the same relation symbol - to denote both 0-depth direct
KE-deducibility and 0-depth KF-refutability. Further, since the notation KE(k) was
introduced in [65] to denote each subsystem of KFE obtained by allowing at most
k nested analytic applications of PB, and the corresponding deducibility relations
correspond exactly to what here we call “k-depth KE-deducibility”, we shall use the
subindex KE(k) in the corresponding relation symbols Fxgx), & > 0.

Given that the set of elimination rules is a subset of the intelim rules, it is far
from surprising that:

Proposition 3.4.24. The relation o based on KFE is a structural Tcr.

Besides, it is not surprising that Fy has no tautologies. As expected—analogously
to the approximations to CPL defined via the intelim method—tautologies appear
only at depths k£ > 0, when the use of virtual information is allowed, and the set of
provable tautologies increases with k.

Now, it follows from Defs. [3.4.20] [3.4.21] and [3.4.22] that if TT' k¢ T A, then
I' FxE@©) A. Nonetheless, the converse of the latter does not hold. This because
the relation g is stronger than the relation k- (regardless whether based on KE
or on the intelim method). For example, T{pV q,p — r,q¢ — r} ¥ Tr (based on
either KE or the intelim method), but {p V ¢,p = r,¢ = r} Fxge) r. Indeed, unlike
o (based on KE or the intelim method), Fgg@) does has tautologies; for instance,
0 Frmo) AV —A. However, as expected, not all classical tautologies are provable
under Fgp); for example, O ¥ gy (AV (BAC)) = (AVB)A(AVC)). Again,
the set of provable tautologies increases with k.

Now, remarkably, unlike the relation -, (again, based on either KF or the intelim
method), - kg is not a Ter:

Proposition 3.4.25. The relation i) satisfies reflexivity, monotonicity but not
cut.
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Proof. For reflexivity, suppose that A € I'. Then, there is a 0-depth KFE-refutation of
TI'U{F A} and so I" Fkg0) A. For monotonicity, suppose I' Fgg) A. Then, there is
a 0-depth KFE-refutation of TT'U{F A}, and so there is also a 0-depth KF-refutation
of T UY U{F A}. Therefore, I' UY™ Fgpo) A. On the other hand, Fgp) fails to
satisfy cut since it may well be that there are 0-depth KFE-refutations of TT'U {F A}
and TI' U {T A,F B}, but there is no 0-depth KE-refutation of TI' U {F B}. For
example, take I':={pV ¢,p = r,q > r,r = s,r > t}, A:=r and B := s A\ t. O

On the other hand, it is easy to see that Fxp) is structural.

Now, the tractability of the logics (£ o) and (L, Fggq)) trivially follows from
the tractability of the 0-depth logic based on the intelim method (Theorem [3.4.5)).
In fact, the following was early shown:

Theorem 3.4.26 ([65]). Let b be a branch of a KE-tree containing m nodes, each
of which is an occurence of a formula of degree d,,. The task of saturating b can be
performed in time O(n?), where n = Emebde_g]

Then, as above, let |¢| denote the size of an S-formula ¢ (i.e., the total number of
occurrences of symbols in ), and the size of a finite set of S-formulae Y be defined
as Yyey|p| and denoted by |Y|. So we have:

Corollary 3.4.27. Whether or not X ko ¢ (I' Fgpgo) A) can be decided in time
O(n?), where n = | X U {p}| (n =TT U{F A}|).

As mentioned in [65], the set for which F kE(0) is complete includes the Horn-clause
fragment of CPL. However, &g is not restricted to clausal form formulae.

Now, as above, the k-depth logics are defined in terms of the nested use of virtual
information—via the applications of PB—allowed up to a number of times k. Again,
these logics depend not only on the depth at which the use of virtual information is
recursively allowed, but also on the virtual space; which is defined exactly as before.
Accordingly, the set F of all functions f on the finite subsets of F'(£) is also defined
exactly as above. Thus,

Definitions 3.4.28. For all X, o, I', A, and for all f € F,
. Xl—{;gpiﬁ’Xl—ocp;
e for k>0, X H o iff XU{TA} H_| ¢ and X U{FA} H_, ¢ for some
Ae f(X"U{e"});

29Tt is said that a branch b of a KE-tree is saturated if, whenever the premise (or the premises) of
an elimination rule belongs (belong) to b, then its conclusion also belongs to b. Moreover, recall that
in the case of CPL the difference between the signed and unsigned versions of KFE is immaterial.
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o T hlopo Aiff T Frp) 4;

o fork>0,T I—f(E(k) Aiff TU{B} F?(E(k—l) Aand T'U{-B} l_f(E(k;—l) A for some
B e f(Tu{A4}).

When X I—i p, we say that ¢ is directly KE-deducible at depth k from X over
the f-bounded virtual space. Note that the above definitions cover also the case of
k-depth KF-refutability by assuming X I—g as equivalent to X |—£ @ for all p. When
X I—g, we say that X is KE-refutable at depth k over the f-bounded virtual space. In
turn, when I' I—QE(k) A, we say that A is KE-deducible at depth k from T over the
f-bounded virtual space.

It follows immediately from Defs. 3.4.21] and |3.4.28| that:

Proposition 3.4.29. For all X, ¢, I', A, and for all f € F,

e X I—i w iff there is a k-depth direct KE-proof of ¢ from X such that all its
PB-formulae are in f( XU {p"});

e X |—£ iff there is a k-depth KE-refutation of X such that all its PB-formulae
are in f(X");

e I I—};E(k) A iff there is a k-depth KE-refutation of TT U{F A} such that all its
PB-formulae are in f(I'U{A}).

Notation 3.4.30. We shall abuse of the same relation symbol |—£ to denote both
k-depth direct KE-deducibility and k-depth KE-refutability.

Given that the set of elimination rules together with PB is a subset of the intelim
rules together with PB, it is far from surprising that, unlike ko (based on KFE or
on the intelim method), the relations |—£ are not Tarskian. However, they satisfy
reflexivity, monotonicity, and the following version of cut:

Depth-bounded cut: If X l—f ¢ and X U {¢} ] ¢, then X |_§+k 1.
Besides, as the relations |—£ based on the intelim method, the analogous relations
based on KE may not be structural in that structurality depends on the function f
that defines the virtual space. Again, structurality can be imposed by restricting the
operations in F to those such that, for all o and all A, o(f(A)) C f(a(A)).

In turn, it easy to check that the relations l—f(E(k) are reflexive and monotonic.
However, of course, they do not satisfy cut (since we observed that -k g(g) already fails
cut). Further, the relations l—}; B(k) Ay not be structural in that, again, structurality
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depends on the function f that defines the virtual space. Once more, structurality
can be imposed by restricting the operations in F.

As expected, the tractability of the k-depth bounded logics based on KFE follows
from the tractability of the analogous logics based on the intelim method (Theorem
3.4.10). So, as before, each l—,’: and l—f(E(k) respectively inherits the tractability of
and Fgg). However, the complexity of the decision procedure grows with A—and
with the degree of the polynomial p bounding the size of the virtual space defined

by f.

Theorem 3.4.31 ([65]). For each f € F and each k € N, whether or not X ], ¢
T I—f{E(k) A) can be decided in polynomial time.

We refer to [65] in the above Theorem because it was essentially stated there, al-
though only for f = sub. Given Theorem [3.4.9] the above holds for every f.

Clearly, the set of tautologies for which l—f(E(k) and I—i are complete tends to
the set of all classical tautologies, TAUT, as k& — oo. As remarked in [65], the
crucial point is that low-degree k-depth logics cover large fragments of CPL, and
are powerful enough for a wide range of applications. Besides, the source of the
complexity of proving a tautology in the systems is clearly identified.

Now, semantics for the logics (L, |—£>, k > 0, based on KE can be obtained
along the lines of the semantics of the analogous logics based on the intelim method.
However, semantics for the logics (L, H;E(k)% k > 0, can be given only indirectly
via inconsistency. As before, the primary notions of the semantics are informational
truth, informational falsity and ignorance; interpreted as above and respectively
denoted by the truth-values 1, 0, and 1. We take these three truth-values as partially
ordered by the relation =<, such that x < y (read “z is less defined than, or equal
to, y”) iff x = L or x =y for z,y € {0,1, L}. Thereby, a 3-valuation v for L is a
function v : F(£) — {0,1, L}. In turn, we pick out from the set of all 3-valuations
those which agree with the intended meaning of the connectives via the following
Nmatrix:

Definition 3.4.32. Let M} be an Nmatrix for £, where V = {1,0, L}, D = {1}
and the functions in O are defined by the 3N’-tables in Tab. [3.§

Remark 8. Unlike the 3N-tables, the 3N’-tables above do not have a “proper” defined
kernel. Namely, the yielded values of the Mj-functions when the argument(s) are
defined do not include only defined truth-values. This corresponds to the fact of our
informational interpretation of KF according to which, for example, if an agent holds
both the information that A is true and that B is true (T A and T B), it may well
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V] 1 0 i Al 0 i
1 {1, 1} {1,1} {1,L1} 1[{1,1} {0,L} {1}
0]{1,L} {o,1} {1} 0|{o,L} {o,L} {o0,L1}
{1y {1} {11} L] {4 {o,1} {o,L}
= 1 0 i
1 [{1,L}y {0, {1}
0| {1,L} {1,1} {1,1}
1 {,1y {1} {11}

Table 3.8: 3N’-tables

be that she either does not hold information about the truth-value of A A B (recall
that K has no introduction rules), or holds that it is also true (T AA B). However,
when holding both that A is true and that B is true, it cannot be the case that she
holds the information that A A B is false (F A A B).

It is easy to see that the other entries of the 3N’-tables involving only defined
truth-values as arguments are justified in a similar way. Let us refer to the part
consisting of those entries in each 3N’-table as its kernel. Then, the entries in the
tables involving L are established in an entirely analogous way to that in which they
were established for the 3N-tables. Namely, if one or two arguments are (is) L, we are
left with a case of underspecification and, thus, the value of the function must include
all the truth-values that are compatible with the corresponding kernel. As before,
a truth-value—w.r.t. the value of a Mj-function involving L in its arguments—is
compatible with the corresponding kernel if, on the basis of the very kernel, such a
truth-value does not imply that one particular argument of those which are | had a
defined truth-value instead.

Definition 3.4.33. A 3N’-valuation is a 3-valuation v s.t. for all A, B:
L. v(=A) € S(v(A));
2. v(AoB) e s(v(A),v(B)).

Where o is V, A or —.

Remark 9. As before, a 3N’-valuation can be seen as describing an information state
that is closed under the implicit information that depends only on the informational
meaning of the connectives. This is information that the agent holds and with which
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she can operate in that, as recalled below, she has a feasible procedure to decide, for
every A, whether the information that A is true, or the information that A is false,
or neither of them actually belongs to her information state.

Again, we keep using S-formulae but recall that such an use is optional in the
case of CPL. We say that a 3N’-valuation v satisfies an S-formula T A if v(A) =1
and an S-formula F A if v(A) = 0. Thus:

Definition 3.4.34. For all X, o, I', A,

o o is a O-depth direct consequence of X, X Fq , if for every 3N’-valuation v, v
satisfies ¢ whenever v satisfies all the S-formulae in X;

e X is 0-depth inconsistent, X Fq, if there is no 3N’-valuation v satisfying all the
S-formulae in X;

« Ais a 0-depth consequence of I', T' Egpy A, if TT'U{F A} Fq.
Proposition 3.4.35. For all X,
X Fo iff X k.

Proof. Obviously, any set of S-formulae for which the closure condition obtains is
unsatisfiable. Besides, soundness of the elimination rules can be immediately verified
by inspection of the 3N’-tables. For example, if an agent holds the information that
AN B is false (the truth-value of AA B is 0) and the information that A is true (the
truth-value of A is 1), then she holds the information that B is false, since the other
possible two truth-values are ruled out by the table for A.

As for completeness, suppose that X F, i.e., X is not 0-depth KFE-refutable. We
show that X is O-depth consistent. Now, consider the set X* = {¢ | X ¢ ¢}. (Note
that X* is finite, because conclusions of the elimination rules are always less complex
than the corresponding major premise.) Since X is not 0-depth KFE-refutable, for no
formula A, T A and F A are both in X*. Then, it is easy to verifty that the function
v defined as follows:

1 ifTAe X*
v(A) =140 ifFAeX*
1 otherwise

is a 3N’-valuation, i.e., it agrees with the 3N’-tables. Here we just outline three
typical cases.
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1. Suppose v(A) =v(B) = L. Then FAV B ¢ X*. Otherwise, if FAV B € X*,
then by definition of X* and elimination rules for vV, F A and F B should also be
in X*; therefore, by definition of v, v(A) = v(B) = 0, against our assumption.
Hence v(A V B) # 0. Moreover, T AV B, may or may not belong to X*, and
sov(AVB)=1lor V(AVB)=1.

2. Suppose v(A) = v(B) = 0. Then, by definition of v, FA and F B are both
in X*. So, TAV B does not belong to X*; otherwise by the corresponding
elimination rules for V, each of the pairs {T A,F A} and {T B, F B} should be
in X*, against the hypothesis that X is not 0-depth KFE-refutable (recall again
that KF has no introduction rules). On the other hand, F AV B may or may
not belong to X*. So, v(AV B)=0orv(AV B) = L.

3. Suppose v(A) = L and v(B) = 0. Then, by definition of v, F B is in X*.
So, TAV B ¢ X*. Otherwise, if TAV B € X*, by definition of X* and
one elimination rule for V, T A should be in X*; therefore, by definition of
v, v(A) = 1, against our assumption. Moreover, FAV B ¢ X*. Otherwise, if
FAV B € X* by definition of X* and one elimination rule for vV, F A should be
in X*; therefore, by definition of v, v(A) = 0, against our assumption. Hence,
v(AV B) = 1.

Now, observe that: (i) ¥ € X* for all » € X and so, by definition of v, v satisfies
all ¢» € X. This is shown by induction on the degree of A such that SA € X*, where
S is a variable ranging over {T ,F }.

o Base case: Suppose A := p. Then, since for no A, T A and F A are both in X*,
and by definition of v, v satisfies Sp.

o Inductive hypothesis: Suppose that if A has degree n, then v realizes SA.

o Inductive step: Let A have degree n+ 1, then we have several cases depending
on whether S =T or S = F, and on the logical form of A. We discuss only
the case FA, A := B A C, the other cases being similar. Thus, if T B is also
in X* then, by definition of X* and the corresponding elimination rule for A,
FC € X*. Hence, by inductive hypothesis, v satisfies both T B and F C. This,
together with F B A C € X*, imply that v satisfies F B A C.

Therefore, there is a 3N’-valuation that satisfies all the S-formulae in X and so X is
not O-depth inconsistent, X . O

Corollary 3.4.36. For all X, ¢,
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Proof. Suppose X ¥y ¢. Then X is not 0-depth refutable. Now, consider the set
X*={¢ | X ¢ 1}. Proceed exactly as in the previous proof. Finally, observe that:
(i) v € X* for all ¥ € X and so, by definition of v, v satisfies all ¥ € X; (ii) by
hypothesis that X Ky ¢, ¢ ¢ X* and so v does not satisfy ¢. Hence X ¥ . ]

The logic (£, Fq) based on KE and the logic (£, Fkg)) are systems of deductive
reasoning with no virtual information. For the classical inferences that cannot be
justified solely by the meaning of the connectives, we need to incorporate information
that is not even implicitly contained in the current information state. So, as before,
the k-depth logics, £ > 0 require the simulation of virtual extensions of the current
information state. This extensions are formalized through the following notion:

Definition 3.4.37. Let v, w be 3N’-valuations. Then, w is a refinement of v, v C w,
if v(A) 2 w(A) for all A.

So, 3N’-valuations are partially ordered by the usual refinement relation, C.

Analogously to k-depth (direct and indirect) KFE-deducibility, & > 0, the notions
of k-depth consequence depends not only on the depth at which the use of virtual in-
formation is recursively allowed, but also on the virtual space. Thereby, the following
definitions mimic Defs. [3.4.28}

Definitions 3.4.38. For all X, ¢, I, A, and for all f € F,
. thgoiﬁXizogp;

e for k>0, X B o if XU{TA}E | o and X U{FA} E[_, ¢ for some
A€ f(X"U{e"});

e T |:§(E(O) AT Egpoy A

o for k>0, Fepp A TU{B} Hypy) Aand TU{=B} Fip, ) A for some
B e f(TU{A}).

When X I=£ v, we say that ¢ is a direct k-depth consequence of X over the f-bounded
virtual space. Observe that the above definitions cover also the case of k-depth
inconsistency by assuming X |=£ as equivalent to X |=£ @ for all . When X l=£ , We
say that X is k-depth inconsistent over the f-bounded virtual space. In turn, when
r l:];(E(k) A, we say that A is a k-depth consequence of I over the f-bounded virtual
space.
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Now, the next proposition follows from the fact that KF with unbounded k—i.e.,
KFE with an arbitrary number of applications of PB—is sound and complete for full
CPL:

Proposition 3.4.39. For all X, @, and all f € F,
XE o iff XH o

The depth-bounded approximations based on KF are arguably less natural than
the analogous approximations based on the intelim method in at least three respects:
(i) Using both introduction and elimination rules allows for more natural and shorter
proofs—although not essentially shorter because KE and KI can linearly simulate
each other. (ii) Using both types of rules reduces the number of applications of PB
that, as stated above, is key for our meausre of the depth of an inference. (iii) The
non-deterministic semantics for the basic (0-depth) logics based on KFE is clearly
less intuitive than the analogous semantics for the basic logic based on the intelim
method—the latter being in line with Quine’s dispositional theory of the “primitive”
meaning of the connectives. On the other hand, depth-bounded KF may be still
preferred for potential uses in automated reasoning.
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Depth-bounded non-classical logics
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Chapter 4

Tractable depth-bounded
approximations to FDE, LP and
K3

4.1 Introduction

First-Degree Entailment (FDE, also known as Belnap-Dunn logic) [7, [70, 30, [31],
the Logic of Paradox (LP) [14, [126], and Strong Kleene Logic (K3 ) [105] are closely
related to each other and admit of an intuitive informational interpretation as, re-
spectively, a 4-valued logic (in which “a computer should think”) and 3-valued logics.
Specifically, LP is a paraconsistent logic, which makes it possible to draw non-trivial
deductions from possibly inconsistent pieces of information; whereas, K3 is a para-
complete logic, that makes it possible to draw deductions from information that
might be partial. One of the simplest approaches to paraconsistent and paracom-
plete reasoning is based on many-valued semantics. In such an approach, the set of
truth-values is extended by including new elements other than the two classical ones.
So, in turn, the simplest way to implement this approach is using 3 truth-values as
in, respectively, LP and Kg. Thus, 3 truth-values can be used to handle either
inconsistency or partiality of information, one at a time. However, for a logic to
handle information that might be both inconsistent and partial, at least 4 different
truth-values are required [see [19]. A famous 4-valued logic handling both incosis-
tency and partiality of information is FDE, which is therefore paraconsistent and
paracomplete.

The informational interpretation of FDE is motivated from the use of deduc-
tive reasoning as a basic tool in the area of “intelligent” database management or
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question-answering systems. Databases have a great propensity to be incomplete and
become inconsistent: what is stored in a database is usually obtained from different
sources which may provide only partial information and may well conflict with each
other. So, the values are interpreted as four possible ways in which an atom p can
belong to the present state of information of a computer’s database, which is fed by
a set of equally “reliable” sources. That is, such values record information of the
kind “there is a (no) source assenting to p” and “there is a (no) source dissenting to
p”. As explained below, the truth-values of LP and K3 can plausibly be interpreted
along the same lines.

Now, despite their informational flavor, the three logics are co-NP complete [see
148, 10], and so idealized models of how an agent can think. In this Chapter we show
how the depth-bounded approach can be naturally extended to these many-valued
logics, and so provide infinite hierarchies of tractable depth-bounded approximations
to them. Under the intuitive informational interpretation admitted by the three
logics described above, we identify a need for imprecise values such as “at least
true”, which is implicit in the choice of the set of designated values in the semantics
of FDE. Then, inspired by [53] and [15], 8], 82], we address this question by shifting
to signed formulae, where the signs express such imprecise values associated with
two distinct bipartitions of the corresponding set of standard values.

Thereby, we provide KE/KI-style proof systems for the three logics, each of
which: (i) is formulated by means of signed formulae; (ii) has linear introduction
and elimination rules, which fix the meaning of the connectives; (iii) has two branch-
ing rules which express a generalized rule of bivalence, are structural in that they
do not involve any connective, and are essentially cut rules; (iv) can be used as
both a direct-proof and a refutation method; (v) obeys the subformula property.
Given that the examples introduced in Subsection are hard for all tableau
systems sharing the V /A rules with classical tableaux but easy for their analogous
KE-style systems, our KE/KI-style systems at issue are interesting independently of
the depth-bounded approach mainly because they have an exponential speed-up on
their tableau counterparts. In this Chapter, however, we focus on showing that each
of our systems naturally leads to defining an infinite hierarchy of tractable depth-
bounded approximations to, respectively, FDE, LP or K3, in terms of the maximum
number of nested applications that are allowed of the branching rules. Intuitively,
in each of those systems, the introduction and elimination rules govern the use of
actual information, whereas the branching structural rules govern the manipulation
of virtual information (i.e., hypothetical information about the imprecise value of a
formula). As in the classical case, the key intuition is that the more virtual infor-
mation needs to be invoked via the branching rules, the harder the inference is for
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the agent. Thus, the nested applications of those rules provide a sensible measure of
inferential depth, and so the levels of the corresponding hierarchy can be naturally
related to the inferential power of agents.

We further show that the resulting hierarchies admit of an intuitive 5-valued
non-deterministic semantics. This semantics essentially takes the signs as imprecise
values (i.e., two-element sets of the standard values), and a fifth value is taken to
represent the case where the agent’s information is insufficient to even establish any
of the imprecise values. (Part of our results regarding FDE have been presented at
Logica 2021 and submitted for publication in the proceedings as a joint paper with
Prof. D’Agostino.)

4.2 FDE interpreted informationally

First Degree Entailment (FDE) arose out of the study on relevance logics. It can
be interpreted in two ways: (i) as the study of the validity of formulae of the form
A — B, where — is Anderson and Belnap’s relevant implication [8] and A, B are
implication-free formulae; (ii) as the study of the notion of relevant deducibility be-
tween standard formulae built-up from the usual connectives. In this second in-
terpretation, FDE is associated with the problem of obtaining sound information
from possibly inconsistent databases. On the basis of work of Dunn [e.g., [70] and
an observation by Smiley (in correspondence), Belnap [30} BI] gave an interesting
semantic characterization of FDE in terms of a 4-valued logic, and also pointed out
its usefulness as the logic in which “a computer should think”. This characterization
has become not only the standard semantics of FDE, but also its standard presen-
tation. In this section we first briefly recall Belnap’s 4-valued semantics. Then, we
also recall shortly the semantics justifying the intuitive reading of the 4 truth-values;
namely, Dunn’s 2-valued relational semantics.

4.2.1 Belnap’s 4-valued semantics

Deductive reasoning—interpreted as a process of revealing “hidden” information from
explicit data—is a basic tool in the area of “intelligent” database management or
question-answering systems. In turn, databases have a great propensity to be in-
complete and become inconsistent: what is stored in a database is usually obtained
from different sources which may provide only partial information and may well con-
flict with each other. Besides, even if the information obtained from each source is
not explicitly inconsistent, it may “hide” contradictions.
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For a matrix to characterize a logic adequate for making deductions with infor-
mation that might be both inconsistent and partial, at least 4 different values are
needed [see 19]. The most popular and well-motivated such a 4-valued matrix is
precisely Belnap—Dunn(—Smiley)’sH In turn, the interpretation of the corresponding
4 truth-values suggested by Belnap is epistemic or informational. Concretely, the
set of those truth-values—originally, called “told values” by Belnap to emphasize
their epistemic character—is {t, f,b,n} and is denoted by 4. These truth-values are
interpreted as four possible ways in which an atom p can belong to the present state
of information of a computer’s database, which in turn is fed by a set of equally
“reliable” sources: t means that the computer is told that p is true by some source,
without being told that p is false by any source; f means the computer is told that p
is false but never told that p is true; b means that the computer is told that p is true
by some source and that p is false by some other source (or by the same source in
different times); n means that the computer is told nothing about the truth-value of
p. As explained below, these four truth-values form two distinct lattices, depending
on whether we consider the partial information ordering induced by set-inclusion (ap-
proximation lattice) or the partial ordering based on “closeness to the truth” (logical
lattice). The information ordering is the one according to which the epistemic state
of the computer concerning an atom can evolve over time. As Belnap points out:

When an atomic formula is entered into the computer as either affirmed or
denied, the computer modifies its current set-up by adding a “told True” or
“told False” according as the formula was affirmed or denied; it does not
subtract any information it already has [...] In other words, if p is affirmed, it
marks p with t if p were previously marked with n, with b if p were previously
marked with f; and of course leaves things alone if p was already marked either
t or b. [30, p. 12]

(Warning: do not confuse the values in 4 with true and false. The latter are local
values referring to the information coming from a source, the former are global values,
summarizing the epistemic state of the computer with respect to all the sources.)

A set-up is simply an assignment to each of the atoms of exactly one of the values
in 4. The truth-values of complex formulae are obtained by means of considerations
of monotony in an order, related to “Scott’s thesis” about approximation lattices
[30]. Mathematically, these lattices are just complete lattices; however, they also

L As is well known, it was T. J. Smiley who shown (in correspondence) that 4 values are sufficient
to characterize the logic in question, and introduced the corresponding truth-tables below—though
using numbers instead of names for the values and intending his result as merely technical. For the
history of the semantics of FDE see [72].

94



4.2. FDE interpreted informationally

t/b\f
%

Figure 4.1: A4

BT e
e+ e+ e+ | e+
5 T ot
=+ T T T
5 &+ B B
S T mn et >
5 T mh ot
e e e e
= O - T T
5 e B|s
SD-Haﬁ‘J?

SU‘H‘H—;‘

Table 4.1: FDE-tables

satisfy a non-mathematical condition dictating that it must be appropriate to read
x C y as “x approximates y”. Besides, in the presence of these lattices, the functions
between them that are taken into account are uniquely the continuous ones—since
these are the only functions which respect the lattices qua approximation lattices.
Furthermore, in the finite case, for a function to be continuous is just for it to be
monotonic. Thus, the truth-values of complex sentences in Belnap’s characterization
of FDE are established by considering an approximation-lattice known as A4, and
where x C4 y is interpreted as “approximates the information in”. This lattice can be
depicted as in Figure (where C4 goes uphill). Here we do not repeat the longish
considerations based on that led Belnap to establish the truth-value of complex
sentences. Instead, we just recall their result; namely, the truth-tables in Table
(which correspond to those given by Smiley, [cf. 8])E]

These truth-tables constitute in turn a logical lattice, which is known as L4 and
whose associated partial order we shall denote by © <4 y. This lattice has conjunction
as meet and disjunction as join, and can be depicted as in Figure (where <4 goes
uphill).

2The considerations at issue are presented in full detail in [30].
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Now, using the truth-tables, every set-up can be extended to a function of all
formulae into 4 in the usual inductive way. That is, given a set-up s, we extend s to
a valuation function v : F(L£) — 4, where £ = {V, A, =}, as follows:

v(AV B) = V(v(A),v(B))
V(AN B) = Av(A),v(B))

v(=4) = =(v(4))

We call this function a 4-valuation. It establishes how the computer is to answer
questions about complex formulae based on a set-up. While answering questions on
the basis of a given epistemic set up is computationally easy, we don’t have a logic
yet. As Belnap puts it, we “want some rules for the computer to use in generating
what it implicitly knows from what it explicitly knows”, i.e., we need a logic for
the computer to reason. Sticking to Belnap’s original presentation [30, 31], the
consequence relation of this semantic characterization of FDE is:

Definitions 4.2.1. A entails B, denoted by A — B, iff for every 4-valuation v,
v(A) 24 v(B). In turn, I entails A, T Eppg A, iff the conjunction of all formulae in
I entails A.

Notation 4.2.2. To simplify reading, in what follows we shall omit the subscript
‘FDE’ in IZFDE'

Nevertheless, there is an equivalent way to define such a consequence relation
that fits better our approach to FDE below. To present that alternative definition,
we need first to introduce the following terminology:

Definition 4.2.3. Given a 4-valuation v, we say that A is:

o at least true under v if v(A) =t or v(A) = b;
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» non-true under v if v(A) =f or v(A) = n;
o at least false under v if v(A) = for v(A) = b;
o non-false under v if v(A) =t or v(A) = n.

Definition 4.2.4. I' F A iff for every 4-valuation v, (i) if all the formulae in I' are
at least true under v, then A is at least true under v, and (ii) if all formulae in I" are
non-false under v, then A is non-false under v.

Proposition 4.2.5. The definitions of T' E A given in Def. and Def. are
equivalent.

Proof. By definition of <4, for every 4-valuation v, v(A; A ... A A,) <4 v(B) iff the
following four conditions hold for every 4-valuation v: (1) if v(A; A ... AN A,) =t
then v(B) = t; (2) if v(A; A ... AN A,) = b, then v(B) =t or v(B) = b; (3) if
v(A1 A oA A,) =n, then v(B) =t or v(B) = n; (4) if v(A; A ... A A,) = £, then
v(B) = t, or v(B) = b, or v(B) = n, or v(B) = f. However, the truth-value f for
v(A; A ... A A,,) does not actually imply a condition for the truth-value of B (since,
in such a case, B can take any of the truth-values), and so we can get rid of (4).
Now, conditions (1)-(3) hold for every 4-valuation v iff for every such a valuation,
if v(A; N NA,) =t orv(A A...ANA,) =Db, then v(B) =t or v(B) = b; and if
V(AT A AN A =t orv(AL A LA A,) = n, then v(B) =t or v(B) = n. Finally,
by the truth-table of A, the latter holds iff for every 4-valuation v, (i) if for each A;
v(A;) =t or v(A;) = b, then v(B) =t or v(B) = b, and (ii) if for each A; v(4;) =t
or v(A;) =n, then v(B) =t or v(B) = n. O

Still, the most common is to define I' E A based on a corresponding matrix, as
any many-valued logic and in terms of preservation of designated truth-values. Thus,
Belnap-Dunn’s matrix, My, is defined as follows:

Definition 4.2.6. Let My be a matrix for £, where V = 4, D = {t,b} and the
functions in O are defined by the truth-tables in Tab. [4.1]

Definition 4.2.7. A 4-valuation is a function v : F/(L) — 4 such that for all A, B:
1. v(=A) = 3(v(A));
2. v(Ao B) =5(v(A),v(B)).

Where o is V or A.

The consequence relation is then defined as follows:
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Definition 4.2.8. I' F A iff for every 4-valuation v, if v(B) € {t,b} for all B € T,
then v(A) € {t,b}.

That it suffices to mention truth-preservation for characterizing the logical con-
sequence in question was shown already by Dunn [70]. Specifically, he pointed out
that if some inference fails to always preserve non-falsity, then it can be shown that
it also fails to preserve truth. This is easy to see if one takes a set-up which switches
b and n but leaves t and f alone, and observes that—owing to the logical symmetry
between b and n—the truth-value of any complex formula has the same feature.

4.2.2 Dunn’s 2-valued relational semantics

Dunn [70] introduced the idea of a valuation not as a function but as a relation
from formulae to the classical truth-values true and false. This allows formulae to
be related to just true, to just false, to both, or to neither. Specifically:

Definition 4.2.9. A 2-valuation is a relation n C At(L) x {true, false}. Given a
2-valuation 7, this is extended to a relation n C F(L) x {true, false} satisfying:

AV Bntrue iff Antrue or B true;
AV B false ifft An false and B false;

AN Bntrue it Antrue and Bn true;
AN B false ifft An false or B false;

= Antrue ift An false;
—An false ift Antrue.

Definition 4.2.10. A entails B iff for all 2-valuations 7, if Antrue, then Bn true.
In turn, I' entails A iff the conjunction of all formulae in I' entails A.

Remark 10. It is well known that 4-valued semantics and 2-valued relational seman-
tics are equivalent. Besides, the latter justifies the intuitive reading of the 4 truth-
values of the former in that the set 4 can be seen as the powerset of {true, false};
where, t = {true}, f = {false}, b = {true, false}, and n = ). Further, Dunn [70] also
interprets a sentence being related to both or neither of the classical truth-values in
an epistemic—non aletheic—sense. Namely, Dunn does not claim that there are sen-
tences which are in fact both true and false, nor sentences which are in fact neither
true nor false. He rather points out that, for instance, there are plenty of situations
where agents suppose, assert, believe, etc., contradictory sentences to be true. So,
sentences being both true and false may express the contradictory nature of some of
the agents’ beliefs, assertions and so on.
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4.3 Proof-theory of FDE, LP and K3 revisited

In this section we briefly recall some proof systems for FDE, LP and Kz. Our
exposition of these systems is given in somewhat informal terms since the formal
definitions are to be found in the original references. Some of the systems, as well as
ideas thereof, are closely related to the approach we shall take to defining tractable
approximations to the three many-valued logics. However, as shown by the hard ex-
amples introduced in Subsection [3.3.3] a crucial difference between the tableau meth-
ods to be recalled and the intelim methods introduced below—as well as KFE-style
and KI-style systems—is that the latter have an exponential speed-up on the for-
mer. Roughly, the reason of this is that while the tableau methods have operational
branching rules that imply a good deal of redundant branchings in the correspond-
ing tree, the intelim methods have only structural branching rules that reduce the
amount of branching to a minimum by making all branches mutually exclusive. In
the overall context of the Thesis, another important difference between the tableau
methods and the intelim methods—and, in fact, cut-based systems in general—is
that since in the former cut is eliminable, no approximations can be defined by con-
trolling the application of the cut rules. Further, regardless computational efficiency
issues, the natural deduction systems to be recalled below do not comply with a key
idea underlying depth-bounded approximations, according to which the meaning of
a logical operator is fixed only in terms of actual information. This given that, in the
natural deduction systems, some of the (operational) “discharge” rules make essential
use of virtual information.

4.3.1 Hilbert-style system

The first characterization of FDE is due to Belnap [32]. Namely, first degree entail-
ments are formulae of the form A — B, where A and B contain at most disjunction,
conjunction, and negation. Belnap provided an axiom system that exactly captures
the provable first degree entailments of the Anderson-Belnap system E of relevant
entailment [8], which we reproduce in Table [4.2]F| Then:

Definition 4.3.1. A is provable from I' if there is a finite sequence By, ..., B,, A
(n > 0) such that for each formula in the sequence either (i) it belongs to I', (ii) it
is an instance of an axiom schema, or (iii) it results from an application of a rule to
preceding formulae in the sequence.

3Note that all these axioms are actually axiom schemata. That is, one can substitute arbitrary
formulae for A, B, C, obtaining instances of axioms.
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Axiom schemas: Rules:
« A= AVB A— B, B—C
« B AVB A=C
« ANB— A . A—C, B—C
AVvB—=C
« ANB— B
« AN(BVC)—= (AANB)VC ., A=2BA=C
A— BAC
QA%—|—|A
A— B
+ A=A * B> A

Table 4.2: Hilbert-style system for FDE

4.3.2 Natural deduction

In the literature there are natural deduction systems that are closely related to the
systems that we shall introduce for the first time in this Chapter. For instance,
the introduction and elimination rules displayed in Tab. constitute a Gentzen-
Prawitz style system for FDE due to Priest [128]. The vertical dots appearing in one
of the rules stand for a proof of the formula below the dots depending on assumptions
that may include those enclosed in square brackets. The latter are “discharged” by
the application of the rule under consideration, in the sense that the conclusion no
longer depends on them, but only on the yet undischarged assumptions that occur
in the leaves.

Definitions 4.3.2. We say that a proof of A depending on I is a tree of occurrences
of formulae constructed in accordance with the rules in Tab. [£.3] such that A occurs
at the root and I' is the set of all undischarged assumptions that occur at the leaves.
In turn, A is deducible from T if there is a proof of A depending on some A C T

Now, in [I128] Priest provided also systems for LP and K3 by simply and respec-
tively adding, to the rules in Tab. [4.3] one of the following rules{Y]

4Since the meaning of A — B in these logics can be expressed by —A V B, rules for implication
are straightforwardly obtained.
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[A] [B]
A B AV B c c
AV B AV B C
A B ANB ANB
ANB A B
-AAN-B —\(A\/B) -AV-B
—\(A\/B) -AN-B —\(A/\B)
~(A A B) A A
-AV-B ——A A

Table 4.3: Gentzen-Prawitz style natural deduction rules for FDE

AN-A
AV -A B
Additional rule for LP Additional rule for K3

Alternative natural deduction systems for FDE were given by Voishvillo [I53],
and Tamminga and Tanaka [142]. Regarding LP, essentially the same system was
reintroduced by Kooi and Tamminga [106]. As for Ks, essentially the same system
was reintroduced by Tamminga [141]. Besides, alternative Fitch-style systems for
the three logics were given by Roy [132].

4.3.3 Tree methods and signs

The first tableaux for FDE are due to Dunn [70]. He introduced a direct-proof
tableau system based on a modification of Jeffrey’s method of (classical) “coupled
trees” [103]. Dunn’s system rules, recalled in Tab. [£.4] are syntactically identical to
the rules of the unsigned version of Smullyan’s classical tableaux [138]. Thereby:

Definitions 4.3.3.

o Given two formulae A and B, a pair T' = (T, Ty) is a tableau for (A, B) if
there are two finite sequences (71, ..., T,), (T/,...,T.}) such that T; and 7{ are
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AV B -(AV B) ANB -(AA B) —~—A
A| B —A A -A | -B A
-B B

Table 4.4: Coupled trees rules

one-point trees whose root is respectively A and B, T,, = T; and T, = Ty, and
for each @ < n and i < m, T;;1 and T ; results, respectively, from 7; or 7/ by
an application of a rule to preceding formulae in the same branch. We refer to
T as top tree and to T, as bottom tree.

o T is complete if T; and T, cannot be further expanded (by applications of the
rules).

o Given a tree T, a path in T is a finite sequence of nodes such that the first node
is the root of 7 and each of the subsequent nodes is an immediate successor of
the previous one.

e A path a in a tree T covers a path b in a tree T if every atomic formula p or
negated atomic formula —p that occurs in b occurs also in a.

o B s provable from A if there is a complete tableau T for (A, B) such that every
path in 7; covers some path in 7.

A is provable from I' if A is provable from the conjunction of all formulae in I'.

Now, to the best of our knowledge, the first proof systems for FDE based
on signed formulae (S-formulae, for short)—in which the signs stand for sets of
truth-values instead of single truth-values—are two refutation tree systems due to
D’Agostino [53]. Soon after, Fitting [82] introduced a direct-proof tableau system
for FDE, which is based on the same use of S-formulae. In fact, in the same pe-
riod, a general method to use signs as sets of truth-values suitable for any finite-
valued propositional logic was provided by Hahnle [93]. The key idea underlying
that use is to increase the expressivity of the signs and, thus, significantly decrease
the number of new branches per rule application. Later on, Avron [I5] used four
signs—interpreting them as intuitively corresponding to positive/negative informa-
tion concerning truth/falsity—to provide tableaux for a diversity of logics; including
FDE, all 3-valued logics, and some logics that do not have finite characteristic ma-
trix.
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Unlike Dunn’s coupled trees, D’Agostino’s systems [53] use one tree only. The S-
formulae, in terms of which those systems are formulated, are expressions of the form
TA FA T"A, F* A, where A is an (unsigned) formula. We write TT for {T A|A €
I'}. Besides, we use o, 1,0, ..., possibly with subscripts, as variables ranging over
S-formulae; and X,Y, Z, ..., possibly with subscripts, as variables ranging over sets
of S-formulae. Intuitively, we interpret: T A as “A is at least true”, F A as “A is
non-true”, T* A as “A is non-false”, and F* A as “A is at least false”. Formally, given

Def. {23t

Definition 4.3.4. A 4-valuation v realizes an S-formula

T A if A is at least true under v;

F A if A is non-true under v;

T* A if A is non-false under v;

o F*Aif A is at least false under v.

A set of S-formulae X is said to be realizable if there is a 4-valuation v which realizes
every element of X.

So, the S-formulae are associated with two distinct bipartitions of the set of
4 truth-values of the standard interpretation of FDE. In turn, we say that the
conjugate of T A is F A and vice versa, and that the conjugate of T* A is F* A and
vice versa. Besides, we say that the converse of T is T* and vice versa, and that the
converse of F is F* and vice versa.

Thereby, the first system introduced by D’Agostino has the rules in Tab.
which are formally analogous to the rules of the signed version of Smullyan’s classical
tableaux. Then:

Definitions 4.3.5.

o Given a set of S-formulae X = o1, ..., v, we say that T is a tableau for X
if there exists a finite sequence (77, ...,7,) such that 7; is a one-branch tree
consisting of the sequence (1, ..., pm), Tn = T, and for each i < n, T;y; results
from 7; by an application of a rule to preceding S-formulae in the same branch.

o A branch of a tableau is closed if it contains both an S-formula and its conju-
gate.

o A tableau is closed if all its branches are closed.
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TAANB T ANB FAV B F*AvV B
TA T A FA F*A
TB B FB F*B

FAANB F*AANB TAVEB T"AV B

FA[FB FAFB TA[TB T AT B

T-A F-A T -A F-A

F* A T A FA TA
Table 4.5: First Smullyan-style tableaux rules

o Ais provable from T if there is a closed tableau for TI' U {F A}.

Now, essentially the same tableau refutation system was reintroduced by Bloesch
[39], who used it for both FDE and LP. Besides, a system differing only notationally
and used for FDE, LP and K3, was given by Priest [127]. Further, the same system
was once again reintroduced by Fitting in [83], where it is used for FDE.

In turn, Fitting’s system for FDE in [82], although formulated using essentially
the same S-formulae above, is closer to Dunn’s coupled trees method. Besides, in [82]
only two signs, T and F, are used (explicitly) and a different convention on them is
followed. Namely, a signed formula is an expression of the form T A or F A, where
A is a formula and which is intuitively and respectively interpreted as “A is at most
true”—meaning that v(A) = t or v(A) = n—and “A is at most false”—meaning
that v(A) = f or v(A) = nf| The tableau system introduced by Fitting in [82] allows
us to test formulae for equivalence. More specifically, it allows us to test whether a
pair of formulae have the same truth-value under any 4-valuation. Since only the
signs T and F are used, the corresponding rules, shown in Tab. [4.6] are syntactically
identical to the rules of the signed version of Smullyan’s classical tableaux. Thereby:

Definitions 4.3.6.

o Given two formulae A and B, we say that A restricts B if under any 4-valuation,
if A is at most true so is B. A requires B if under any 4-valuation, if A is at
least true (meaning that v(A) =t or v(A) = b) so is B.

o A tableau for an S-formula ¢ is a tree of S-formulae constructed in accordance
with the rules in Tab. starting from ¢.

5These, of course, respectively correspond to “A is non-false” and “A is non-true” above.
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TAAB FAVB FAAB TAVB T-A F-A
TA FA FA[FB TA[TB FA TA
TB FB

Table 4.6: Second Smullyan-style tableaux rules

o A tableau is complete if every non-atomic formula occurrence has had the
appropriate rule applied to it, on the corresponding branch.

e If a and b are tableau branches, a subsumes b if every signed atomic formula
on b also occurs on a.

o If 7 and 7' are complete tableaux, T covers T if each branch of 7 subsumes
some branch of 7.

Then Fitting proved:

Proposition 4.3.7 ([82]). Let A and B be arbitrary formulae.
o A restricts B iff a complete tableau for T A covers a complete tableau for T B.
o A requires B iff a complete tableau for F B covers a complete tableau for F A.

o A and B are equivalent iff each restricts and requires the other[]

4.3.4 KE-style trees: RE;g,

Now, we give special attention to D’Agostino’s second refutation system in [53] since
it constitutes part of the proof-theoretic basis for defining our hierarchy of approx-
imations to FDE, LP and K3. This system was introduced as a more efficient
alternative to other proof systems for propositional and first-order FDE, and was
baptized RFEyq4 since it is based on K'FE. Again, the hallmark of K E—inherited
by REq.—is the reduction of the amount of branching to a minimum by making
all branches mutually exclusive. Accordingly, RE4 has only two branching rules
expressing a generalized rule of bivalence and the rest of its rules have all a linear

format.lZ] The propositional rules of RE 4. are recalled in Tab.

6Clearly, the method can be used to check the validity of arguments by, in turn, checking
whether the conjunction of all the premises and the conclusion are equivalent.

"Generalizations of the rule of bivalence have been fruitfully used in the context of many-valued
and substructural logics [see [94], [42], [62].
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FAAB FAAB F*AANB F*AANB
TA TB T A B
FB FA F*B F*A

TAANB TAANB T"AANB T"AANB
TA TB T A B

TAVEB TAV DB T*AV DB T*AV DB

F A FB Fr A F* B
TB TA T B T A
FAV B FAV B FrAV B F*AV B
FA FB FA F B
T-A F-A T —A Fr—A
F A T A FA TA

TA|FA T"A|FA

Table 4.7: Propositional RFE4 rules
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« (0751 (6)
TAANB | TA | THB
FAVB | FA | FB 3 B | By
T-A F*A|F A FAANB | FA | FB
F-A T"A| T A TAvVB | TA | TB
T"ANB | T*A|T*B F*FAANB | FFA|F'B
F*AVB | FFA | FB T"AVB | T*A|T*B
T —-A FA | FA
F*=A TA | TA

Table 4.8: Unifying notation

Thus, (the propositional fragment of) RE4 consists of: (i) elimination rules for
the connectives; (ii) two structural rules that allows us to respectively append T A
and FA, or T" A and F* A as sibling nodes at the end of any branch of a tree, gen-
erating two new (mutually exclusive) branches. The latter are essentially cut rules
which are not eliminable, and are respectively called PB and PB* given their rela-
tion with a generalized Principle of Bivalence. Indeed, RE4. is more efficient than
other proof systems because the application of PB and PB* allow us to avoid many
redundant branchings in the refutation trees. Now, for succinctness, (an extension
of) Smullyan’s unifying notation [I38] was used in [53] as shown in the Table [4.8]

Thereby, the elimination rules can be “packed” into the following four types of
rules (where 3!, i = 1,2 denotes the conjugate of 3;):

Rule Al @ Rule A2 &
(071 %)
B B
Rule B1 B1 Rule B2 B4
Ba b1

In each application of the corresponding rules, the S-formulae o and [ are called
major premises; whereas, in each application of rules of type Bl and B2 the S-
formulae g, i = 1,2 are called minor premises (rules of type Al and A2 have no
minor premises. )

Definitions 4.3.8.
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o Let X = {p1,...., om}. Then T is an REjg.-tree for X if there exists a finite
sequence (71, 7z, ..., T,) such that 77 is a one-branch tree consisting of the se-
quence (©1,...,om), Tn = T, and for each ¢ < n, T;;; results from 7; by an
application of an elimination rule to preceding S-formulae in the same branch,
or by an application of PB or PB*.

« A branch of an RFEyg-tree is closed when it contains an S-formula and its
conjugate; otherwise it is open.

o The tree itself is said to be closed when all its branches are closed.

« A formula A is provable from the set of formulae I' iff there is a closed RE} .-
tree for TT'U {F A}.

Now we recall the proof of the completeness of RFEy4. yielding the subformula
property of the system given in [53]. We also prove soundness stated there without
proof. For soundness, Def. [4.2.3] and [4.3.4] as well as the following lemma are
required:

Lemma 4.3.9. If T is a closed REq.-tree for X, then the tableau T', obtained
from T by replacing every (occurrence of an) S-formula with (an occurrence of) its

converse, is a closed REq.-tree for the set X* of the converses of the S-formulae in
X.

Proof. We use the notation T to denote either an empty intelim tree or a non-

empty intelim tree such that ¢ is one of its terminal nodes. Let 7 be a closed
REg.-tree for X. We proceed by induction on the number of nodes in 7, denoted
by A(T):

» Base case: Suppose that A(7) = 2. Then T consists of only two assumptions
and so either X = {TA,FA} or X = {T*A F* A}, for some A. Thus, in
either case, T’ is a closed tableau for, respectively, X* = {T* A, F* A} or X* =
{T A,F A} for some A.

« Inductive hypothesis: Suppose that if 7 is a closed REj4-tree for X and
NT) =k, with k > 2, then 7" is a closed RE4-tree for X*.

o Induction step: Let \(T) = k + 1. Thus, if 7 consists only of assumptions,
then the argument is analogous to the case involving only two assumptions
(clearly, if the 7th and jth nodes of T correspond to conjugate elements in X,
the ith and jth nodes of 7" correspond to conjugate elements in X*). Now, if
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T contains applications of rules, then there are 22 cases depending on which
rule has been applied in the last inference of 7. We consider only the case in
which the rule is an elimination of disjunction, the other cases being similar.
Thus, suppose that 7 has the following form:

Tn-1
FA

(where F AV B lies on the same branch that F A). Now, by inductive hypothesis,
if T,—1 is a closed RE4-tree for X, 7, is a closed REq-tree for X*. In
turn, by hypothesis, if 7, is not a closed REj4-tree for X, T is. Thereby,
the tableau 7”7 with the form:

!
n—1

F*A

(where F* AV B lies on the same branch that F* A.) is a closed REq,-tree for
X*.

]

Proposition 4.3.10 (RE4-soundness). If T is a closed RE4.-tree for TTU{F A}
or for T*"T'U{F* A}, then T E A.

Proof. 1t is easy to see that all the rules of RE4 are correct in the sense that
every 4-valuation which realizes the premise of a rule of type A realizes also the
conclusion of the rule, and every 4-valuation which realizes the premises of a rule of
type B realizes also the conclusions of the rule. As for PB and PB*, any 4-valuation
realizes, of course, exactly one of the conclusions of the corresponding rule. Thereby,
it follows, by an elementary inductive argument, that if a 4-valuation v realizes all
the initial S-formulae of a REq.-tree T, then there is exactly one branch b of 7" such
that v realizes all the S-formulae occurring in b. However, of course, no 4-valuation
can realize two conjugate S-formulae simultaneously. Thus, if 7T is a closed REq,-
tree, no 4-valuation can realize all the initial S-formulae of 7. Hence, if T is a closed
RE}ge-tree for TI'U {F A}, it follows that for every 4-valuation v, A is at least true
in v whenever all formulae in I' are. Moreover, it follows from lemma that no
4-valuation can realize T*I" U {F* A}. So, for every 4-valuation v, A is non-false in
v whenever all the formulae in I are. Therefore, by def. [£.2.4 T E A. O
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Now, in order to prove completeness, the following notions were introduced in
[53]:

Definitions 4.3.11. A branch b of a RE4-tree T is complete if (i) for every a in
b both «; and ay occur in b and (ii) for every [ in b at least one of f;, B2 occurs in
b. In turn, an RE4-tree T is completed when every branch of T is complete.

Next, we have the following proposition:
Proposition 4.3.12. Fvery complete open branch of any RE¢q.-tree is realizable.

This proposition follows immediately from an analog of Hintikka’s lemma within
our framework. So, we first define an analog of Hintikka sets within our framework:

Definition 4.3.13. A set of S-formulae X is an R-Hintikka set iff it satisfies the
following conditions:

e Hy: No signed variable and its conjugate are both in X.
e Hi: If € X, then a; € X and ay € X.
o Hy: If € X, then 5, € X or By € X.

It follows from the definitions above that the set of S-formulae in a complete open
branch of any REj4-tree is an R-Hintikka set.

Then Proposition [4.3.12 follows immediately from the following lemma:
Lemma 4.3.14 ([53]). Every R-Hintikka set is realizable.

Proof. Let X be an R-Hintikka set. Let us assign to each variable p which occurs in
at least an element of X a value in 4 as follows:

e If Tpe X and F*p ¢ X, give p the value t.
e If Tpe X and F*p € X, give p the value b.
e If Fpe X and T*p ¢ X, give p the value f.
e If Fpe X and T*p € X, give p the value n.
e If T*pe X and Fp ¢ X, give p the value t.

e If F*fpe X and Tp ¢ X, give p the value f.
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Now, it is obvious that the 4-valuation induced by this assignment realizes all the
signed variables occurring in X. Thus, we only need to observe that:

(i) If a 4-valuation realizes both a; and as, then it realizes also a.
(ii) If a 4-valuation realizes at least one of 3; and (35, then it realizes also f.

The lemma then follows from an easy induction on the degree of the S-formulae in
X. O

We still require a couple of definitions to show the completeness of RE4. The
following introduces a notion akin to the notion of R-Hintikka set:

Definition 4.3.15. A set of signed formulae X is an R-analytic set iff it satisfies
the following conditions:

Ap: No signed variable and its conjugate are both in X.

A If a € X, then a; € X and oy € X.

Ay If f € X and ] € X, then 5, € X.

Ag: If f € X and ) € X, then 3, € X.

Note that an R-analytic set differs from a R-Hintikka set in that it may be the case
that for some [ in the set neither 5, nor 3y are in the set.

Definition 4.3.16. An R-analytic set is S-complete if for every 5 € X either of the
following two conditions is satisfied:

o cither 8, € X or 3] € X;
 ecither g, € X or 3, € X.
Then it is easy to verify that:

Fact 4.3.17. If X is an R-analytic set and X is 5-complete, then X is an R-Hintikka
set.

Now, completeness follows from Fact [4.3.17] and Prop. [4.3.12

Proposition 4.3.18 (REjq4-completeness). If I' = A then there is a closed
RE4.-tree for TI'U {F A}.
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This proof of the completeness of RE 4. yields the subformula property (SFP) as
a corollary.

Corollary 4.3.19 (Analytic cut property). If there is a closed RE4.-tree T for
X, then there is a closed REq.-tree T' for X such that the rules PB and PB* are
applied only to subformulae of S-formulae in X.

As pointed out in [53], in fact, the proof above shows that, when applying the
branching rules, only the immediate signed subformulae of signed formulae of type
occurring above in the same branch and that have not been already “analysed” need
to be considered f] Now, given that the elimination rules are obviously analytic, it
follows that:

Corollary 4.3.20 (SFP). If there is a closed REq.-tree T for X, then there is a
closed REqe-tree T' for X such that every S-formula occurring in T' is a signed
subformula of S-formulae in X.

In Lemma below we shall prove a more general version of the SFP by means
of proof transformations.

4.4 The need for imprecise values

For the unrestricted language allowing arbitrary formulae involving A,V and —, the
decision problem for FDE’s consequence relation is co-NP complete [see 148, [10].
This fact follows from the celebrated result by Cook [47] showing that CPL is co-NP
complete, together with the fact that the decision problem of inconsistency in CPL
can be reduced to the decision problem of entailment in FDE. The latter specifically
as follows:

Proposition 4.4.1. T is classically inconsistent iff I' = (py A=p1) V (pa A—pa) V...V
(pn N\ —pp), where pq, ..., p, are the atoms occurring in T.

Proof. By definition, I' is classically inconsistent iff there is no classical valuation,
v : F(L) — {true, false}, such that v(A) = true for all A € T'. In turn, also by
definition, this holds iff for every 4-valuation, v : F(£) — {t,f, b,n}, such that
v(A) € {t,b} for all A € I, v(A) = b for some A € I and so, by the FDE-tables,
v(p;) = b for some p; occurring in I'. Thus, by the FDE-tables for — and A, this holds

8Where we extend the definition of immediate subformula to signed formulae in the obvious
way.
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iff for every 4-valuation v such that v(A) € {t,b} for all A € I, v(p; A =p;) = b for
some p; occurring in I" and so, by the FDE-table for V, v((p1 A—p1) V...V (pa A—py)) €
{t,b}. Hence, the latter holds iff I' & (p1 A =p1) V ... V (pn A —pp). O

This situation brings us to the need for tractable approximations. In the next
section we shall present a sort of natural deduction system for FDE based on two
key observations.

First, as is implicit in the quotation from Belnap in Subsection [£.2.1] the values
in 4, except for b, cannot be taken as stable. An epistemic set up is just a snapshot
of an epistemic state that evolves over time. If we want to consider the truth-values
t, f, n as stable we need to assume complete information about the set of sources
). Namely, while the meaning of b is “there is at least a source assenting to p and
at least a source dissenting from p” (which is information empirically accessible to x
in the sense that  may hold this information without a complete knowledge of ),
the meaning of t, f and n involves information of the kind “there is no source such
that..””, and so requires complete information about the sources in §2, which may not
be empirically accessible to x at any given time. What if the agent does not have
such a complete knowledge about the sources? For instance, the agent may well be
receiving information from an “open” set of sources as they become accessible (even
if the information coming from each single source is assumed to be robust). In such
a case, the possibility for an agent to come across a source falsifying “there is no
source such that...” is always open.

The situation just described is, of course, an instance of the general issue of the
conclusive verifiability and falsifiability of universally and existentially quantified em-
pirical claims [124, 23]. In particular, there cannot be any amount of observational
data that would conclusively verify a universal generalization—dually, conclusively
falsify an existential generalization. For, nothing guarantees that there is a fixed
number of examples, let alone that all examples are accessible to the agent. So,
“there is a white raven” is not conclusively falsifiable since, after all, nothing pre-
vents the agent to come across a white raven; and, dually, “there is no white raven”
is not conclusively verifiable. On the other hand, of course, scientists dramatically
make that kind of claims and work with them: although our world is an endless
source of empirical data and some data may well be non-accessible, scientists as-
sume the content of their non-conclusively verifiable claims for a variety of reasons.
Furthermore, naturally, this situation is not exclusive of science but we can think
of several and diverse settings. To mention a practical one, consider a poll raised
regarding the efficacy of a brand new vaccine. An agent collecting and processing the
data may well lack information from some sources—say, some sources do not answer
or it is not logistically viable to ask all the sources. However, the agent might be in
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a position in which she has queried all, say, relevant and competent sources.

Therefore, despite their informational nature, three of the values in 4 are infor-
mation-transcendent when interpreted as timeless. They refer to an objective state
of affairs concerning the domain of all sources, that may well be inaccessible to the
computer at any given time. This motivates the need for a stable imprecise value
such as “t or b”, which is implicit in the choice of the set of designated values by
Belnap. Inspired by work of D’Agostino [53], and Fitting and Avron [81], 82 [15]
(briefly recalled in Section [4.3), we shall address this question by shifting to signed
formulae, where the signs express such imprecise values associated with two distinct
bipartitions of 4.

A second key observation is that, as suggested by Belnap [30} 3], there is no
reason to assume that an agent is “told” about the values of atoms only. As we shift
from objective truth and falsity to informational truth and falsity, this is a highly
unrealistic restriction. In most practical contexts we may be told that a certain
disjunction is true without being told which of the two disjuncts is the true one, or
that a certain conjunction is false without being told which of the two conjuncts is
the false one. As a simple example of the former situation, take the information
that Alice and Bob are siblings (either they have the same mother or they have the
same father); for the latter, take the information that Alice and Bob are not siblings,
i.e., for any individual x, the conjunction “x is a parent of Bob and z is a parent
of Alice” must be false, which amounts to saying that either the first or the second
conjunct is false, without necessarily knowing which. In the context of CPL, these
considerations naturally lead to a non-deterministic 3-valued semantics which was
anticipated by Quine, as we explained in Chapter 2. (See [57] for further references
and a discussion that includes an interesting quotation from Michael Dummett to the
effect that in non-mathematical contexts our information may well be irremediably
disjunctive in nature.)

These two observations prompt us to propose a proof-theoretical approach to
depth-bounded reasoning in FDE that is similar to the one taken in [61), 59, 58] for
CPL. Before addressing this issue, however, we shall provide in the next section a
proof-theoretical characterization of unbounded reasoning in FDE that will pave the
way for defining its tractable approximations.

4.5 Intelim deduction in FDE

In what follows we shall use signed formulae (again, S-formulae for short) as in-
troduced by D’Agostino in [53] and recalled in Sec. [£.3] However, we intuitively
re-interpret those S-formulae in terms of information that is actually possessed by
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an agent. Namely, denoting an agent with x and a 4-valuation with v, their intended
interpretation is respectively as follows: T A means “z holds that A is at least true”
(expressing that v(A) € {t,b}); FA means “x holds that A is non-true” (saying
that v(A) € {f,n}); T* A means “z holds that A is non-false” (v(A) € {t,n}); F*
means “z holds that A is at least false” (v(A) € {f,b})f] Crucially, S-formulae of
the form T A or F* A express information that z may hold even without a complete
knowledge of the set sources ). However, this is not the case of the other two types
of S-formulae which involve complete knowledge of €2 and so can only be assumed
hypothetically.

In turn, recall that the conjugate of TA is FA and vice versa, and that the
conjugate of T* A is F* A and vice versa. Besides, we write TI" for {T A|A € I'},
and use @, 1,8, ..., possibly with subscripts, as variables ranging over S-formulae;
and X, Y, Z, ..., possibly with subscripts, as variables ranging over sets of S-formulae.
Moreover, let us use ¢ to denote the conjugate of . Furthermore, let us use S as a
variable ranging over {T,F,T* F*} and with S denote: F if S=T, T if S =F,
F* if S = T*, and T* if S = F*. Finally, we say that the unsigned part of an S-
formula is the unsigned formula that results from it by removing its sign. Given an
S-formula ¢, we denote by ¢* the unsigned part of ¢ and by X the set {¢*|p € X}.
Note also that, for the reasons explained in the previous section, an agent may hold
the information that T A V B, but neither the information that T A nor that T B.
Similarly, she may hold the information that F* A A B, but neither the information
that F* A nor that F* B.

We identify the basic (0-depth) logic of our hierarchy of approximations with the
inferences that an agent can draw without making hypotheses about the “objective”
state of affairs concerning the whole of 2. In other words, without making hypothet-
ical assumptions that go beyond the information that she holds. We shall show that
a natural proof-theoretic characterization of this basic logic is obtained by means of
the set of elimination rules of RE 4., together with suitable introduction rules for the
connectives. We display all these rules in Table[d.9] and shall refer to them as intelim
rules. Note that the analogous 0-depth system for CPL in [59 58] (and recalled in
Chapter 3) is characterized by the intelim rules obtained by removing all the starred
signs, replacing them with the unstarred signs T and F, interpreted as “only true”
and “only false”, and eliminating duplicates. Observe also that the characterization
of the basic logic bears some resemblance with natural deduction, but does not have

9Similar approaches to FDE were given by Blasio [36] 37], and Shramko and Wansing [136].
However, those approaches were extended along very different lines and used for very different
purposes. Particularly, in those approaches there is no attempt to provide tractable approximations.
We thank Luis Estrada-Gonzélez for having pointed us at [136].
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T-(AvV B)®
T-0°
F*Av B
F*A

FC
FrAvVC
T-(AV(O)

Figure 4.3: An itelim sequence

discharge rules, since no hypothetical reasoning is involved. Besides, observe that
the intelim rules for disjunction and conjunction are dual of each other, and that
a sentence and its negation are treated in a symmetric way. Now, recall that in
the elimination rules, we refer to the premise containing the connective that is to
be eliminated as major and to the other premise as minor. In turn, given that the
intelim rules have all a linear format, their application generates intelim sequences.
Namely, finite sequences (@1, ..., p,) of S-formulae such that, for every i = 0, ..., n,
either ¢; is an assumption or it is the conclusion of the application of an intelim
rule to preceding S-formulae. In Fig. we show a simple example of an intelim
sequence, where each assumption is marked with an ‘@’.

The intelim rules are all sound, but not complete for full FDE. Indeed, as we
shall show below, these rules just characterize the basic logic in the hierarchy of
approximations. Completeness for full FDE is obtained by adding only the two
branching structural rules of REq., PB and PB*:

TA|FA T"A|FA

Recall that according to these rules, we are allowed to: (i) append both T A and F A
as sibling nodes to the last element of any intelim sequence; (ii) append both T* A
and F* A in a similar way. The intuitive meaning of these rules is that one of the
two cases must obtain considering the whole of {2 even if the agent has no actual
information about which is the case. In this sense, we call the information expressed
by each conjugate S-formula virtual information; i.e., hypothetical information that
the agent does not hold, but she temporarily assumes as if she held it.

As recalled in Chapter 3, for CPL only PB, with T and F interpreted as “only
true” and “only false”, makes sense and is sufficient for completeness. With the addi-
tion of PB and PB* to the stock of rules, deductions are represented by downward-
growing trees, which brings the method somewhat closer to tableaux. Each appli-
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FA FB F* A F*B
FAADB FAADB F*AANB F*AANDB
TA TB T A T B
TAVEB TAV B T AV B T*AvV B
TA FA T A F* A
TB FB T™B F*B
TAAB FAV B T*AAB F*Av B
TA FA T A F* A
F-A T4 FA T
FAADB FAADB F*AANB F*AANDB
TA TB T A B
FB FA F* B F* A
TAANB TAAB T*ANB T*AANDB
TA TB T A T B
TAVEB TAV B T AV B T*AvV B
FA FB F* A F*B
TB TA T™B T A
FAV B FAV B F*Av B F*Av B
FA FB F*A F*B
T-A F-A T -A F*-A
F* A T A FA TA

Table 4.9: Intelim rules for the standard FDE connectives
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cation of PB or PB* stands for the introduction of virtual information about the
imprecise value of a formula A, which we shall respectively call the PB-formula
or PB*-formula. Note once again that, whereas signed formulae of the form T A
and F* A are empirically obtainable, signed formulae of the form T* A and F A are
obtainable only by applying PB or PB*. In turn, the S-formulae TA, FA, T* A
and F* A appended via those branching rules will be all called virtual assumptions.
Now, as mentioned in Section 1.3, PB and PB* are essentially cut rules that may
introduce formulae of arbitrary degree. However, as we will show in Lemma
their application can be restricted so as to satisfy the subformula property (SFP).
Moreover, from our informational viewpoint, the main conceptual advantage of this
proof-theoretic characterization consists in that it clearly separates the intelim rules
that fix the meaning of the connectives in terms of the information that an agent
holds from the two structural rules that introduce virtual information (PB and PB*).

Intuitively, the more virtual information needs to be invoked via PB or PB*, the
harder the inference is for the agent, both from the computational and the cognitive
viewpoint. In this sense, the nested applications of PB and PB* provide a sensible
measure of inferential depth. This naturally leads to defining an infinite hierarchy of
tractable depth-bounded approximations to FDE in terms of the maximum number
of nested applications of PB and PB* that are allowed. Before giving definitions and
results, we remark that (i) unlike the branching rules of Smullyan-style tableaux,
our branching rules are structural in that they do not involve any specific logical
operator; (ii) as explained in Section , the elimination rules, together with the
branching rules, were early introduced in [53] as constituting a refutation method
for full FDE called REf4. So, the completeness of REyq. trivially implies the
completeness of the system presented in this Chapter. However, our intelim method
can be used as a direct-proof method as well as a refutation method, and leads
to more powerful approximations. A direct completeness proof can also be given
based on the semantics, which implies the subformula property. In Lemma we
choose to prove a more general version of the subformula property by means of proof
transformations.

Definitions 4.5.1.

o Let X = {®1,...,om}. Then T is an intelim tree for X if there is a finite
sequence (71, 7z, ..., T,) such that 77 is a one-branch tree consisting of the se-
quence (©1,..., m), Tn = T, and for each i < n, T results from 7; by an
application of an intelim rule to preceding S-formulae in the same branch, or
by an application of PB or PB*.

e A branch of an intelim tree is closed if it contains an S-formula ¢ and its
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conjugate ; otherwise, it is open.

e An intelim tree is said to be closed when all its branches are closed; otherwise,
it is open.

o An intelim proof of ¢ from X is an intelim tree 7 for X such that ¢ occurs in
all open branches of 7.

o An intelim refutation of X is a closed intelim tree T for X.

Note that every refutation of X is, simultaneously, a proof of ¢ from X, for
every . This because there are no open branches and so the condition that ¢
occurs at the end of all open branches is vacuously satisfied. This is, of course, a
kind of explosivity; but it regards signed formulae, and it is compatible with the
non-explosivity regarding formulae in FDE. The reason of that compatibility is
that a set consisting of S-formulae all of the form T A (i.e., formulae which the
agent holds that are all t or b) cannot lead to explosion because there cannot be
an intelim refutation of such a set. To begin with, starting from a set TI', there
is no way of obtaining S-formulae of the form F A or T* A by applying only intelim
rules. Starting from a set TI', the only way of obtaining formulae of such forms
is by applying PB or PB* and, thus, adding virtual information. Nonetheless, a
set TI' cannot lead to explosion even if we add virtual information when unfolding
the information contained in TI'. In fact, as the following result shows, for a set of
S-formulae X to lead to explosion it must contain (in itself) S-formulae of the form
FAor T* A, ie., virtual information.

Proposition 4.5.2. Any intelim tree for a set TI' has at least a branch containing
only S-formulae of the form T A or F*A.

Proof. We use the notation Z; to denote either an empty intelim tree or a non-

empty intelim tree such that ¢ is one of its terminal nodes. In turn, given an intelim
tree T for X, we denote the number of assumptions (i.e., S-formulae in X) and
outputs of applications of rules by 6(7). Now, let 7 be an arbitrary intelim tree for
TT. We proceed by induction on 6(7):

» Base case: Suppose that §(7) = 1. Then both 7 and TTI' consist of a single
S-formula T A, and trivially the single branch of 7 contains only S-formulae of
the form T A or F* A.

 Inductive hypothesis: Suppose that if 6(7) = k, kK > 1, then T has at least a
branch containing only S-formulae of the form T A or F* A.
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 Induction step: Let 6(7) = k+1. Thus, if 7 consists only of assumptions, then
the argument is analogous to that of the base case. Now, if k 4 1 refers to the
output of a rule, this output was appended to the last node of either a branch
of T,—1 containing S-formulae other than of the form T A or F* A (if any), or
a branch of 7, containing S-formulae only of the form T A or F* A (there is
at least one by the inductive hypothesis). In the former case, the proposition
trivially holds because, regardless of how that branch could be extended, T
still has a branch containing S-formulae only of the form T A or F* A. In the
latter case, there are 16 cases depending on which of the possible rules has
been applied. We consider only the cases in which the rule is an elimination
of negation with major premise F* = A, and PB*; the other cases being similar.
Tor o T
TA F*A’
branch preceding the respective terminal node displayed are of the form T A
or F* A. Therefore, given that by inductive hypothesis the proposition holds
for 7,,_1, it also holds for 7 = 7,.

Thus, T respectively is where all the S-formulae in the same

]

The above proposition implies that any intelim tree for a set TI' is open and,
thus, that there is no refutation of such a set. This fact regarding our proof-theoretic
characterization of FDE corresponds to the fact regarding its 4-valued semantics
according to which all the elements of any set of formulae can have a designated
truth-value. More specifically, it corresponds to the fact that for any formula A
there is a 4-valuation v such that v(A) = b; namely, v such that for all p € At,
v(p) = b. Note that a set TT' may well contain T A and T —A, or either of them
may well be obtained from that set by applying the rules; which precisely amounts
to the formula A having the truth-value b. However, that pair of S-formulae do not
close a branch.

Now, as mentioned above, PB and PB* may introduce formulae of arbitrary
degree. However, as in the classical case, the set of formulae that can be used as
PB-formulae or PB*-formulae can be bounded in a variety of ways without loss of
completeness. We call this set virtual space and define it as a function f of the set
'U{A}, consisting of the premises I" and of the conclusion A of the given inference.
The strictest way of bounding the virtual space consists in allowing as PB-formulae
only atomic formulae that occur in I' U {A}. A more liberal option is allowing only
subformulae of the formulae in 'U{A}. Specifically, let F be the set of all functions f
on the finite subsets of F'(£) such that: (i) for all A, at(A) C f(A); (i) f(A) is closed
under subformulae, i.e., sub(f(A)) = f(A); (iii) the size of f(A) is bounded above
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by a polynomial in the size of A, i.e., |f(A)| < p(JA]) for some fixed polynomial p.
(This last requirement will be essential in order to define tractable approximations
bellow.) The choice of an specific function to yield suitable values of the virtual space
for each particular deduction problem is the result of decisions that are conveniently
made by the system designer, depending on the intended application[l”] In turn, the
functions in F are partially ordered by the relation < such that f; < f; iff, for every
finite A, f1(A) C fo(A).

Distinguished examples of functions in F are the identity function f(A) = A,
sub and at. However, in general, f(A) may contain formulae that are not in sub.
For instance, the operation f that maps A to the set of all formulae of bounded
degree that can be built out of sub and at is also in F. Thus, our intelim method
allows for (possibly shorter) deductions that do not have the subformula property
(SEP) simply by permitting applications of PB or PB* to formulae that are not
subformulae either of the premises or of the conclusion. However, even in this latter
deductions the virtual space is still bounded.

The branching rules are not the unique rules of our intelim method that may bring
about violations of the SF'P. The introduction rules could in principle be indefinitely
applied, leading to ever more complex formulae. Nonetheless, as we shall show below,
the application of both kind of rules can be restricted so as to satisfy the SFP. More
specifically, we shall show that every intelim proof of ¢ from X (intelim refutation
of X) can be transformed into an intelim proof of ¢ from X (an intelim refutation
of X) with the SFP.

4.5.1 Subformula property

As mentioned in Chapter 3, the subformula property is a key property of logical
systems in that it allows us to search for proofs or refutations by analytic methods;
i.e., by considering solely deduction steps involving formulae that are “contained”
in the assumptions, or also in the conclusion in the case of proofs. This implies a
drastic reduction of the search space which is crucial for the purpose of automated
deduction. When it comes to propositional logics, this search space is finite for
each putative inference, paving the way for decision procedures. Particularly, in our
intelim method, the SFP guarantees that we can impose a bound on the applications
of PB and PB*, that could in principle be applied to arbitrary formulae, with no
loss of deductive power. Similarly, it guarantees that we can impose a bound on the

10Tn the case of the approximations defined below, such decisions affect the deductive power of
each given approximation, and so the “speed” at which the approximation process converges to the
limiting logic at issue.
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T* —p© Tp®
Tq° Fp©
T =r vV —s© TpVg
Tre Tq
Trvp

Fp

Tr

F*—=r

T s
Figure 4.4: Redundant itelim sequences

sensible applications of introduction rules, which could in principle be indefinitely
applied, yielding ever more complex formulae.

Definition 4.5.3. An intelim proof T of ¢ from X (an intelim refutation of X)
has the subformula property (SFP) if, for every S-formula v occurring in 7, " €
sub(X* U {¢"}) (¢* € sub(X™)).

Now, consider the intelim sequences of Figure 1.4l The first one is a proof of
T*=s from {T* —p, Tq, T* =V =s, Tr}. The second one is a proof of (an arbitrary)
T q from {T p,Fp}; i.e., an instance of the explosivity of our intelim method. Note
that both proofs are redundant. In the first proof, the S-formula Tr V p is first
introduced (from premise T r) and then eliminated (using the minor premise F p) to
re-obtain the S-formula T r which was already contained in the sequence; i.e.; this
proof contains circular reasoning. In the second proof, the S-formula T p V ¢ is first
introduced (from premise T p) and then eliminated (using F p as minor premise); yet,
the sequence was already closed before the application of the disjunction introduction
and so, by Def. the closed sequence T p, Fp was already a proof of T ¢ from
Tpand Fp.

The same kind of redundancy is present whenever a formula is, simultaneously,
the conclusion of an introduction and the major premise of an elimination.

Definition 4.5.4. An occurrence of an S-formula ¢ in an intelim tree T is a detour if
@ is both the conclusion of an introduction and the major premise of an elimination.

Definition 4.5.5. An occurrence of an S-formula ¢ is idle in an intelim tree 7 if
(i) it is not the terminal node of its branch, (ii) it is not used as premise of some
application of an intelim rule, and (iii) it is not the conjugate of some S-formula
occurring in the same branch.
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Definitions 4.5.6. Given an intelim tree 7, a path in T is a finite sequence of
nodes such that the first node is the root of 7 and each of the subsequent nodes is
an immediate successor of the previous one. A path is closed if it contains both ¢
and ¢ for some .

Note that, according to the above definition, every branch is a maximal path.

Definition 4.5.7. Let 7 be an intelim proof of ¢ from X (an intelim refutation of
X). T is non-redundant if it satisfies the following conditions:

1. it contains no idle occurrences of S-formulae;
2. none of its branches contains more than one occurrence of the same S-formula;
3. none of its branches properly includes a closed path.

Observe that if an intelim proof or refutation contains a detour, then either
condition 2. or 3. above is violated. Thus:

Lemma 4.5.8. If an intelim proof or refutation T is non-redundant, then it contains
no detours.

Proof. Suppose T contains a detour, i.e., an S-formula ¢ that is both the conclusion
of an introduction and the major premise of an elimination. By inspection of the
rules, either the conclusion of the elimination is equal to one of the premises of the
introduction, or the minor premise of the elimination is the conjugate of the premise
of the introduction and so the branch was already closed before the elimination. In
either case, T is redundant. O

Now, turning an intelim proof or refutation 7 into a non-redundant one (with
no increase in the size of the proof or refutation) is computationally easy, in that it
only involves the following pruning steps:

1. check if there are closed paths and remove whatever follows after them;
2. remove any repetition of S-formulae in the same branch;

3. check if there are idle occurrences of S-formulae, and

4. for each idle occurrence of an S-formula ¢:

 if ¢ is the conclusion of an application of an intelim rule, just remove ¢
from T;
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o if ¢ is a virtual assumption introduced by an application of PB or PB*,
remove both ¢ and the whole subtree generated by its conjugate S-formula
@ introduced in the same application of PB or PB*; then attach the
subtree below ¢ to the immediate predecessor of .

It is easy to verify that the result of this procedure is still an intelim proof of the same
conclusion from the same premises, or an intelim refutation of the same assumptions.
In turn, given a proof 7 of ¢ from X (a refutation of X), and any operation
f € F, we say that an application of PB or PB* in T is f-analytic if its PB-
formula or, respectively, PB*-formula is in f(X*U{p"}) (f(X")); i.e., in the virtual
space defined by the operation f. Recall that the latter is, by definition, closed
under subformulae and polynomially bounded. When f = sub, i.e., the virtual
space consists exactly of the subformulae of X™ U {¢"} (X*), we just say that the
application of PB or PB* is analytic. Thus, we can prove the following:

Lemma 4.5.9. Given any f € F, every intelim proof T of ¢ from X (intelim
refutation of X ) can be transformed into an intelim proof T' ¢ from X (intelim
refutation T' of X ) such that every application of PB and PB* in T 1is f-analytic.

Proof. Again, we use the notation ZD' to denote either an empty intelim tree or a

non-empty intelim tree such that ¢ is one of its terminal nodes. The proof is by
lexicographic induction on (y(7), x(T)), where (7)) denotes the maximum degree
of a PB-formula or a PB*-formula in 7 that is not f-analytic, and x(7) denotes
the number of occurrences of such non- f-analytic PB-formulae or PB*-formulae of
maximal degree.

Let 4(7) = m > 0 and let A be a PB-formula or a PB*-formula of degree m.
There are several cases depending on the logical form of A and on whether A is
PB-formula or a PB*-formula. We sketch only two cases: 1. one where A = BV (C
and A is a PB-formula; 2. another where A = B A C and A is a PB*-formula; the
other cases being similar.

1. T has the following form:

Ta
2

TBVC FBVC
T T

where T, and 7. are intelim trees such that each of their open branches contains ¢, or
are both closed intelim trees in case T is a refutation of X. Let 7’ be the following
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intelim tree:

7T
%
/\

TB FB
TBVC TC/\FC
T | |
TBvC FBvVC
To Te
2. T has the following form:

Ta
¥

T*BANC FBAC
To Te

where, again, 7, and 7. are intelim trees such that each of their open branches
contains ¢, or are both closed intelim trees. Let 7' be the following intelim tree:

Ta
/S’\
T B F*B
T C Fre FPBAC
Te
T*BANC FBAC
To Te
Clearly, in both cases, 7" is an intelim proof of ¢ from X (an intelim refutation of
X). Moreover, either y(7") < y(T), or v(T") = ~(T) and &(T") < k(T). O

In fact, the transformations used in the proof of the above lemma show that every
intelim tree can be turned into an equivalent one in which all the PB-formulae and
PB*-formulae are atomic. Thus, in principle, we could reformulate the notion of
intelim tree in such a way that PB and PB* are applied only to atomic formulae
without loss of completeness. Nevertheless, if we demand that the applications of PB
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and PB* be restricted to atomic formulae, the property of being an intelim tree is
no longer preserved under uniform substitutions of the atomic formulae occurring in
the tree with arbitrary formulae[l] On the other hand, if we require that the notion
of intelim tree be restricted so as to permit only analytic applications of PB and
PB* (i.e., f-analytic applications with f = sub), the property of being an intelim
tree is indeed invariant under uniform substitutions.

The following Theorem states the SFP of our intelim method when f = sub{"|

Theorem 4.5.10 (Generalized SFP). For every f € F, if T is an intelim proof
of ¢ from X (an intelim refutation of X ) such that (i) T is non-redundant, and (ii)
every application of PB and PB* in T is f-analytic, then for every S-formula 1
occurring in T,

Pt e fX"U{p"}) Usub(X™ U {¢"})
if T s a proof of ¢ from X, or

Pt e f(X") Usub(X™)
if T is a refutation of X.

Proof. Let T be a intelim proof of ¢ from X (refutation of X) satisfying (i) and
(ii), and suppose that there are S-formulae w in 7 such that w* ¢ f(X™ U {p"})U
sub(X“U{p"}) (w* ¢ f(X*)Usub(X™)). Let us call such S-formulae spurious. Let ¢
be a spurious formula such that " is of maximal degree in 7. Then 1 cannot result
from the application of an elimination rule, otherwise 7 would contain an spurious
formula whose unsigned part is of strictly greater degree; namely, the major premise
of this elimination. Moreover, given that 7 contains only f-analytic applications of
PB and PB* according to (ii), no spurious S-formula can occur in it as a virtual
assumption introduced by an application of PB or PB*. Therefore 1) must be the
conclusion of an introduction. Since, according to (i), 7 is non-redundant, it contains
no idle occurrences of S-formulae and so either (a) ¢» = @ for some # occurring in
the same branch or (b) v is used as a premise of a rule application. However, both
cases are impossible. Regarding (a), by the same arguments just used for ¢, 6 (the
conjugate of 1)) can only be the conclusion of an introduction. Then, it is not difficult
to see, by inspection of the introduction rules, that case (a) implies that one of the

HMoreover, when we define the notion of depth of an intelim tree below, it be apparent that
each application of the transformations used in the proof of the lemma increases the depth of the
tree. So, it is convenient to use them only to the extent in which it is needed to remove applications
of PB or PB* which are not f-analytic.

12Note that whenever A C f(A), then also sub(A) C f(A).
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premises of the introduction of ¢ = § must be the conjugate of one of the premises
of the introduction of #. So, one of the branches of 7 properly contains a closed
path, against the assumption that 7 is non-redundant. As for (b), first note that
cannot be the minor premise of an elimination, otherwise there would be again an
spurious formula whose unsigned part is of greater degree in 7; namely, the major
premise of this elimination. Moreover, 1) cannot be used in 7 as major premise of
an elimination, otherwise ¢ would be a detour and, by Lem. [.5.8 7 would be
redundant, against hypothesis (i). O

4.6 Depth-bounded approximation to FDE

Definition 4.6.1. The depth of an intelim tree 7 is the maximum number of virtual
assumptions occurring in a branch of 7. An intelim tree T is a k-depth intelim proof
of ¢ from X (a k-depth intelim refutation of X) if T is an intelim proof of ¢ from
X (an intelim refutation of X) and 7 is of depth k.

Note that a 0-depth intelim tree is nothing but an intelim sequence. Examples
of, respectively, two proofs of depth 1, a refutation of depth 1,and a proof of depth
2, all with the SFP, are given in Figure [£.5] Again, each assumption is marked with
an ‘@’

Definitions 4.6.2. For all X, ¢,

e is O-depth deducible from X, X F ¢, iff there is a 0-depth intelim proof of ¢
from X;

o X is 0-depth refutable, X F, iff there is a 0-depth intelim refutation of X.

Notation 4.6.3. We shall abuse of the same relation symbol ‘+,’ to denote O-depth
deducibility and refutability.

Proposition 4.6.4. (L, ) is a (finitary) Tarskian propositional logic; i.e., o sat-
isfies reflexivity, monotonicity, cut, and structurality.

Proof. The proposition follows easily from the definitions involved, and so here we
just outline the proof of monotonicity: Suppose that there is no 0-depth intelim proof
of ¢ from X UY. Then, there is no way of obtaining ¢ by applying intelim rules to
the elements of X or the elements of Y. In particular, there is no way of obtaining
@ by applying intelim rules to the elements of X alone and, so, there is no 0-depth
intelim proof of ¢ from X. [
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T(AV B)A-A® T-(AAB)® TAV(BAC)®
TAVB F*AAB F(AVB)A(AVC)®
F* A F*B T-A TAVB TBAC
N | | |
TB FB T-B T-AV-B FAVC TB
TBV(AAN-A) TA T-AV-B FA TC
X
T(AN=A) TAvVE
TBV(AA-A) TAVC

T(AVB)A(AVC)
X
T-(AANB)VvC®

/\

TC FC
F*~C T—(A A B)
F*AN—C F*AAB
T-(AA=C) T A F* A
T~(AA-C)V-B F*B F*AA-C
T-B T—(AA-C)

T-(AAN-C)V-B T-(AA-C)V-B

Figure 4.5: k-depth intelim proofs and refutations
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Now, the notion of k-depth deducibility depends not only on the depth at which
the use of virtual information is recursively allowed, but also on the virtual space
discussed and defined above. So, finally:

Definitions 4.6.5. For all X, ¢, and for all f € F,
. Xl—ggoifle—ogp;

e for k>0, X H ¢ iff XU {¥} H_, ¢ and X U {¢} F|_, ¢ for some ¢* €
X U{e"}).

When X l—g p, we say that ¢ is deducible at depth k from X over the f-bounded virtual
space. Note that the above definition covers also the case of k-depth refutability by
assuming X |—£ as equivalent to X |—£ ¢ for all . Thus:

o X Hiff X ko,
o for k>0, X H iff X U{y} ], and X U {4} FH_, for some ¥* € f(X™).

When X l—g, we say that X is refutable at depth k over the f-bounded virtual space.

Notation 4.6.6. We shall abuse of the same relation symbol H’ to denote k-depth
deducibility and refutability over the f-bounded virtual space.

Observe that in the above definition the pair of S-formulae, v and v, denote a
pair of (conjugate) virtual assumptions introduced by respectively PB or PB*. Thus,
according to the definition, X |—£  iff the conclusion ¢ is obtained at depth k£ —1 by
introducing either T A and F A, or T* A and F* A, as virtual assumptions—for some
A in the virtual space defined by f. More specifically, the conclusion ¢ obtains at
depth k iff ¢ obtains at depth k& — 1 in either case of appending T A or appending
F A, or in either case of appending T* A or appending F* A, in any branch of the
corresponding intelim tree and with respect to some A in the virtual space defined
by f. This corresponds to the fact that, in our intelim method, a formula ¢ may be
obtained at a certain depth by introducing whichever T A or F A by an application of
PB (probably together with the application of intelim rules), but not by introducing
T*A or F* A by an application of PB* (together with the application of intelim
rules), and vice versa.

Now, it follows immediately from Def. |4.6.1] and [4.6.5| that:

Proposition 4.6.7. For all X, ¢ and all f € F, X H ¢ (X ) iff there is a
k-depth intelim proof of ¢ from X (a k-depth intelim refutation of X ) such that all
its PB-formulae and PB*-formulae are in f(X" U {e"}) (f(X")).
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Proposition 4.6.8. The k-depth deducibility relations I—£ satisfy reflexivity, mono-
tonicity, but not cut.

Proof. The proposition follows easily from the involved definitions. To see why they
are not transitive take, for example, X = {TAV B, T-A,T—(C A D)}, ¢ =
TBV(AAN-A), and Y :=T (BV (AA-A)) A (=CV-=D). Then it is easy to check
that X F5U0 o and X U {p} 5“2+, but X K5 . O

However, it is easy to verify that the relations |—£ satisfy the following version of
cut:

Depth-bounded cut: If X l—;-c ¢ and X U {¢} F] ¢, then X l—;;k 1.

Moreover, the relations |—£ may not be structural in that structurality depends on
the function f that defines the virtual space. For example, F"° is structural, while
Fat is not. In general, structurality can be imposed by restricting the operations
in F to those such that, for all o and all A, o(f(A)) € f(o(A)). This is not
satisfied if f = at, but it is satisfied if f(A) = sub(A), or f(A) is the set of all
formulae of given bounded degree that can be built out of sub(A). Further, since
o is monotonic, its successors are ordered: I—f C |—£ whenever j < k. The transition

from H/ to ] 41 corresponds to an increase in the depth at which the nested use
of virtual information—restricted to formulae in the virtual space defined by f—is
allowed. Note also that l—fl C l—f whenever f; < fs.

4.6.1 Tractability

We now show that the decision problem for the k-depth logics is tractable. Theorem
immediately suggests a decision procedure for k-depth deducibility: to estab-
lish whether ¢ is k-depth deducible from a finite set X we apply the intelim rules,
together with PB and PB* up to a number k of times, in all possible ways starting
from X and restricting to applications which preserve the subformula property. If the
resulting intelim tree is closed or ¢ occurs at the end of all its open branches, then ¢
is k-depth deducible from X, otherwise it is not. We shall first show the tractability
of the 0-depth logic, and then the tractability of the k-depth logics, & > 0. Again,
we denote by | X| the total number of occurrences of symbols in X.

Theorem 4.6.9. Whether or not X Fo ¢ (X o) can be decided in time O(n?),
where n = | X U{p}| (n=|X]).
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Proof sketch. The proof can be adapted from [59]. We just sketch the decision pro-
cedure and give a hint about the upper bound.

We now describe a general procedure to generate the closure of a set Y of signed
formulae under the intelim rules restricting our attention to a finite search space
A that includes all the formulae in Y* and is closed under subformulae. Start by
constructing the subformula graph associated with A, i.e., the graph in which the
nodes are the subformulae of A, while the edges represent the subformula relation.
Observe that the number of distinct subformulae of a formula is always less than
or equal to the number of occurrences of symbols in that formula. So the number
of distinct subformulae of the formulae in Y is O(n) where n is the number of
occurrences of symbols in Y. Constructing this graph takes time O(n?). A neighbour
of a node A is a node consisting of either (i) one of the immediate subformulae of
A (if any), or (ii) one of the immediate superformulae of A (if any), or (iii) else one
of the immediate subformulae of the immediate superformulae of A (if any). The
number of neighbours of each node is O(n).

Let us say that a node in the subformula graph is associated with a premise (a
conclusion) of an intelim rule, if it consists of a formula that is the unsigned part of
a premise or of the conclusion. Note that

The relation “A is a neighbour of B” is symmetric. (4.1)

The node associated with a premise of an intelim rule is a neighbour both
of the node associated with the second premise (if any) and of the node (4.2)
associated with the conclusion.

Nodes are labelled with a subset of the four signs as follows. Initially, all nodes
are marked as “fulfilled”. Whenever a new sign is added to the labelling set, the node
turns “unfulfilled”. At the beginning all the nodes consisting of the formulae in X" are
labelled in accordance with their signs in X (and therefore turn “unfulfilled”) while
all the others are labelled with the empty set. Fulfilling a node means that all the
possible intelim rules involving this node and any of its neighbours are applied, which
may lead to adding new signs to the labelling sets of the nodes in the neighbours,
making them unfulfilled. This amounts to using the formula in the node to be
fulfilled, prefixed with each of the signs in its labelling set, as premise of an intelim
rule, possibly involving one of its neighbours as second premise. Yet-unfulfilled nodes
are fulfilled in turn (the order is immaterial) and marked as such. Since there are
O(n) neighbours, fulfilling a node takes O(n) steps.

A node is inconsistent if its label contains a pair of conjugate signs, otherwise
it is consistent. Note that the labelling set of each consistent node may contain at
most two signs. Note also that it may be necessary to fulfil a node more than once,
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when a new sign is added to its labelling set as result of an application of an intelim
rule to one of its neighbours. However, no consistent node needs to be fulfilled more
than twice (once for each sign in its labelling set). To see this, observe that if the
procedure leads to adding a new sign to a node n’ (e.g., the sign F to A) that may, in
turn, be used together with a previously fulfilled neighbour n (e.g., AV B signed with
T) as premise of an intelim rule, then n’ turns unfulfilled, and the rule in question
will be applied anyway when fulfilling n’. For, n is a neighbour of n’, by (4.1, and
so is the node n” consisting of the conclusion of the rule application (B), by (4.2),
whose labelling set will be updated accordingly (adding T ).

A graph is inconsistent if it contains an inconsistent node, otherwise it is consis-
tent. In turn, a graph is 0-depth saturated if it is either inconsistent or it is consistent
and each node is marked as fulfilled. A 0-depth saturated graph is obtained in O(n?)
steps, since there are O(n) nodes in the graph, each node is fulfilled at most twice and
fulfilling a node takes O(n) steps. Figure shows the initialized graph for the set
X ={TCV(AVB),FC,FAV(BA-C)}. The corresponding saturated graph, with
a possible order of fulfillment of the nodes, is shown in Figure The reader can
verify that any alternative sequence leads to the same saturated graph. Figure [4.8
shows the initialized graph for the set X = {T AV (BAC),F(AVB)A(AVC),F A}.
A corresponding saturated graph, with a possible order of fulfillment of the nodes, is
shown in Figure[4.9] Note that, for inconsistent graphs, not any alternative sequence
leads to the same saturated graph. In general, all the signed formulae ¢ of the form
S A, where S is in the labelling set of A, that occur in a saturated graph are 0-depth
deducible from X.

To decide whether X Fq ¢ (X Fq), consider the graph associated with X* U ¢*
(X™), initialize it by adding signs to the labelling sets in accordance with X, and
then run the saturation procedure. When the graph is saturated X F( ¢ iff the sign
of the signed formula ¢ belongs to the labelling set of ¢" or the graph is inconsistent.
Note that an inconsistent graph detects a “metalevel” inconsistency that concerns
an incoherent assignment of the imprecise values associated with the signs. Note
also that a 0-depth saturated graph starting with nodes labelled with {T } is always
consistent and may contain only the signs T and F* in the labelling sets. [

Corollary 4.6.10. Whether or not X F*° ¢ (X F5*°) can be decided in time
O(n**2), where n = | X U {o}| (n = |X]|).

Hint. From Definition and the observation that there are O(n) distinct subfor-
mulae of X* U {p"} (X*). O
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-C 0 A0 B 0

AV (BA=C) {F}

Figure 4.6: Initialized graph

c (AVB) Ty
c {F T} BA-C {F} AvB {T}

@ -C {T* F} A {F} B {T}

@ AV ( B/\—\C) {F}

Figure 4.7: Saturated graph

133



Chapter 4. Tractable depth-bounded approximations to FDE, LP and Kg

(AVB)AN(AVC) {F}

N
<
Q
/S

@/
\/

B c 0
AV (BAC) {T}
BAC 0
Figure 4.8: Initialized graph
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Figure 4.9: Saturated graph
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The above Corollary refers to the basic case where the function that defines
the virtual space is sub, but is not difficult to generalize it for any polynomially
bounded virtual space [see 59, [68]. More precisely, much as in the classical case,
when f < sub, the complexity of the decision problem is O(n*2). In general, the
complexity is O(p(n)**2) where p is a polynomial depending on f (recall that, by
definition, the virtual space is polynomially bounded).

4.7 5-valued non-deterministic semantics

The signs of our intelim method can be taken as imprecise truth-values that in-
tuitively encode partial information about the standard truth-values in 4 [see [I§];
namely, two-element sets of the standard truth-values:

t = {t,b},f= {f,n},t* = {t,n},F = {f,b}.

Note that t Nt* = t and fN{* = f. Let us denote the set of these imprecise truth-
values, {t,f,t*,f'}, by /. Now, we can take the elements of / as primitive, and use
Dunn-style relational semantics [70] to define analogous notions to those of set-up
and 4-valuation:

Definition 4.7.1. A j4-valuation is a relation n C At(L) x 4 such that:
i. for no p, (p,t) and (p,f) are both in 7;
ii. for no p, (p,t*) and (p, ") are both in 7.

Given a /-valuation, 7, this is extended to a relation n C F(L) x 4 by recursive
clauses:

—Ant iff Anf™;
—Ant* iff Anf;

AN Bnt iff Ant and Bnt;
AN Bnt* ift Ant* and Bnt*,
AN Bnf ift Anf or Bnf;
AN Bnf* iff Anf* or Bnf*;
AV Bnt ift Ant or Bnt;
AV Bnt* iff Ant* or Bnt*;
AV Bnf iff Anf and Bnf;
AV Bnpf* iff Anf*® and Bnf*.
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The above notion would yield yet another alternative semantics for full FDE.
However, we introduce it here only as a first step towards devising a semantics for
the depth-bounded approximations defined proof-theoretically above.

4.7.1 The 0-depth logic

Within our conceptual framework, the truth-value of formulae may be completely
undefined when the agent’s information of € is insufficient to even establish any of
the imprecise truth-values. As mentioned above, there is no reason to assume that
an agent is “told” about the values of atoms only. In most practical contexts, it may
well be that the sources inform the agent that a certain disjunction is true without
informing her which of the two disjuncts is the true one, or, analogously, that a
certain conjunction is false without informing her which of the two conjuncts is the
false one.

We shall denote AnL whenever 7 is undefined for A. It is technically convenient
to treat L as a fifth truth-value. So, let us denote by & the set consisting of the
elements of 4 together with L. Intuitively, 1 may eventually turn into an imprecise or
even a standard truth-value by the development of the agent’s reasoning or querying
processt Thus, we take the five truth-values as partially ordered by two relations:
(i) <, such that = <, y (read “z is less defined than, or equal to, y”) iff x = L
or x =y for z,y € {t,f,L}; (ii) =y such that = <, y iff 2 = L or x = y for
x,y € {t" L}

Definition 4.7.2. A 5 non-deterministic valuation is a relation 1’ : F(£) x 2° such
that:
For no formula A, and Sy, S, € 2%, it is the case that:

i An’Sl, AT}/SQ and {t,f} g 51 U SQ;
ii. An'Sy, An'Sy and {t*,f*} C S; U S,.
Moreover:

—An'{f*} iff Ant;
—An'{t*} iff Anf;
—An'{f} iff Ant*;

13Note that n and L denote two different notions. While n intuitively means that the agent
knows that she is told nothing about the truth-value of the (atomic) formula at issue, L intuitively
means that she does not know yet whether she is told something about the truth-value of the
formula under consideration or not. That is, L denotes (full) ignorance about defined truth-values.
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—An'{t} iff Anf*;
—An/{L} iff AnL;

A N Bn'{f} iff Anf or Bnf;
AN Bn/{t*} iff Anf* or Bnf™,
AN B {tnft}iff Anf and Bnf*, or Anf* and Bnf;
AN Bn'{t} iff Ant and Bnt;
AN B/ {t*} iff Ant* and Bnt*,

AN Bn/{L} iff Ant and Bnt*, or Ant* and Bnt;
AN Bn/{L,{}iff Ant and BnL, or AnL and Bnt;
AN Bn/{L, {}iff Ant* and BnLl, or AnL and Bnt*;

AN By {f ", L} iff AnL and Bn.l;

AV Bn/{t} iff Ant or Bnt;
AV B/ {t*} iff Ant* or Bnt*;
AV Bn/{t nt*} iff Ant and Bnt*, or Ant* and Bnt;
AV Bn/{t} iff Anf and Bnf;
AV Bn/{f*} iff Anf* and Bnf*;

AV Bn/{L} iff Anf and Bnf*, or Anf* and Bnf;
AV Bny'{L,t*} iff Anf and BnL, or AnL and Bnf;
AV Bn/{L,t} iff Anf* and BnLl, or AnL and Bnf*;

AV Bn'{t,t*, L} iff ApLl and BnL.

Now, this 5-valued relational semantics ¢ la Dunn can be summarized by the
5-valued non-deterministic truth-tables (5N-tables, for short) in Table 4.10, Thus,

we are in a position to introduce the following notion:

Definition 4.7.3. Let M4 be the Nmatrix for £, where V = 5, D = {t} and the
functions in O are defined by the 5N-tables in Table [

Therefore, using the H5N-tables, a 5 non-deterministic valuation can be defined as
a function. Namely, a 5-valuation for L is a function v : F(£) — 5. Then, we pick
out from the set of all 5-valuations those which agree with the intended meaning of
the connectives via M gzge:

Definition 4.7.4. A 5N-valuation is a 5-valuation v such that for all A, B € F(L):

1. v(=A) = 3(v(A));

2. v(Ao B) e o(v(A),v(B)).

1Owing to the logical symmetry between b and n, we can alternatively take D = {t*}.
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V|t f t* f* s
gLty ey {tr {t} {t}
£t {8 {vr {Lr  {Lt7}
| {ty  {t"}  {t'} {t"} {t"}
e{er {4y vy {f} {L.t}
Lty {L e {7 {L.t} {tt° L}
A t f t* f* 1
¢t {8 {1} {f} {Lf}
£ {tr { {f} {f}
] {1}t {f {'} {f} {L.f}
ey Ay T {r} {f}
L {Lf {f} {L,f} {f} {ff, L}

< TF

|t

o+

|t

1] L

Table 4.10: 5N-tables
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Where o is V or A.

Remark 11. A 5N-valuation can be seen as describing an information state that is
closed under the implicit information that depends only on the informational meaning
of the connectives. This is information that the agent holds and with which she can
operate, in the precise sense that she has a feasible procedure to decide, for every A,
whether the information that A is t or f (analogously, t* or f*), or neither of them
actually belongs to her information state.

Now, the following definitions are respectively analogous to Definitions and
434

Definition 4.7.5. Given a 5N-valuation v, we say that a formula A is:
o at least true under v iff v(A) = t;
o non-true under v iff v(A) = f;
o non-false under v iff v(A) = t*;
o at least false under v iff v(A) = .
Definition 4.7.6. A 5N-valuation v realizes a S-formula
o TAIff Ais at least true under v;
o« FAiff Ais non-true under v;
o« T* A iff A is non-false under v;
o« F* A iff Ais at least false under v.

A set X is said to be 5N-realizable if there is a 5N-valuation v which realizes every
element of X.

Definitions 4.7.7. For all X, ¢,

o isa 0-depth consequence of X, X Fq ¢, iff for every SN-valuation v, v realizes
» whenever v realizes all the elements of X;

e X is O-depth inconsistent, X Eg, iff it is not 5N-realizable.

Analogously to the explosivity of the proof-theoretic characterization above, this
explosivity regards inconsistent sets of signed formulae. Recall our explanation above
of why this is compatible with the non-explosivity regarding (unsigned) formulae.
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Example 1. {T—(AV B), T-C} F T=(AVC)
By inspection of the 5N-tables; it is easy to check that for any 5N-valuation v s.t. v
realizes both T—(AV B) and T —C, then v also realizes T (A V C).

Example 2. {T (AV B) A=A} Eq TBV (AA-A)
Let v be a 5N-valuation s.t. v(A) =", v(B) = L, v(AV B) = v(=4) =v((AV B) A
—A)=t, v(AAN-A)=f and v(BV (AAN-A)) = L.

Example 3. {T-(AAB)} ¥y T-AV-B
Let v be a 5N-valuation s.t. v(A) =t, v(B) =v(=B) = L, v(AA B) = v(=A) = {",
v(=(AAB))=tand v(-AV-B)= 1.

Example 4. {T(AV B)A-A,FBV (AAN-A)} F
By inspection of the 5N-tables, it is easy to check that there is no 5N-valuation v
which realizes both T (AV B) A=A and F BV (A A -A).

Example 5. {TAV (BAC),F(AV B)A(AVC)}E
Let v be a 5N-valuation s.t. v(A) =1, v(B) =v(AV B) =t*, v(C) =v(AVC) =
v(BANC)=1,v(AV(BAC))=t,andv((AVB)A(AV()) =1

Let us now show the adequacy of our informational 5-valued non-deterministic
semantics with respect to the relation F.

Proposition 4.7.8. For all X and p,

Proof.

The soundness of the intelim rules can be immediately verified by inspection of the
5N-tables: every 5N-valuation which realizes the premise(s) of an intelim rule realizes
also the conclusion of the rule. For example, if an agent holds the information that
both A and B are t*, then she also holds the information that AAB is t*, since the 5N-
table for A excludes the other imprecise values. Thereby, it follows by an elementary
inductive argument that, if a 5N-valuation v realizes all the initial S-formulae of a
O-depth intelim tree T (i.e., an intelim sequence), then v realizes all the S-formulae
occurring in 7. But, of course, no b5N-valuation can realize two conjugate S-formulae
simultaneously. Thus, if 7 is a closed intelim tree, no 5N-valuation can realize all the
initial S-formulae of 7. Therefore, on the one hand, if 7 is a O-depth proof of ¢ from
X, then for every 5N-valuation v, v realizes ¢ whenever v realizes all the elements
of X. On the other hand, if 7 is a 0-depth refutation of X, then no 5N-valuation v
realizes all the elements of X.
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As for completeness, suppose that X ¥y ¢. Then X is not 0-depth refutable;
otherwise, by definition of 0-depth intelim proof, it should hold that X k¢ ¢, contrary
to our hypothesis. Next, consider the set Y = {¢|X k¢ ¥}. Since X is not 0-depth
refutable, for no A, SA and SA are both in Y. Then, it is not difficult to verify that
the function v defined as follows:

t fTAeY
f fFAeY
v(A)={ t* fT*AecY
f* ifF*AecY

1 otherwise

is a bN-valuation. Here we just outline a typical case. Suppose v(A) = v(B) = L.
Then, FAV B ¢ Y. Otherwise, if FAV B € Y then, by definition of Y and by the
corresponding elimination rule for vV, F A and F B should also be in Y. Hence, by
definition of v, v(A) = v(B) = f{, against our assumption. Thus, by the 5N-table for
V, v(AV B) # f. Analogously, F* AV B ¢ Y. Otherwise, if F* AV B € Y then, F* A
and F* B should also be in Y. So, by definition of v, v(A) = v(B) = {*, against our
assumption. Then, by the 5N-table for V, v(AV B) # {f*. On the other hand, T AV B
or T* AV B, may or may not belong to Y, and so v(AV B) =t, v(AV B) = t*, or
v(AV B) = L. Finally, observe that: (i) ¢ € Y for all ©» € X and so, by definition
of v, v realizes all ¢ € X; (ii) by the hypothesis that X ¥y ¢, ¢ ¢ Y and so v does
not realize . Therefore, X F( ¢. [

Corollary 4.7.9. For all X,
X Fo iff X k.

4.7.2 k-depth logics

Examples 2] and [3] above are valid inferences in FDE that are not so in the 0-depth
approximation. Again, the latter is simply the logic of deductive reasoning restricted
to the use of actual information. For those valid inferences that cannot be justified
solely by the meaning of the connectives—i.e., by the 5N-tables—the incorporation
of virtual information is required. This is information that is not even potentially
contained in the current information state. Accordingly, the k-depth logics, £ > 0,
require the simulation of virtual extensions of the current information state. These
extensions are formally defined through the following notion:

Definition 4.7.10. Let v,w be 5N-valuations. Then, w is a J-refinement of v,
v Cs w, iff v(A) <, w(A) or v(A) <, w(A) for all A.
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Now, the following definition mimics Definition [4.6.5}
Definition 4.7.11. For all X, ¢, and for all f € F,
o X E oiff X koo

e for k>0, X B o iff XU{y} | ¢ and X U {¢} E]_, ¢ for some ¢* €
FXTU{e"}).

When X £/ ¢ (X E]), we say that ¢ is a k-depth consequence of X (X is k-depth
inconsistent) over the f-bounded virtual space.

As Definition [4.6.5] the above covers the case of k-depth inconsistency by assum-
ing X l=£ as equivalent to X |=£ @ for all ¢. Moreover, according with the above
definition, X |:£ p iff by simulating either a pair of refinements (of the current in-
formation state) in which the truth-value of some A (in the virtual space defined
by f) is respectively t or f, or a pair of refinements in in which the truth-value of
some A is respectively t* or f*, the conclusion ¢ is realized by either of the members
of the pair at depth k& — 1F_5] That use of a defined truth-value for A, which is not
even potentially contained in the current information state, is what we call virtual
information.

Example 6. {T (AV B) A=A} E*®* TBV (A A —A)
It is easy to check that {T (AV B) A=A} U{SB} Fo TBV (AA-A), and {T(AV
B)AN—-A}U{SB} Fg TBV (AN-A).

Example 7. {T—-(AAB)} E$** T=AV —-B
It is easy to check that {T=(AAB)} U{T*A} Fy T-AV =B and {T=(AAB)}U
{F* A} Fo T-AV -B.

Example 8. {TAV (BAC),F(AV B)A(AVC)} P
It is to check that {T AV (BAC),F(AVB)AN(AVC)}U{T A} Fyand {T AV (BA
C),F(AVB)AN(AVC)} U{F A} F,.

Now, the next proposition follows from the fact that RE4. is sound and complete
for full FDE [53]:

Proposition 4.7.12. For all X, @, and all f € F,

XE oiff XH o

15 Analogously to Def. an S-formula ¢ may be realized at certain depth by one of those
pairs of refinements but not by the other.
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TA T"AV B
TAVB FAVEB F*A
FA "B F*B
X
F*AV B
X

Figure 4.10: Simulating an introduction on the left and an elimination on the right

The above given that RE¢q. is a subsystem of our intelim method for unbounded
k; i.e., a subsystem of the system constituted by the intelim rules together with
an arbitrary number of applications of PB and PB*. Indeed, the elimination rules
together with PB and PB* can be used to simulate any of the introduction rules.
Conversely, the introduction rules together with PB and PB* can be used to simulate
any of the elimination rules. It is easy to see how to make these simulations and,
thus, here we just show two examples in Fig. the other cases being similar.
This clearly implies that the direct-proof system constituted by the introduction
rules together with PB and PB*—let us call it RI¢4.—is also complete for full FDE.
Nevertheless, there are two reasons for using both introduction and elimination rules:
(i) it allows for more natural and shorter proofs, although not essentially shorter
because the corresponding simulation is polynomial; (ii) it reduces the number of
applications of PB and PB* that, as stated above, is key to define the depth of an
inference. In fact, regarding (i){

Proposition 4.7.13. RE¢4. and Rlzg. can linearly simulate each other. Moreover,
the simulation preserves the subformula property.

Proof. We denote the number of nodes of a tree 7 by A(T). Now, if T is an RE4-
tree with assumptions in X U {¢} then replace each application of an REtg4-rule
with its RIp4.-simulation (the applications of PB and PB* can be left unchanged
since both are also RIg.-rules). The result is an RIt4.-tree 7' containing at most
MT)+c - A(T) nodes, where ¢ is the maximum number of additional nodes generated
by an RIq.-simulation of an REq.-rule; namely, 2. Thus, if 7 is a closed REg4.-tree
for X U {p}, then 7" is a closed RItg-tree for X U {p}. Moreover, A\(T") < 3X(T)

Y6The notions of RIfg-tree (-proof) should be clear.
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and T does not contain any formula which does not occur in 7. Hence, by applying
PB or PB* to ¢", we obtain the required RI4.-proof of ¢ from X.

In turn, if 7 is a Rlgg.-tree with assumptions X, then replace each application
of a Rl4e-rule with its REj4-simulation (again, the applications of PB and PB*
can be left unchanged since both are also REfq.-rules). The result is a RE4.-tree
T’ containing at most A(7) + ¢ - A(T) nodes, where ¢ is the maximum number
of additional nodes generated by an REjz-simulation of an RIt4-rule; namely, 2.
Thus, if T is a RIs4.-proof of ¢ from X, T is a RE4.-tree such that ¢ occurs in all
its open branches. Moreover, A(7") < 3A(7) and 7’ does not contain any formulae
which do not occur in 7. Simply adding ¢ to the assumptions will yield a closed
RE}4.-tree for X U . O

Analogously to the case of KE and KI in CPL (see Chapter 3 above), and as
Propositions and suggest, RE 4. (RIqe) may serve as the basis for
defining depth-bounded approximations to FDE. The reason for using both intro-
duction and elimination rules were stated above; however, as a refutation method,
RE¢4 may be still preferred for applications in automated reasoning.

4.8 A natural deduction variant

We present a variant of the proof system that we used to define the hierarchy of
approximations to FDE; variant which is closer to Gentzen-Prawitz style natural
deduction. We use again signed formulae (interpreted as before) and assume that
L contains also the logical constant A, denoting “the falsum” and intended as an
absurd proposition. We think of falsum as a marker that a contradiction has been
reached and display the rules concerning it in Tab. [4.13] Unlike the intelim rules of
standard natural deduction, none of our intelim rules, shown in Tab. and
is a discharge rule. Consequently, our intelim rules are not complete for full FDE,
but only for the 0-depth logic of the hierarchy. To obtain a complete set of rules
it is sufficient to add two discharge rules corresponding to PB and PB*, which are

displayed in Tab.
If we allow unbounded applications of the discharge rules, then:

Definition 4.8.1. A proof of ¢ depending on X is a tree of occurrences of formulae
constructed in accordance with the rules in Tab. —[4.14] such that ¢ occurs at
the root and X is the set of all undischarged assumptions that occur at the leaves.

Definition 4.8.2. We say that ¢ is deducible from X, X ¢, if there is a proof of
¢ depending on Y C X.
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FA FB F* A F* B
FAAB FAANB F*AAB F*ANDB
TA TB T A T B
TAVB TAVB T*AV B T*AV B

TA TB FA FB T"A T*B FA F*B

TAANB FAV B T*"ANB F*AV B
TA FA T A F*A
oA oA FoA T4

Table 4.11: Introduction rules for the standard FDE connectives

FAANB TA FANB TB FFAANB T*A F*AANB T*B

FB FA F* B F* A
TAANB TAAB T"ANB T*AANB
TA TB T A T B

TAVB FA TAVB FB T"AVB FA T"AVvB FB

TB TA T B T A
FAVB FAVB F*AV B F*AV B
FA FB F A FB
T-A F-A T -A F*-A
F A T A FA TA

Table 4.12: Elimination rules for the standard FDE connectives

TA FA TA F*A TA T A
TA T A SA SA

Under any uniform substitution of S with T, F, T*, or F*.

Table 4.13: Falsum rules
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[TA] [FA4] [T*A] [F*A]

SB SB SB SB
B S

Under any uniform substitution of S with T, F, T*, or F*.

Table 4.14: Rules of generalized bivalence

The trees in Fig. [{.11]respectively show proofs of {T =(AVB), T-C} + T =(AVC)
and {T=(AAB)} F T=AV -B. (Where the numerals are used to keep track of
the temporary assumptions that are discharged by the application of a rule. The
numerals corresponding to the discharged assumptions are shown beside the inference
line.)

T—(AAB)
T—|(A\/B) F* AN B [T*A]l
F*=(AVB) T-¢C B [F* A]?
F* A FC T-B T-A
F*Av C T-AvV-B T-AvV-B 1.2
T—\(A\/C) T-AvV-B ’

Figure 4.11: A proof with no applications of discharge rules and another with one
application

4.9 Depth-bounded approximations to LP and K3

4.9.1 Informational interpretation and the need for impre-
cise values

It is well-known that FDE, LP, and K3 are closely related to each other [see [81]
82, 127, [19]. As mentioned above, for a matrix to handle information that might be
both inconsistent and partial, the availability of at least 4 different truth-values is
required [see[19]. The matrix inducing FDE is an elegant example of such a matrix.
Now, 3-valued matrices can be used to handle either inconsistency or partiality of
information, one at a time. An example of a logic characterized by a 3-valued matrix
handling inconsistency of information is the Logic of Paradox, LP (at this section
L={V,A~,—=}):
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V| true false i A | true false i
true | true true true true | true false 1
false | true false i false | false  false false
7 true 1 7 7 7 false 7

= ‘ true false i
true | true false @

false | true true true
1 true 7 1

Table 4.15: LP/Kj3-tables

Definition 4.9.1. Let M} be a matrix for £ where V = {true, false,i}, D =
{true, i}, and the functions in O are defined by the truth-tables in Tab. 4.15

In the above definition, the truth-values true and false are the classical ones, and i
stands for both (true and false). LP was introduced for rather philosophical purposes.
Namely, although Asenjo introduced the logic itself first [14], Priest coined LP has a
tool for handling some logical paradoxes (such as the Liar and Russell’s paradoxes)
involving sentences that, according to Priest’s view, are simultaneously true and
false [126]. Accordingly, Priest interprets the “inconsistent” third truth-value in an
aletheic sense. However, LP can be plausibly interpreted along the lines of the
standard informational semantics of FDE. Namely, true (false) can be interpreted
as “there is a source assenting to p and there is no source dissenting to p” (“there
is a source dissenting to p and there is no source assenting to p); whereas i can be
interpreted as “there is a source assenting to p and there is a source dissenting to p”.

In turn, an example of a logic characterized by a 3-valued matrix handling par-
tiality of information is Strong Kleene Logic, Ks:

Definition 4.9.2. Let M} be a matrix for £ where V = {true, false,i}, D = {true},
and the functions in O are defined by the truth-tables in Tab. 4.15]

Indeed, the only difference between MY and M5 is their set of designated truth-
values. Accordingly, although in M?% true and false are again the classical ones, ¢ is
interpreted differently; viz., it stands for neither (true nor false). K was introduced
for purposes in computer science, or rather they would have been if computer science
had existed by then. In Kj, the “indeterminate” third truth-value was originally
introduced to account for inferences involving sentences for which its truth (or falsity)
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true

false
Ls

=<3 7

Figure 4.12: Orders over {true, false,}

might not be decided by means of a function. More specifically, the third truth-value
originally stands for “undecidable by the algorithms whether true or false”. So, an
informational interpretation of the truth-values is favoured. Correspondingly, the
third truth-value behaves in a way compatible with any increase in information: If
the value of some atomic formula p changed from indeterminate to either true or
false, the value of any formula with p as a component must never change from true
to false nor vice versa. Kleene referred to this as regularity; nowadays this is phrased
in terms of monotony in an order. In fact, the three truth-values of K3 are ordered
as in Fig. [4.12] Where C; stands for an information order, and <3 stands for a
truth order. (As expected, the corresponding truth order over the truth-values of
LP is the same as <3; while, unlike C3, its information order places i to the right
of both of true and false.) Thus, interpreting Kz along the lines of the standard
informational semantics of FDE is not only plausible but natural: true (false) can
be interpreted as “there is a source assenting to p” (“there is a source dissenting to
p”); whereas i can be interpreted as “there is no source assenting to p and there is no
source dissenting to p”. (Warning: in K3 the possibility of contradictory information
is discarded: once a source assents (dissents) to p, the possibility of there being a
source dissenting (assenting) to p is discarded.)

Now, the valuations and consequence relations associated to the matrices of at
issue are defined as for any many-valued logic. For instance:

Definition 4.9.3. A MZ%-valuation is a function v : F\(L) — {true, false,i} such
that for all A, B:

L w(=4) = =(v(A));
2. v(Ao B) =5(v(A),v(B)).
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Where o is V, A or —.

Definition 4.9.4. T' Fyp A iff for every M3-valuation v, if v(I') = true, then
v(A) = true.

The notion of M&-valuation and the corresponding relation & wmy are defined analo-
gously.

Now, regarding their complexity, LP and Kgare both co-NP complete, and so
also idealized models of how an agent can reason. That LP is co-NP complete can
be shown analogously to Proposition m see also 1()]F_7l whereas, that Kz is co-NP
complete follows from Cook’s result that CPL is co-NP complete [47] together with
the following:

Proposition 4.9.5. A is a classical tautology iff (p1V =p1) A ... A(PnV —pn) Erp A,
where py, ..., p, are the atoms occurring in A.

Proof. By definition, A is a classical tautology iff for every classical valuation, v :
F(L) — {true, false}, v(A) = true. In turn, also by definition, this holds iff for
every Mj—valuation, v : F(L) — {true, false, i}, if v(p;) # i for all p; occurring
in A, then v(A) = true. By the Kjs-tables for = and V, this holds iff for every
M-valuation v, v(A) = true whenever v(p; V —p;) = true for all p; occurring in A.
In turn, by the Ks-table for A, this holds iff for every M%-valuation v, v(A) = true
whenever v((p1 V —p1) A ... A (pn V —p,)) = true for all p; occurring in A. Hence, the
latter holds iff (py V =p1) Ao A (P V =pn) Eaay A. ]

So, these results bring us to the need for tractable approximations. The basis for
defining our approximations are sort of natural deduction systems based on obser-
vations analogous to those regarding FDE. Observe that, under the informational
interpretation of LP, only the value i can be taken as stable without assuming com-
plete information about the set of sources 2. That is, given an epistemic state that
evolves over time, the values true and false can be regarded as stable only if complete
knowledge of €2 is assumed. Thus, these latter values are information-transcendent
when interpreted as timeless, for they refer to an objective state of affairs concerning
the domain of all sources. In a dual manner, under the informational interpretation
of K3, the values true and false are stable without assuming full knowledge of 2
(since, recall, the possibility of contradictory information is discarded); whereas the
value ¢ is information-transcendent when interpreted as timeless. Much as in the case
of FDE, this situation motivates the need for stable imprecise values. As before, we
address this question by shifting to signed formulae, where the signs express such

1n fact, a formula A is a tautology in CPL iff A is a tautology in LP [126].
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imprecise values associated with two distinct bipartitions of the corresponding set of
standard values.

4.9.2 Intelim deduction in LP and Kj;

We use the same signed formulae used for FDE but, of course, interpret them dif-
ferently. To state such a re-interpretation, we use z to refer to an agent and v to
denote respectively a M&-valuation or a Mj-valuation. For LP, we interpret: T A
as “x holds that A is at least true” (expressing that v(A) € {true,i}); FA as “x
holds that A is false only” (v(A) € {false}); T* A as “x holds that A is true only”
(v(A) € {true}); F* A as “x holds that A is at least false” (v(A) € {false,i}). As
for K3, we interpret: T A as “x holds that A is true” (v(A) € {true}); FA as “x
holds that A is non-true” (v(A) € {false,i}); T* A as “x holds that A is non-false”
(v(A) € {true,i}); F* A as “z holds that A is false” (v(A) € {false}). Crucially,
according to the respective informational interpretation of the truth-values of LP
and K3, whereas S-formulae of the form T A and F* A involve only information that
does not require complete knowledge of the sources, S-formulae of the form T* A and
F A involve information that does require such a complete knowledge.

Thereby, by making minor modifications to our proof system for FDE, we can
obtain proof systems for LP and K3 which naturally lead to defining analogous
hierarchies of tractable depth-bounded approximations to the latter logics. Namely,
the systems for the latter logics are obtained by enriching the rules of the intelim
method of the former logic with the intelim rules for implication displayed in Tab.
[4.16] together with, respectively, the following rules:

T A FA TA F*A
TA F*A T A FA
Additional structural rules for LP Additional structural rules for Kj

In turn, hierarchies of depth-bounded approximations can be defined in terms
of the maximum number of nested applications of PB and PB*, exactly as before.
Even though, in the case of LP and Kj, those branching rules are not the only
structural rules, they are the only involving the introduction of virtual information.
Moreover, it is straightforward to adapt the proofs of Theorem [4.6.9 and Corollary
to show the tractability of the approximations at issue. Further, by making
minor modifications to our semantical framework for the hierarchy of approximations
to FDE, it can be shown that the hierarchies for the 3-valued logics also admit of a
5-valued non-deterministic semantics.
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T A
F* A TB FB
TA— B TA—- B FA— B

TA
FA T B F*B
TA— B TA— B F*A - B
FA— B FA— B F*A— B F*A— B
T A FB TA F*B
TA - B TA— B TA - B TA— B
T A TA FB F B
TB T B F*A FA

Table 4.16: Intelim rules for the implication of LP and K3
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Chapter 5

Towards tractable depth-bounded
approximations to IPL

5.1 Introduction

In [96], Heyting provided a Hilbert-style system to codify patterns of reasoning used
in Brouwer’s intuitionistic mathematics. Heyting’s formalization of the propositional
fragment of those patterns is what has come to be called Intuitionistic Propositional
Logic, IPL. While the basis of classical logic is ontological, the basis of intuitionistic
logic is epistemic. The fundamental distinction between classical and intuitionistic
logic lies on their underlying notion of truth. Classical truth is “external” in that it
requires reference to a reality that exists independently of the agents’ reasoning and
perception. That is, an external reality which makes sentences determinately true or
false quite independently of the agent’s epistemic means. In contrast, intuitionistic
truth is “internal” in that a sentence being true or false depends exclusively on
the agent’s epistemic means to determine whether the sentence is one or the other.
More specifically—in tune with the intuitionistic tenet that mathematics and logic
are mental constructive activities—the truth of a mathematical sentence can only
be established by a proof, conceived as a certain kind of mental construction. The
latter notion is not defined in formal terms as it is, for instance, in a proof system in
Logic. Rather that notion is intended as an informal primitive one—just like truth
in the case of classical logic. Thereby, intuitionisitc logic singles out valid inferences
not in terms of preservation of mind-independent truth—as classical logic does—but
preservation of mental constructibility.

Ever since Heyting’s characterization of IPL, several and diverse equivalent for-
malizations of it have been given. We shall recall some of them below very succinctly,

153



Chapter 5. Towards tractable depth-bounded approximations to IPL

but of particular interest to us is that IPL admits of an informational semantics.
Namely, there are two semantical characterizations of IPL based on informational
terms which are closely related to each other: Kripke semantics [107] and Beth
semantics [33]. In fact, the former has become the dominant semantics of IPL, pre-
sumably because it is particularly easy to work with and most resembles classical
model theory.

Now, despite its informational interpretation, IPL is PSPACE-complete [140]
and, thus, an idealized model of how an agent can reason. The present Chapter
shows how the depth-bounded approach can be naturally extended to IPL and,
accordingly, defines an infinite hierarchy of depth-bounded approximations to that
logic, where each approximation is conjectured to be tractable. We identify the
source of the intractability of IPL with the nested use of wvirtual or hypothetical
information involved when evaluating the truth of formulae whose main connective
is — or —. For instance, for an agent to recognize that A — B is proven at a state
where A is unproven, she must transfer from the actual state to a virtual one where
A is proven, and verify that in the latter state B is also proven; that is, she must
reason as if her state were the latter one. Although all virtual information may be
eventually discharged—to the effect that the conclusion depends only on information
held by the agent—it is the case that the corresponding deduction steps could not be
performed at all without using that virtual information. By contrast, the evaluation
of the truth or falsity of other formulae involves only information that the agent
holds, i.e., actual information. For instance, if an agent holds that = A is unproven
in the current actual information state, then she also holds that A can possibly be
proven in some future state. That is, this inference involves only actual (modal)
information.

Thereby, we provide a KE/KI-style proof system for IPL that neatly separates
the use of actual and virtual information in deductions. However, unlike Gentzen-
Prawitz style natural deduction, and following the key idea underlying the depth-
bounded approach according to which the meaning of a connective is specified solely
in terms of information that is held by the agent, in our system all the operational
rules involve only actual information and there is a unique structural rule which in-
troduces virtual information. We call this latter rule PB as it expresses a generalized
Principle of Bivalence, intuitively saying: for any formula A and for any informa-
tion state, either A is proven or unproven there. More precisely, our KFE/KI-style
system is such that: (i) it is formulated by means of signed formulae; (ii) it has
linear introduction and elimination rules, which fix the meaning of the connectives;
(iii) it has a sole branching rule which expresses a generalized rule of bivalence, is
structural in that it does not involve any connective, and is essentially a cut rule;
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(iv) it can be used as both a direct-proof and a refutation method; (v) obeys the
subformula property. Since the examples introduced in Subsection [3.3.3] are hard for
all tableau systems sharing the A/V rules with classical tableaux but easy for their
KE-style counterparts, our KF/KI-style system at issue is interesting independently
of the depth-bounded approach mainly because it has an exponential speed-up on
its analogous tableau system. However, in this Chapter we focus on showing that
it naturally leads to defining an infinite hierarchy of depth-bounded approximations
to IPL in terms of the maximum number of nested applications that are allowed of
the branching rule, approximations conjectured to be all tractable. Intuitively, the
introduction and elimination rules govern the use of actual information, whereas the
branching structural rule governs the manipulation of virtual information (i.e., hy-
pothetical information about a formula being proven or unproven at an information
state). Asin the classical and many-valued cases addressed in the previous Chapters,
the key intuition is that the more virtual information needs to be invoked via the
branching rule, the harder the inference is for the agent. Thus, the nested applica-
tions of that rule provide a sensible measure of inferential depth, and so the levels
of the corresponding hierarchy can be naturally related to the inferential power of
agents.

We further pave the way for a non-deterministic semantics for the resulting hier-
archy. Namely, as a first step towards a semantical characterization of the hierarchy,
we provide an alternative 3-valued non-deterministic semantics for full IPL such
that, unlike Kripke and Beth semantics, specifies the meaning of the connectives
without appealing to any “structural” condition.

5.2 The BHK-interpretation

The hallmark of intuitionistic logic is to reject all non-constructive reasoning. More
specifically, as mentioned above, the truth of a mathematical sentence can only be
established by a proof. Accordingly, the meaning of a connective has to be given by
establishing, for any sentence in which that connective is the main one, what counts
as a proof of that sentence—being assumed that is already known what counts as a
proof of any of the constituents. An intuitive interpretation of IPL in these terms
was put forward by Brouwer and later developed by Heyting and Kolmogorov—and,
thus, it is known as the BHK-interpretation. This consists of an explanation of the
meaning of the connectives in terms of proofs, which can be roughly summarized
as follows: (i) That a sentence A is true means that there is a proof of A or, more
generally, some kind of evidence verifying A. (ii) Dually, that a sentence A is false
means that there is a proof that A cannot possibly be proven or, more generally, that
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no evidence verifying A can possibly be given. So, A is false iff = A is true, in the sense
that a proof of =A amounts to a proof that it is impossible to verify A, regardless
how the corresponding agent’s knowledge grows. Thus, assuming that a proof of A
is available leads to some absurd sentence for which a proof will never be available—
say, when dealing with arithmetical sentences, 0=1. In fact, in intuitionistic logic
the constant A is often assumed to be contained in £, denoting generically such an
absurd sentence and, accordingly, —A is often defined as A — A. (iii) The meaning
of a connective ¢ is fixed by establishing what kind of construction is to be counted
as a proof of a complex sentence containing ¢ its main connective. Besides, “7 is a
proof of p”, where p € At(L), is taken as primitive (unexplained) notion. Thereby
[144] p. 9:

o 7 is a proof of AA B iff 7 is a pair (7, ) such that 7 is a proof of A and
is a proof of B;

o 7 is a proof of AV B iff 7 is a proof of A or a proof of B (plus the stipulation
that we want to regard the proof presented as evidence for AV B);

e 7 is a proof of A — B if 7 is a construction which transforms every proof m;
of A into a proof 7(m) of B;

e A has no proof; a proof of =A is a construction which transforms any hypo-
thetical proof of A into a proof of an absurdity.

Thus, the BHK-interpretation of the meaning of the connectives proceeds in
terms of the conditions under which a proof justifies the agent at issue in asserting
an statement. Namely, the agent is entitled to assert a conjunction iff she is entitled
to assert each of the conjuncts; the agent is entitled to assert a disjunction iff she is
in a position to justifiably assert one or other disjunct—or, in a less strict way, she
possesses an effective method whose application would put her in such a position; a
conditional is assertible by the agent iff she possesses an effective method for turning
any proof of the antecedent that might be constructed, into a proof of the consequent;
a negation is assertible by the agent iff she possesses a way of turning any proof of
the negated sentence into a proof of some absurdity.

Are the valid inferences of IPL exactly the principles justified by the BHK-
interpretation? Clearly, there is no way to show that they are or are not, since
the interpretation is not a formal semantics, but only an intuitive explanation of the
meaning of the intuitionisitc connectives. Key notions appearing in it such as “proof”,
“construction”, “transformation”, and “effective method”, are not defined, and can
be interpreted in a variety of ways—and indeed they have been so. Nonetheless,

156



5.3. IPL interpreted informationally

already according to this informal explanation of the connectives, the principle of
excluded middle A V —A is not valid in general. Namely, there is no guarantee that
for every sentence A there is either a proof of A or a proof that A cannot possibly
be proven, i.e., a refutation of A. Excluded middle is valid only when A is decidable,
i.e., there is an algorithm that always outputs a proof of A or a proof of —A.

5.3 IPL interpreted informationally

It is also possible to interpret intuitionistic logic in a formal semantics based on mod-
els of informational processes, where an agent—or a group of agents—progressively
gains more information about a current information state, encoded in a propositional
valuation. This kind of semantics for intuitionistic logic was first devised by Beth
[33], and a later version is due to Kripke [107]. Intuitively, the corresponding mod-
els mimic abstract processes of mathematical investigation carried out by idealized
agents with perfect memory. Such an investigation consists of constructing proofs
of statements as well as mathematical objects, and the corresponding process takes
place in time. At each moment the agent has acquired certain amount of informa-
tion and, since this information is mathematical, once it is acquired, it “eternally”
remains in the agent’s memory. So, the agent gains information progressively and
cumulatively; i.e., information increases monotone in time. Moreover, in general,
when passing from one moment to the next, the agent has a number of possibilities
to choose from to continue her investigation. Thus, the picture of the investigation
process looks like a partially ordered set, even like a tree. What is more, each moment
can be seen as an information state, and at each such an state there is a number
of “accessible” next states. Therefore, truth at an informational state essentially
depends on the future.

As shown below, rather than trying to formalize the BHK-interpretation, the
semantics put forward by Beth and Kripke exploit a remarkable connection be-
tween intuitionistic logic and order theory. However, whether those semantics reflect
any intuitive view of the meaning of the intuitionistic connectives and, particularly,
the relationship they might bear to the BHK-interpretation, has been studied by,
for example, Dummett [67]. In fact, in line with the BHK-interpretation, in those
semantics the truth of a formula is intuitively equivalent to its werifiability at an
information state [see [67, 34]. As explained below, although in both semantics for-
mulae are evaluated at nodes in a partial order, the definition of the verifiability of
a formula at a node is different[]

!Originally, Beth used finitely branching trees while Kripke used preorders, but nowadays it is
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5.3.1 Kripke semantics

Kripke semantics [I07] is more popular that Beth’s presumably because, as we shall
recall below, the former is somewhat easier to use than the latter.

An intuitionistic Kripke model, that we shall denote by 9, is intended to rep-
resent an informational process with a set of information states, an “accessibility”
relation representing (possible) time succession between those states, and a valua-
tion that records which atomic formulas hold at each state. This valuation is then
recursively extended on arbitrary formulae, defining a forcing relation |-, whose
intended interpretation is as follows: if at a particular information state a, the agent
has enough information to prove a formula A, it is said that 91, a IFx A; whereas, if
she lacks such information, it is said that 9N, a ¥ A. Correspondingly, 9, a IFx A
is taken to mean that A has been verified to be true at a, and 9, a ¥ A that A has
not been verified to be true at a. The intended meaning of the latter is not that A
has been proven false or refuted at a, but that A is not (yet) proven at a and may be
established later. In turn, given an information state a, the “accessibility” relation
is intended to represent the open possibilities for gaining more information. The in-
tuitive meaning of “b is accessible from a” is that, as far as an agent knows, at state
a, she may later gain enough information to advance to b. Further, in a finite Kripke
model, each final state or leaf is a classical model because it forces every formula or
its negation. Thus, Kripke models generalize classical models to intermediate states
of information where classical laws may fail.

The following are formal definitions of the notions above as they are generally
presented nowadays:

Definition 5.3.1. An intuitionistic Kripke frame is a pair § = (S, R), where S is a
non-empty set and R is a partial order on S.

Elements of S are called information states and R is usually called “accessibility”
relation. Thus, for all a,b € S, aRb is read “b is accessible from a”. Intuitively, a Rb
means that b is either equal to a or stands for a possible future development of a
which can be envisaged from the viewpoint of the information contained in a. So, R
tells us which possible future information states are “accessible” from each state.

We remind the reader that a binary relation R on a set S is called a partial order
if the following three conditions are satisfied for all a,b,c € S:

1. aRa (reflexivity)

2. If aRb and bRc, then aRc (transitivity)

customary to work with equivalent versions of both semantics using partial orders.
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3. If aRb and bRa, then a = b (antisymmetry)

Definition 5.3.2. An intuitionistic Kripke valuation is a function v : At(L) —

{1, F}f]

Intuitively, 7" stands for proven and F' for unproven (i.e., there is no proof at the
moment). Beware that A is unproven does not mean that A is refuted; i.e., it does
not mean that —A is proven. Accordingly, in terms of verifiability, the meaning of
v(p) = T is taken to be that p is verified (to be true), while v(p) = F is taken to
mean that p is not verified.

Definition 5.3.3. Let § be an intuitionistic Kripke frame. An intuitionistic Kripke
model is a pair M = (F, {0, }aes), where {v, }ees is an intuitionistic Kripke valuation
required to satisfy the “truth-persistence” condition: for all p and all a,b € S, if
v.(p) =T and aRb, then v,(p) =T.

The latter condition tells us that if a p is proven at a given state, then it will
remain proven forever. However, beware that, if p is unproven at a given state, it
may (or may not) become proven at a “accessible” future state. On the other hand,
naturally, if p is refuted (i.e., =p is proven), then —p will remain proven (and so p
will remain refuted) forever. Accordingly, in terms of verficability, v,(p) = T" means
that p is verified at a; while v,(p) = F means that p is not verified at a. Further, for
no a € S, v,(A) = T—equivalently, for all a € S, v,(A) = F.

Definition 5.3.4. Let MM = (F, {v,}acs) be an intuitionistic Kripke model. Then,
{04 }aes is recursively extended on £, defining a forcing relation |- g:

e M alkg piff v,(p) =T;

e Malbx AVBiff M albx Aor M, albk B;

e Malbx ANBiff M alkbx A and M, a kg B;

e M alFx A— B iff for all b such that aRb, if M, b IFx A, then M, b IFx B.
o M. albg A iff for all b such that aRb, 9T, b W A.

2In the literature, the definitions of this and the next notions are slightly different but equivalent
to those presented here. As it will be apparent in Section[5.7] the reason we opted for using slightly
different definitions is that they are better suited for comparing Kripke semantics with an alternative
semantics we shall in that Section.
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Note that the clause about —A is compatible with defining of = A as A — A if we
stipulate that for all a € S, M, a Wi A. Thereby, 9, a IFx A iff for all b such that
aRb, if M. b IF A, then M, b I A. But, since A is not forced by any information
state and by contraposition, neither is A. In turn, intuitively, 91, a IFx A means that
A has been verified at a, and I, a Wi A that A has not been verified at a. Moreover,
by an easy induction on the degree of an arbitrary formula A, it follows that the
“truth-persistence” condition above extents to every formula. That is, if M, a lFx A
and aRb, then MM, b IFx A. Thus, finally:

Definition 5.3.5. Let 9 = (F, {v,}aes) be an intuitionistic Kripke model. We say
that:

e Mis a model of Aiff M, alFx Aforallaes.
o I is a model of T iff N is a model of every B € I'.

e Ais a logical consequence of I', I' B A, iff every model 901 of I is a model of
A.

5.3.2 Beth semantics

Beth semantics [33], just as Kripke’s, is intended to model informational process
with a set of information states, a relation representing time succession between
those states, and a valuation recording which atomic formulae hold at each state.
Indeed, it is customary to present Beth semantics in terms of Kripke’s, presumably
because the latter is better known and used [see 107, [34]. As we shall recall below,
the difference between the two semantics lies in the definition of their respective
forcing relation for atoms and disjunction. To begin with, the notion of a frame is
the same as in Kripke semantics:

Definition 5.3.6. An intuitionistic Beth frame is a pair & = (S, R), where S is a
non-empty set and R is a partial order on S.

Of course, the intuitive interpretation of S and R is exactly as in a Kripke frame.
However, as it will apparent below, owing to the forcing clauses for atoms and dis-
junction to be recalled, in Beth semantics we must make the extra assumption that
there is necessarily an advance from each non-terminal information state to one of
its “accessible” future states after a finite amount of time. Put differently, unlike
Kripke semantics—according to which it is allowed to remain at a given information
state indefinitely—in Beth’s the advance from one information state to an “access-
sible” one within finite time is compulsory—unless the information state at issue is
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terminal and so it cannot be further developed. Regarding the notion of a valuation,
there is no change from the analogous notion in Kripke semantics:

Definition 5.3.7. An intuitionistic Beth valuation is a function w : At(L) —

{1, F}f]

As above, intuitively, T stands for proven and F' for unproven. Naturally, these
latter notions are interpreted just as in Kripke semantics. Thus, the intuitive meaning
in terms of verifiability of to(p) = T and to(p) = F is again, respectively, p is verified
and p is not verified. Moreover, the notion of model is also defined as before:

Definition 5.3.8. Let & be an intuitionistic Beth frame. An intuitionistic Beth
model is a pair M = (&, {0, }cs), where {10, },es is an intuitionistic Beth valuation
required to satisfy the “truth-persistence” condition: for all p and all a,b € S, if
w,(p) = T and aRb, then ro,(p) = T[]

Once more, as in Kripke semantics, the “truth-persistence” condition expresses
that once an atom is proven, it will remain proven forever. As before, the intuitive
meaning of a to,(p) = T (w,(p) = F) is taken to be that p is (not) verified at a.
Besides, for no a € S, w,(A) =T

Now, modulo the analogous definitions above, the forcing relation in Beth seman-
tics is the same as in Kripke’s for A, — and —; yet it differs for atoms and V. The
key concepts that differentiate the forcing relations at issue are those of path and
bar.

Definitions 5.3.9. A path in a poset (S, R), is a maximal linearly ordered subset of
S (linearly ordered by R, that is). Besides, if X is a path and a € X, then we call X
a path through a. In turn, a bar for a is a subset B of S such that each path through
a intersects B.

Thereby:

Definition 5.3.10. Let 91 = (&, {w,}.cs) be an intuitionistic Beth model. Then,
{04 }aecs is recursively extended on £, defining a forcing relation IFp:

3Again, the definitions of this and the next notions are slightly different but equivalent to those
found in the literature. The reason for this is the same that in the previous footnote since, as
customary, we are presenting Beth semantics in terms of Kripke’s.

4A Beth model is often defined by imposing—besides the “truth-persistence” condition—what
we shall call bellow the “barring” condition directly on (the valuation of) the model [see [T07]. As
pointed out in [e.g. [67, B4], another approach consists in imposing the “barring” condition not on
the valuation, but on the basic clause for atoms of the forcing relation. We shall follow this second
approach since it fits better our analysis.
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« Barring: M, a Ik piff there is a bar B for a such that B C {b € S | w,(p) =T'};

e Myalkp AV B iff there is a bar B for a such that B C {b € S | M, b IFp
Aor M, bl-p B};

e Same as in Kripke semantics for A, — and —, mutatis mutandis.

Thereby, unlike Kripke semantics, in Beth’s if at some informational state it
can be envisaged that, within a finite time, an atom p will “inevitably” be verified,
then p is already forced at that state. The underlying intuition is that if the agent
knows that, for any possible course of investigation extending the current state a, p
will be proven within finite time, then p is to be regarded as established at a. So,
intuitively, 0, a IFg p means that, at a, it is known that p will be verified; while
M, a ¥p p means that at a it is known that p will not be verified. In turn, if one
disjuncts of a disjunction will, within a finite time, “inevitably” be forced, then
the disjunction is already forced, even if neither of the disjuncts is already forced.
Indeed, a constructivist view according to which a disjunction has been verified only
if one of the disjuncts has been verified, does not imply that the agent knows that
a disjunction will be verified only if she knows of one of the disjuncts that it will
be verified. That is, unlike verification, knowledge is not assumed to distribute over
disjunction [see 67, B4, 113]. Thus, given that Beth forcing is based on knowledge
of what will be verified, the intuitive meaning of 9, a IFg A is that at a it is known
that A will be verified; while the intuitive meaning of 9t,a ¥ g A is that at a it is
known that A will not be verified.

As above, it follows by an easy induction that both the “barring” condition and
the corresponding “truth-persistence” condition extent to every formula. Finally, we
obtain an analogous definition of intuitionistic logical consequence:

Definition 5.3.11. Let 91 = (&, {1, }.cs) be an intuitionistic Beth model. We say
that:

e is a model of Aiff N,alkp A foralla € S.
o Mis a model of " iff N is a model of every B € T'.

o Aisa logical consequence of I', T Eg A, iff every model Dt of I is a model of A.

5.3.3 Kripke vs. Beth semantics

On the one hand, owing to its more complex definition of forcing, Beth semantics
is somewhat more difficult to use than Kripke’s. To see how easier calculations are
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p

/ BN
N

N

Figure 5.1: Simplest Kripke model refuting p V —p on the left, and simplest Beth
model refuting p V —p on the right

*o—>0

in Kripke semantics relative to calculations in Beth’s consider, for example, their
simplest models refuting p V —p in Fig. [5.1}

While the Kripke model consists only of two nodes, the Beth model—known
as Beth comb—is infinite. In Beth semantics, every finite poset validates p V —p.
The reason is that, if there is no infinite path, then every path through a contains an
endpoint, and each endpoint satisfies p or —p; so, M, b IFg pV—p for any b. Meanwhile,
the Beth comb, as an infinite poset, does the job: Let {a € S| to,(p) = T} be the set
of all teeth of the comb. The spine of the comb is a path through the root that never
intersects {a € S | w,(p) = T'}. Thus, for every b in the spine, M, b ¥ g p; but also
M, b ¥ —p since b can step to a tooth ¢ such that M, ¢ kg p. Therefore, p V —p does
not hold at the root [see [34]. In fact, IPL does not have the finite model property
w.r.t. Beth semantics| What is more, every classically valid but intuitionistically
invalid inference can only be shown to fail in an infinite Beth model.

On the other hand, while the intuitive verificationist interpretation of Kripke
semantics accommodates only a very strict intuitionism, Beth’s makes room for a
more liberal intuitionism. While in Kripke semantics, that an atom is forced at a
node amounts to it being already verified there (M, a IFx p iff w,(p) = T), in Beth’s
we can differentiate those notions. Namely, that at a, it is known that p will be
verified (M, a I-p p) does not amount to p being verified at a (v,(p) = T'). To put it
with Dummett:

On this approach, we are distinguishing between the wverification of an
atomic statement in a given state of information, and its being assert-
ible; the latter notion is represented by truth [being forced] at a node,
and is defined, for all statements, in terms of the verification of atomic
statements. The knowledge that a given atomic statement will be verified

5Recall that a logic is said to have the finite model property when each of its invalid inferences
fails in some finite model.
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within a finite time does not itself constitute a verification of it, but is
sufficient ground to entitle us to assert it [67, p. 139].

Put differently, if at some information state the agent knows that, for every fore-
seeable extension of such an state, p will be eventually verified, then she is entitled
to assert p already at the original state. The same ideas underlie the different treat-
ment of disjunction in Beth semantics w.r.t. Kripke’s. The latter semantics is in
line with an strict constructivist view according to which a disjunction is assertable
on the basis of possession of a proof of at least one of the disjuncts. For, recall, if
M,albxr AV B then M, a lbx A or M, a lFx B. In contrast, although if 9, alFg A
or M,alFg B then N, a lFg AV B, the converse does not hold in general. Indeed,
rephrasing what we said just after Def. it does not follow from the afore-
mentioned strict view that the agent knows that a disjunction will be verified only
if she knows of one of the disjuncts that it will be verified. Once again, unlike verifi-
cation, knowledge is not assumed to distribute over disjunction[f] Again, intuitively,
M,alFp AV B (if and) only if the agent knows that, in every foreseeable extension
of her current information state, one of the disjuncts will be verified—though she
may not know which. So, an agent’s information state may entitle her to assert a
disjunction without, as it currently stands, entitling her to assert either disjunct.

Observe that the clause for V in Beth semantics is compatible with the idea that
verifying a disjunction requires verifying a disjunct. To the same extent, such a
clause is also compatible with the idea from the BHK-interpretation that proving a
disjunction requires proving a disjunct. As expressed by Bezhanishvili and Holliday,
“Beth semantics does not offer an alternative account of verification or proof, but
rather an account of the validity of principles of propositional logic in terms of
knowledge of what will inevitably be verified” [34, p. 431]. The BHK-interpretation
is vague as to whether specifically a disjunction is assertable on the strict basis of
having a proof of at least one of the disjuncts, or on the more liberal basis of having
an effective method which would yield such a proof. Kripke semantics accords with
such an strict basis, while Beth’s is in line with the more liberal basis. An example
discussed by Dummett [68] is enlightening to compare those basis: Consider the
question of whether certain large number n is prime. A very strict constructivist
might only accept that “n is prime or composite” is true if it has been already
verified that either n is prime or that it is composite. In contrast, a more liberal
constructivist might hold that “n is prime or composite” is true if it is known that
it will eventually be verified that either n is prime or n is composite.

SPut differently, being based on knowledge of what will be verified, Beth semantics allows us to
circumvent the primeness of disjunction—since knowledge is not prime [see [T13].
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5.4 Proof-theory of IPL revisited

In this section, we shall briefly recall some proof systems for IPL, and ideas thereof.
Given that the formal definitions are to be found in the original references, our expo-
sition of those systems is given in somewhat informal terms. Some of the systems to
be recalled are closely related to our approach to defining tractable approximations
to IPL. However, as shown by the hard examples introduced in[3.3.3] a crucial differ-
ence between the tableau methods to be recalled and the intelim method introduced
below (as well as K E-style and KI-style systems) is that the latter has (have) an expo-
nential speed-up on the former. As in the classical and many-valued cases previously
addressed, roughly speaking, the reason of this is that while the tableau methods
have operational branching rules that imply a good deal of redundant branchings in
the corresponding tree, the intelim method has only a structural branching rule that
reduces the amount of branching to a minimum by making all branches mutually
exclusive. In the overall context of the Thesis, another important difference between
the tableau methods and the intelim method—and, in fact, cut-based systems in
general—is that since in the former cut is eliminable, no approximations can be de-
fined by controlling the application of the cut rule. Further, regardless computational
efficiency issues, the natural deduction system to be recalled below does not comply
with the main idea underlying depth-bounded approximations, according to which
the meaning of a logical operator is fixed only in terms of actual information. For
in the natural deduction system, some of the (operational) “discharge rules” make
essential use of virtual information.

5.4.1 Hilbert-style system

What has come to be called IPL was first characterized as an axiom system by Heyt-
ing [96], and was intended to codify patterns of reasoning used in (the propositional
fragment of) Brouwer’s intuitionistic mathematics. Heyting’s characterization takes
—, A, V and — as basic connectives, and is reproduced in Tab. E]

"Notice that all these axioms are actually axiom schemata. That is, one can substitute arbitrary
formulae for A, B, C, obtaining instances of axioms.
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Axioms:

1.

10.
11.

(A= B)AN(B—=C)) = (A—C)
B — (A— B))
(AN(A— B)) —» B

LA (ANA)

(AAB) — (B A A)

(A= B) = (ANC) = (BAC))
A— (AV B)

(AVB)— (BVA)

(A= O)A (B = C)) = (AV B) = )

-A— (A— B)
(A= B)AN(A— —-B)) - -A

Inference rule: B

Table 5.1: Hilbert-style system for IPL

This is a Hilbert-style system, where:

Definitions 5.4.1. A derivation is a linearly ordered list of formulae, and each of
them is either an instance of an axiom or is obtained from earlier formulae using
MP. If there is a derivation ending with B, then B is called derivable, denoted by
() Fypr, B. We also consider derivations from premises: we allow I' to appear in
derivations, along with axioms of IPL. If B is derivable using I', we write ' Frpy, B.

Now, as in classical logic, we have:

Theorem 5.4.2 (Deduction Theorem). Let T" be a finite set of L-formulae. Then

PaAl_IPL B zﬁI‘ l_[pLA—) B.

Proof. The if part is just an application of MP. The only if part follows by induction

on the derivation of B from I'U {A} in IPL.
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If we add any of the following axioms to those in Tab. we obtain the familiar
CPL:

e« AV-A
« A A
e (A=B)—=A)—- A

5.4.2 Natural deduction

It is well known that both Kripke and Beth semantics involve a good deal of classi-
cal (“meta”-) reasoning, especially when it comes to the corresponding completeness
proofs. In both Kripke’s and Beth’s models are not intended to be confined to in-
tuitionistic methods. Indeed, Kripke semantics is the interpretation of IPL that
most resembles classical model-theoretical semantics—and, as we explained above,
Beth semantics coincides with Kripke’s in several formal and conceptual aspects.
Given this situation, purists prefer proof-theoretical formalizations of the BHK-
interpretation. Among these formalizations, Gentzen’s natural deduction system
NJ [90] has been preferred since it embodies the intended meaning of the intuition-
istic connectives—as expressed by the BHK-interpretation—far more accurately than
other formalizations; in particular, more accurately than the existing Hilbert-style
formalizations. The latter in the sense that, arguably, N.J reflects the specific con-
structive reasoning of the intuitionist best. In fact, Gentzen conceived his NJ as “a
formal system that comes as close as possible to actual reasoning” [90, p. 68]; that
is, as close as possible as the reasoning of intuitionistic mathematicians.

The dissemination and eventual recognition of Gentzen’s insights is to a great part
owing to Prawitz, who reintroduced natural deduction and considerably extended
Gentzen’s work [see [125]. A Gentzen-Prawitz style natural deduction system for
IPL—which coincides with Gentzen’s original N.J—is constituted by the rules in
Tab. The vertical dots appearing in some of the rules stand for a proof of the
formula below the dots depending on assumptions that may include those enclosed
in square brackets. The latter are “discharged” by the application of the rule at
issue, in the sense that the conclusion no longer depends on them, but only on the
still undischarged assumptions that occur in the leaves. Thereby:

Definitions 5.4.3. A proof of A depending on I is a tree of occurrences of formulae
constructed according to the rules in Tab. such that A occurs at the root and I'
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[A] [B]

A B AV B c
AV B AV B C
A B AANB AANB
AANB A B

[A] [A]

B A—-B A A
A— B B —-A
-A A i

A A

Table 5.2: Gentzen-Prawitz style natural deduction rules for IPL

is the set of all the undischarged assumptions occurring at the leaves. In turn, A is
deducible from T if there is a proof of A depending on some A C I'F|

Thus, in natural deduction, each logical operator is associated with suitable rules
for introducing and eliminating it. Those rules are intended to represent the meaning
of the connectives as faithfully as possible. In fact, Gentzen [90] famously suggested
that such rules could be seen as definitions of the connectives themselves. What is
more, Gentzen argued that the introduction rules alone are enough for that purpose
and that the elimination rules are “no more, in the final analysis, than consequences
of these definitions” [p. 80 9()].ﬂ So, purists about IPL find a stronghold in the
idea that the introduction rules state themselves the meaning of the connectives.
The introduction rules are taken as providing a proof-theoretic semantics, where the
actual formal derivations in the system are the proofs or constructions that appear
as primitive (unexplained) notions in the BHK-interpretation.

8For formal definitions see [125].
9Formally, the “soundness” of the elimination rules is given by the snversion principle
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5.4.3 Beth tableaux

Beth [33] provided a Gentzen-sequent system for IPL. Fitting [79] modified such a
system so as to turn it into a refutation tableau system and called it “Beth tableaux”.
Here we recall those tableaux as recast by Fitting [80] in tree form, branching down-
ward. We use signed formulae (S-formulae, for short); namely, expressions of the
form T A and F A, where A is an (unsigned) formula. Their intended meaning is,
respectively, “A is proven” and “A is (yet) unproven”. Besides, we say that the con-
jugate of T A is F A and vice versa. Moreover, we use ¢, 1,0, ..., as variables ranging
over S-formulae. The rules of Beth tableaux (as formulated by Fitting in [80]) are
displayed in Tab. [5.3

Definitions 5.4.4.

» Given an S-formulae ¢, we say that 7T is a tableau for ¢ if there exists a finite
sequence (71, ...,T,) such that 7; is a one-branch, one-node tree whose origin
is ¢, T, = T, and for each ¢ < n, T;y1 results from 7; by an application of a
rule to preceding S-formulae in the same branch.

o A branch of a tableau is closed if it contains both an S-formula and its conju-

gate.m

o A tableau is closed if all its branches are closed.
e A proof of A is a closed tableau for F A.

Note that—with the exception of the double line in the rules for — and — where
the premise is F-signed—Beth tableaux rules are syntactically identical to the rules
of the signed version of Smullyan’s classical tableaux. Regarding the intuitive in-
terpretation of the rules in Tab. the non-branching rules are to be read: if
the situation above the line is the case, then the situation(s) below the line is (are)
possible, i.e., compatible with the current information state. Correspondingly, if the
rule is branching, it says that if the situation above the line is the case, then one
of the situations below the line must be possible. In turn, the double line in two
of the rules stands for a “barrier” that can be crossed only by T -signed formulae[']
The intuitive interpretation of these barriers is as follows: suppose that we think of
a set of S-formulae on a branch as a (partial) description of an information state.

10T [R0], closure is defined also with respect to T -signed falsum and F-signed verum; constants
which are assumed to be contained in the language.

1Tn [80], Fitting originally stated the clause represented by those barriers as a rule by itself, and
called it “Intuitionistic Branch Modification Rule”.
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TAVB FAVB TAAB FAAB
TA[TB FA TA FA[FB
FB TB

FA— B
TA— B TA T-A F-A
FA|TB FB FA TA

Where the double line indicates that the application of corresponding rule requires
all formulae of the form F A above such a line to be deleted.

Table 5.3: Beth tableaux rules

Thus, the rules having barriers imply a possible jump from a current information
state to a future one where a previously unproven formula gets proven. However, in
such a jump only already proven formulae can be carried to the future state, since
previously unproven formulae might have been inadvertently proven. For example,
consider the rule for — where the premise is F -signed: if A — B is unproven, it is
possible to prove A without proving B; for if this were impossible, a proof of B would
be “inherent” in a proof of A, but this would constitute a proof of A — B. But there
is a barrier in this rule because, in proving A, some additional previously unproven
formula might have been inadvertently proven [see [79, 80]. Finally, a closed branch
intuitively expresses that for any A and for any information state, it is impossible
that A is proven and unproven there.

5.4.4 KE-style Beth tableaux

A KFE-version of Beth tableaux is obtained by means of obvious adaptations. We
use the same signed formulae, i.e., expressions of the form T A and F A, interpreted
exactly as in standard Beth tableaux. So, again, T A means “A is proven” and F A
means “A is unproven”, and we say that the conjugate of T A is F A and vice versa.
Besides, we write TI' to mean {T B|B € I'}. Moreover, we use ¢, 1,0, ..., possibly
with subscripts, as variables ranging over S-formulae; and X,Y, Z, ..., possibly with
subscripts, as variables ranging over sets of S-formulae. Besides, we use ¢ to denote
the conjugate of . Now, as expected, the rules of the KF-version of Beth tableaux
(with the exception of a double line in the rules for — and — where the premise is F -
signed) are syntactically identical to the rules of (signed) KE. The rules of KFE-style
Beth tableaux are displayed in Tab. [5.4]
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TAV B TAV B FAV B
FA FB FA
TB TA FB

FAAB FAANB TAANB
TA TB TA
FB FA TB

TA— B TA— B FA— B

TA FB TA
TB FA FB
T-A F-A

FA TA TA[FA

Where the double line indicates that the application of corresponding rule requires
all formulae of the form F A above such a line to be deleted.

Table 5.4: Rules of KFE-style Beth tableaux

Definitions 5.4.5.

o Given a set of S-formulae X = {¢1, ..., o}, we say that T is a KE-style tableau
for X if there exists a finite sequence (71, ..., 7,,) such that 77 is a one-branch
tree consisting of the sequence (1, ..., ), T, = T, and for each i < n, Ti;,
results from 7; by an application of an elimination rule to preceding S-formulae
in the same branch, or by an application of PB.

o A branch of a KE-style tableau is closed if it contains both an S-formula and
its conjugate.

o A KE-style tableau is closed if all its branches are closed.
o A proof of A from I' is a closed KE-style tableau for TI' U {F A}.

The intuitive interpretation of the rules in Tab. is along the lines of that of
standard Beth tableaux rules. That is, the non-branching rules in Tab. are to
be read: if the situation above the line is the case, then the situation(s) below the
line is (are) compatible with the current information state. In turn, there is only
one branching rule that we again call PB since it expresses a generalized Principle
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Fo = T (A — B)®
T—\(A\/—\A) b;»m@
EAv—A T-B E-B
EA E—A TB
A T-A FA=T
TA FA=T TA
FAvV-A TA FB
X
FA FB
F-A FA
X X

Figure 5.2: KFE-style proofs

of Bivalence, and which intuitively says the following: for any formula A and for any
information state, either A is proven or unproven there. As for the double line in
two of the rules, its intuitive interpretation is exactly as in standard Beth tableaux.
A couple of examples of KFE-style proofs are displayed in Fig. [5.2l We mark the
assumptions with an ‘@’ and, for the sake of clarity, cross out formulae according to
applications of rules with a barrier.

Soundness of our KFE-version of Beth tableaux with respect to Kripke semantics
is straightforward. Given a Kripke model 9 = ((S, R), {v,}acs), we say that an
information state a € S realizes a S-formula T A iff M, a IFx A, and a S-formula F A
ift M, a W A. We also say that a realizes a set of S-formulae X iff a realizes each
p e X.

Proposition 5.4.6 (Soundness). If there is a closed KE-style tableau T for TT'U
{F A}, then T Ex A.
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Proof. The proof is by induction on the structure of 7. Let 9 = ((S, R), {04 }aes)
be a Kripke model.

Basis: 7T consists only of the assumption F A. Then suppose that a € S realizes
F A, then a trivially realizes F A.

Inductive step: There are 12 cases according to the last rule applied in 7. We
present two cases, the rest being similar.

e The last rule applied is a conditional elimination concluding T D. So, the
premises are TC — D and TC. Suppose that a realizes {TC — D, TC}.
Thus, M, a lFx C — D and M, a IFx C. By definition, the former means that
for all b such that aRb, if M, b IFx C then M, b IFx D. Given that aRa, we
have that if M, a IFx C then M, a IFx D. Since indeed M, a IFx C, then we
have 9, a IFx D. Thus, a realizes T D.

o The last rule applied is a negation elimination concluding T C'. So, the premise
is F =C. Suppose that a realizes F —~C. Thus, 9, a ¥ —C, and so by definition
there is b, aRb, such that M, b IFx C'. So b, aRD, realizes T C.

Now, of course, no information state in a Kripke model can realize two conjugate
S-formulae simultaneously. Then, if T is a closed KFE-style tableau, no information
state in a Kripke model can realize all the initial S-formulae of 7. Hence, if T is
a closed KE-style tableau for TT'U { FA}, it follows that an information state in a
Kripke model realizes T A whenever it realizes TI', and so I' Fx A. ]

Now, the completeness of our K FE-version of Beth tableaux can be shown in several
ways. One is by proving that the set of theorems of such a system includes some
standard set of axioms for IPL and is closed under modus ponens. Below we take
this option with respect to the original set of axioms provided by Heyting.

Proposition 5.4.7 (Completeness). If ) bpp A, then there is a closed KE-style
tableau for ) U {F A}.

Proof. Checking that the 11 axioms given by Heyting are theorems of our KFE-style
Beth tableaux system is routine. As an example, we check one of those axioms:
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F((A— C)A(B =T(AV B) = 0)°
T(A—= C)A (B = C)
FAvBy=T
TASC
TB—C

TAVEB

TB
X

Now, in order to show that our KFE-style system is closed under modus ponens,
suppose that there are closed KFE-style Beth tableaux 7, and 7, respectively for
{F A} and {F A — B}. Then, the following tableau:

FB

is closed for {F B}. O
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5.5. Intelim deduction in IPL

The above proof provides a simulation of a standard axiomatic system by our
KFE-style system. In fact, a direct simulation of standard Beth tableaux by our
KE-style system provides another easy proof of completeness of the latter:

Proposition 5.4.8 (Completeness). If there is a closed Beth tableau for F A, then
there is a closed KE-style tableau for ) U {F A}.

Proof. First, observe that standard Beth tableaux and its KFE-version share the rules
FV, TA, F —, T— and F—. Then, it is easy to see that the rules F — and F—
formulated in terms of boxes with barriers are a purely notational variant of the
original rules. Now, the rest of the rules of standard Beth tableaux can be simulated
in our KFE-version as follows:

TAVB FAANB TA— B
AN A
TA FA TB FB TA FA
TB FA TB

Thus, if 7 is a closed Beth tableau for F A, then replace each application of a
(non-shared) Beth tableaux rule with its simulation in the KE-version. The result
is a closed KE-style tableau 7' for ) U {F A}. O

5.5 Intelim deduction in IPL

In order to define our depth-bounded approximations to IPL we shall define a
KE/KI-style system that, as in previous Chapters, we call intelim method. So,
we shall enrich our KFE-style system above with suitable introduction rules for the
connectives. We have two reasons for using both introduction and elimination rules:
(i) it allows for more natural proofs; (ii) it reduces the number of applications of PB
that, as explained below, is key to our measure of the depth of an inference.

Now, unlike the elimination rules of our KFE-style system, some introduction rules
for the intuitionistic connectives inherently involve temporary assumptions. In the
KFE-style system above, the unique rule involving hypothetical information about a
formula is PB, information that is ultimately “discharged” when all the branches of
the corresponding tree are closed. By contrast, the elimination rules do not involve,
per se, any temporary assumption. For instance, if an agent actually possesses the
information that —A is unproven in the current information state, then she also
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actually possesses the information that A can possibly be proven in some future
state. Again, information that an agent actually posses or holds is what we call
actual information. So, the elimination rules of our KF-style system involve all only
actual (in some cases, modal) information.

On the other hand, the intuitionistic truth of formulae whose main connective is
— or — cannot be determined without assuming that there is an essentially richer
information state where certain formulae hold. For instance, for an agent to recognize
that a conditional A — B is proven at a state where A is unproven, she must in
principle transfer from the actual state to a wvirtual one where A is proven and any
other formula remains the same; i.e., she must reason as if her state were the latter
one. If in such a virtual state the agent verifies B as well, she can conclude that
A — B must be proven at the actual state. In fact, this situation underlies the
intractability of IPL: when the evaluation of the truth of a formula requires weaving
in and out of a complex recursive pattern of virtual information states, the complexity
of such an evaluation may soon get out of control. This is formally shown by the result
that the decision problem for the pure implication fragment of IPL is P-SPACE
complete [I40]. In order to assent to a conditional A — B, the agent essentially needs
to go beyond the information that she holds, using hypothetical information; i.e.,
simulating situations in which she possesses information that she does not actually
possess. Even though all hypothetical information may be eventually discharged—to
the effect that the conclusion depends only on information actually possessed by the
agent—it is the case that the corresponding deduction steps could not be performed
at all without using that hypothetical information. Again, hypothetical information
that an agent does not hold, but she temporarily assumes as if she held it is precisely
what we call virtual information.

Conveniently, we can represent the scope of temporary assumptions with boxes,
as in Jaskowski-style natural deduction [102]. These boxes serve to demarcate the
scope of subordinate proofs or, simply, subproofs where temporary assumptions are
used. More specifically, boxes indicate that the enclosed formulae are considered
as being derived only under corresponding temporary assumptions. Then, those
assumptions are “discharged”—in the sense that the corresponding conclusion no
longer depends on them but only on other still undischarged assumptions, if any—
when the conditions stipulated by the corresponding rule are met. This discharge is
symbolized by closing off a box and writing immediately outside it the corresponding
conclusion. So, boxes can be nested in that inside them we continue applying rules.
Besides, new boxes can be open after old ones have been closed; yet boxes cannot
overlap. The scoping rule for boxes is then that each S-formula occurring in a box
can be used, as premise of a rule application, in every box contained in it and cannot

176



5.5. Intelim deduction in IPL

be used in any other box. Indeed, once a box is closed, no S-formula inside it can be
used outside the box.

Thus, we can represent the introduction rules for the truth of formulae whose
main connective is — and — as follows:

TA TA
TB X
TA—- B T-A

Where: (i) the vertical dots stand for a derivation of the symbol below them de-
pending on assumptions that may include that above the dots; (ii) the second rule
requires the addition of another rule intuitively expressing a generalized Principle of
Non-contradiction and that, thus, we shall call PNC"

TA
FA
X

This latter rule, as PB, is structural in that it does not involve any particular logical
operator and intuitively says: for any A and any information state, it is impossible
that A is proven and unproven there. In turn, accordingly, we can reformulate PB
using boxes as follows:

TA FA
/x| p/x
@/ x

Where: (i) the vertical dots stand for a derivation of the symbol below them depend-
ing on assumptions that may include that above the dots; (ii) ¢/x means that the
above derivation delivers either ¢ or X; in turn, X is obtained outside the two par-
allel boxes if both symbols immediately above it are x, while ¢ is obtained outside
the parallel boxes when either one of the symbols immediately above it is ¢ and the
other is x, or both symbols immediately above it are .

These three boxed rules involve virtual (modal) information. Each of them in-
volves a (pair of) temporary assumption(s) about an arbitrary formula being proven
or unproven at a virtual information state. In turn, each of those assumptions ap-
pears at the top of the corresponding box, above the vertical dots. The derivation
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represented by the vertical dots depends on the respective temporary assumption.
Then, when the symbol below the vertical dots is somehow derived, probably by
means of the respective temporary assumption, the latter is “discharged” in the con-
clusion of the rule outside the box. Intuitively, although such a deduction takes place
inside a virtual information state, once the information contained in the actual state
combined with the corresponding assumption associated with the virtual one leads
to the symbol at the bottom of the box, the latter can be transferred to the actual
state. Thus, the intuitive interpretation of these introduction rules for — and — is
the same as their Gentzen-Prawitz style natural deduction counterparts. As for the
reformulated rule PB, its intuitive interpretation is exactly as before: for any A and
for any information state, either A is proven or unproven there. However, this “nat-
ural deduction variant” of PB allows us for the introduction of pieces of information
that might not be nested (see the first example of Figure below).

Now, the boxed introduction rules above can be taken as derived rules in a
KFE/KlI-style system by simulating them using PNC, the boxed formulation of PB,
and the following boxed formulation of the elimination rules with barriers:

FA— B
FB TA =
X X
X X
Where: (i) ‘=" indicates that the application of corresponding rule requires

that only T -signed formulae above that double line can be used inside the box;
(ii) the vertical dots stand for a derivation of the conjugate of a T -signed formula
occurring above the box or a pair of conjugate S-formulae. These boxes with barriers
comply with the scoping rule of single boxes and a further condition: only T -signed
formulae above the barrier can be used inside the corresponding box (yet, once the
box with barrier is closed, F-signed formulae above the corresponding barrier can
be used again). The intuition underlying these boxes with barriers is that they
stand for a possible jump from the current information state to a future one, and
thus only T -signed formulae can enter the box. Therefore, we must beware that,
unlike single boxes, boxes with barriers do not demarcate the scope of temporary
assumptions since, as explained above, the associated elimination rules involve only
actual information. The S-formula(e) appearing at the top of the boxes with barriers,
above the vertical dots, is (are) the conclusion(s) of the premise. Accordingly, unlike
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TA—=B FA— B
CTA—| T-A FoA
FB TA—
X X
X X
TA>B T-A

Figure 5.3: Simulated boxed introduction rules

the boxed introduction rules and PB, the boxed version of elimination rules allow
us to obtain outside the corresponding box only x. This is because these latter
rules imply a jump from the current information state to a future one (jump which is
represented by the barrier at the top of the box) and, naturally, a conclusion obtained
in a future state cannot be transferred to the current one. However, if inside a box
with a barrier an inconsistency is reached, that indeed would imply that the current
information state is inconsistent and, so, X can be obtained outside the box. That
said, the simulation that brought us to the boxed formulation of elimination rules is
displayed in Figure 5.3

Now, following the key idea underlying the depth-bounded approach according
to which the meaning of a connective is specified solely in terms of information that
is actually possessed by an agent, we shall take the boxed introduction rules as
derived rules. This is motivated by technical as well as conceptual reasons. On the
technical side, as suggested at the beginning of this section, when virtual information
is essentially used in defining the meaning of a connective—say, by introduction
rules as in proof-theoretic semantics—its unbounded use must be tolerated if this
meaning is to be fully exploited in drawing inferences. But then the corresponding
logic, as in the case of IPL at issue, may turn out to be (likely) intractable. On
the conceptual side, if an agent understands the informational meaning of a sentence
A, then she should be able to tell, in practice and not only in principle, whether
or not she actually holds the information that A is proven, or the information that
A is unproven or neither of themF_?] So, as in the classical and many-valued cases
previously addressed, we seek for a system which has operational rules involving only
actual information—so that they fix the meaning of the connectives solely in terms
of information that the agent holds—and a purely structural principle that governs

12Recall that in the context of CPL, this intuition was called “Strong Manifestability”.
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the manipulation of virtual information—in terms of which the nested use of virtual
information can be bounded. Therefore, the intelim method we shall use to define
depth-bounded approximations is constituted by the rules in Table [5.5]

In these rules, we intuitively re-interpret T A as “the agent holds the information
that A is proven”, and F A as “the agent holds the information that A is unproven”.
We shall refer to the introduction and elimination rules of Table taken together
as intelim rules. So, the meaning of the connectives is specified solely in terms of
actual information by the intelim rules. Observe that, corresponding to the fact that
IPL is V/A-classical, the intelim rules for those connectives are dual of each other.
Besides, expressing a hallmark of IPL, a sentence and its negation are not treated in a
symmetric way. Now, in the elimination rules, we shall refer to the premise containing
the connective that is to be eliminated as major and to the other premise as minor.
In turn, PB is the only rule introducing virtual information. Each application of
PB stands for the introduction of virtual information about an arbitrary formula
A; formula that we shall call the PB-formula. From our informational viewpoint,
the main conceptual advantage of this proof-theoretical characterization consists in
that it clearly separates the rules that fix the meaning of the connectives in terms
of the information that an agent holds (the intelim rules) from the structural rule
that introduces virtual information (PB). Now, the applications of the rules in Table
generate partially ordered sets (posets), and the resulting intelim method can be
used as both a direct-proof method and refutation method.

Definitions 5.5.1.

o Let X = {¢1,....,0m}. Then P is an intelim tableau for X if there exists a
finite sequence (Pi, ..., P,) such that P; is a poset consisting of the sequence
(@1, ooy ©m), Pn = P, and for each i < n, P;;; results from P; by an application
of an intelim rule or PNC to preceding S-formulae in the same path, or by an
application of PB.

+ Given an intelim tableau P for X, P’ is an intelim subtableau of P if P’ = P;
for some 7 < n.

o An intelim tableau for X is completed if no box occurring in it is open.

e An intelim tableau for X is closed if it is completed and X occurs in its last
line; it is open if it is completed and x does not occur in its last line.

o An intelim refutation of X is a closed intelim tableau for X.
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Table 5.5: Rules of the intelim method

TAVEB TAVEB FAV B FAAB
FA FB FA TA
TB TA FB FB

FAAB TAAB TA— B TA— B
TB TA TA FB
FA TB TB FA

FA— B

TA =— F-A
FB TA =
X T-A X TA
X FA X TAVEB

FA

B _FB _FA _FB

TAVEB FAVEB FAANB FAAB
TA TA TA
TB FB TA FA

TAAB FA— B F-A X

TA FA
p/>x ||/
p/x
Where: (i) ‘="1indicates that the application of corresponding rule requires that only

T -signed formulae above that double line can be used inside the box; (ii) the vertical
dots stand for a derivation of the symbol below them depending on assumptions
that may include those above the dots; (iii) ¢/x means that the above derivation
delivers either ¢ or x; in turn, X is obtained outside the two parallel boxes if both
symbols immediately above it are x, while ¢ is obtained outside the parallel boxes
when either one of the symbols immediately above it is ¢ and the other is x, or both
symbols immediately above it are .
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o An intelim proof of ¢ from X is an open intelim tableau for X such that ¢
occurs in its last line.

Note that the above definition accounts for the explosivity of IPL as follows:

TA
T-A
TB FB
FA
X
TB

A couple of examples of intelim proofs are displayed in Figure[5.4] where we mark
each initial assumption with an ‘Q’. The soundness of the rules in Table [5.5 with
respect to Kripke semantics is again straightforward. For example, take the case
where the last rule applied is a negation elimination and x occurs in the last line
of the corresponding tableau. So, the premise is F = A, occurring in the last line of
the subtableau with undischarged assumptions (if any) Y. Now, suppose that and
information state a in a Kripke model 9 realizes Y U {F =A}. Thus, M, a W —A,
and so by definition there is b, aRb, such that 9,0 IFx A. Then suppose further
that the subtableau with undischarged assumptions Y U{T A} U Z is closed. Thus,
b cannot realize Y U {T A} U Z and so a cannot realize Y U {F A} U Z. Therefore,
the subtableau with undischarged assumptions Y U Z is also closed. In turn, the
completeness of our intelim method trivially follows from the completeness of its
KE-style subsystem (the boxed version of the elimination rules and PB is a mere
notational variant of the unboxed version).

Remark 12. In Figure 5.3 we showed that boxed introduction rules can be simulated
via PB, boxed elimination rules and PNC' of our intelim method. It is not difficult
to see that the (unboxed) introduction rules of the method can be simulated via PB,
elimination rules, and PNC. Thus, the KE-style subsystem of the intelim method can
simulate the whole of it. Observe that this implies that the intelim method enjoys
the subformula property. Namely, given Proposition m (the KE-style subsystem
can simulate Beth tableaux), the KFE-style subsystem enjoys the subformula prop-
erty and, in turn, since such a subsystem can simulate the whole intelim method, the
latter also enjoys the property. In Subsection below, we pave the way for a con-
structive proof of the subformula property of the intelim method via normalization,
but we are still working on it.

Now, we identify the basic (0-depth) logic of our hierarchy of approximations
with the inferences that an agent can draw without using virtual information; i.e.,
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., TAvB®
> TA— (CvD)®
s TB— (CvD)®

s TC— E®
5 TD— F°
6 TA FA
7 TCVD TB
TCVD
9 TCVD
w TC FC
n TE TD
12 TEVF TF
TEVF
uy TEVF
. TAvV-A®
> T((A—=B)—=A) = A F(A—-B)—A) - A
T(A—-B)— A —
FA
T-A
FA—B
TA —
FB
FA
X
X
X

3 T(A—=B)—A) — A
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without making hypothetical assumptions that go beyond the information that she
holds. We shall show that a natural proof-theoretic characterization of this basic
logic is obtained by means of the set of intelim rules and PNC. Note that such a
characterization bears some resemblance with natural deduction, but does not have
discharge rules, since no hypothetical reasoning is involved. In turn, given that the
intelim rules have all a linear format, their application generates intelim sequences.
Namely, finite sequences (g1, ..., ¢,) of S-formulae such that, for every i = 0, ..., n,
either ; is an initial assumption or it is the conclusion of the application of an
intelim rule to preceding S-formulae. In Figure [5.5 we show a pair of examples of
these sequences.

The intelim rules and PNC' are not complete for full IPL but only for the 0-depth
logic of our hierarchy of approximations. Completeness for the k-depth logics, k > 0
(and in the limit for full IPL) is obtained by allowing the nested introduction of
virtual information via PB. As explained above, each application of this latter rule
stands for the introduction of virtual information about a formula being proven or
unproven at some virtual information state. We shall refer to the temporary assump-
tions that are introduced by each application of PB as virtual assumptions. In turn,
we shall call the (unsigned) formula A to which PB is applied as the PB-formula.
Further, when applications of PB are allowed, deductions are represented by posets.
PB is essentially a cut rule which may introduce formulae of arbitrary degree. How-
ever, we shall show later on, in Theorem that we can restrict the applications of
PB to subformulae of the initial assumptions or the conclusion of the given infer-
ence; i.e., restrict its application so as to satisfy the subformula property. As in the
classical and many-valued cases addressed in the previous Chapters, intuitively, the
more virtual information needs to be introduced via PB, the harder the inference is
for the agent, both from the computational and the cognitive viewpoint. Thereby,
the nested applications of PB provide a sensible measure of inferential depth. This
naturally leads to defining an infinite hierarchy of tractable depth-bounded approx-
imations in terms of the maximum number of nested applications of PB that are
allowed.

Now, although PB may introduce formulae of arbitrary degree, the set of for-
mulae to which it is applied can be bounded in a variety of ways without loss of
completeness. As in the previous Chapters, we call this set virtual space and de-
fine it as a function f of the set I' U {A}, consisting of the premises I and of the
conclusion A of the given inference. As before, the strictest way of bounding the
virtual space consists in allowing as PB-formulae only atomic formulae that occur
in ' U{A}. A more liberal option is allowing only subformulae of the formulae in
' U {A}. Specifically, let F be the set of all functions f on the finite subsets of
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Figure 5.5: Intelim sequences
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F(L) such that: (i) for all A, at(A) C f(A); (ii) f(A) is closed under subformulae,
ie., sub(f(A)) = f(A); (iii) the size of f(A) is bounded above by a polynomial in
the size of A, i.e., [f(A)] < p(|A|) for some fixed polynomial p. (This last require-
ment will be essential in order to define tractable approximations bellow.) Again,
the choice of an specific function to yield suitable values of the virtual space for each
particular deduction problem is the result of decisions that are conveniently made by
the system designer, depending on the intended applicationE] In turn, the functions
in F are partially ordered by the relation < such that f; < fs iff, for every finite
A, fi(A) C fo(A). Once again, distinguished examples of functions in F are the
identity function f(A) = A, sub and at. However, in general, f(A) may contain for-
mulae that are not in sub. Thereby, our intelim method allows for (possibly shorter)
deductions that do not have the subformula property simply by permitting applica-
tions of the boxed introduction rules or PB to formulae that are not subformulae
either of the premises or of the conclusion. However, even in this latter deductions
the virtual space is still bounded.

Now, PB is not the unique rule of our intelim method that may bring about
violations of the subformula property. The introduction rules of the method could
in principle be applied ad infinitum, leading to ever more complex formulae. Never-
theless, as we shall suggest below, the application of both PB and the introduction
rules seem likely to be restricted so as to satisfy the subformula property. Namely,
we shall suggest that every intelim proof of ¢ from X (intelim refutation of X) can
be transformed into an intelim proof of ¢ from X (an intelim refutation of X') with
the subformula property.

5.5.1 Towards normalization

Disclaimer: The content of this Subsection is based on [63] but is not fully settled,
let alone verified. Particularly, the transformations for PB-canonicity in Table [5.6
seem problematic, and Table [5.11]is incomplete since the corresponding transforma-
tions for — and — are missing. One of the main results of this Subsections would
be a constructive proof of the subformula property of the intelim method. However,
that the method enjoys such a property already follows from Proposition [5.4.§ and
the fact that the KFE-style subsystem of the method can simulate the whole of it, as
noted in Remark [T2

As mentioned in the previous Chapters, the subformula property allows us to

13 As in the cases addressed in the previous Chapters, in the approximations defined below, such
decisions affect the deductive power of each given approximation, and so the “speed” at which the
approximation process converges to full IPL.
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search for proofs or refutations by analytic methods; i.e., by considering solely de-
duction steps involving formulae that are “contained” in the assumptions, or also in
the conclusion in the case of proofs. This implies a drastic reduction of the search
space which is crucial for the purpose of automated deduction. At the proposi-
tional level, this search space is finite for each putative inference, paving the way for
decision procedures. Particularly, in our intelim method, the subformula property
guarantees that we can impose a bound on the applications of PB, which could in
principle be applied to arbitrary formulae, with no loss of deductive power. Similarly,
it guarantees that we can impose a bound on the sensible applications of introduction
rules, which could in principle be indefinitely applied, leading to ever more complex
formulae.

Now, we say that the unsigned part of an S-formula is the unsigned formula that
results from it by removing its sign. Given an S-formula ¢, we denote by ¢" the
unsigned part of ¢ and by X“ the set {¢“|p € X}. Moreover, henceforth with
“(sub)tableau” we mean “completed intelim (sub)tableau”, and with P (possibly
with subscript) denote always a completed intelim (sub)tableau.

Definition 5.5.2. An intelim proof P of ¢ from X (an intelim refutation of X') has
the subformula property if, for every S-formula ¢ occurring in P, ¢* € sub(X*U{p"})
(Y™ € sub(X™)).

Definition 5.5.3. An application of PB is canonical in an intelim tableau P if there
is no application of an intelim rule or PNC' in P below PB’s conclusion. An intelim
tableau P is PB-canonical if all applications of PB in it are canonical.

Any intelim proof (refutation) can be turned into an PB-canonical one by apply-
ing the transformations in Table These transformations can be respectively
applied whenever: ¢/6 is an instance of a one-premise, one-conclusion, intelim rule;
¢, ¢/ X is an instance of PNC; ¢, 1/6 is an instance of a two-premise intelim rule;
/1, 0 is an instance of a one-premise, two-conclusion, intelim rule; and

14In what follows, our transformations are to be interpreted along these lines: replace locally
a subtableau of the form shown on the left of “~~” with a subtableau of the form shown on its
right. Moreover, beware that the subscripts on P in our transformations are used differently that
in Definitions [5.5.1}
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is an instance of a boxed elimination rule. The repeated application of these transfor-
mations results in pushing downwards all the applications of PB so that, eventually,
the conclusion of an application of PB is never used as a premise of an intelim rule
or PNC, and must be identical to the conclusion of the whole proof or refutation.

Given a subtableau P’ of P, let dpp(P’) be equal to zero if P’ ends with an
application of PB, and equal to the total number of applications of PB in P’ if P’
ends with an application of an intelim rule or PNC. We introduce the parameter
di(P) = (m,n) where m is the maximum value of dpp for a subtableau of P and n
is the number of subtableaux for which the value of dpp is maximum. Now, consider
the lexicographic order on d; as usually defined: (m,n) < (m/,n') iff m < m’ or
m = m’ and n < n/. It can be shown that, for every tableau P, there is a finite
sequence of applications of transformation in Table that progressively decreases
the value of di(P) until it yields a tableau P* for which d;(P*) = (0,0), ie., a
PB-canonical tableau.

Conjecture 1. Every intelim proof of ¢ from X (intelim refutation of X ) can be
transformed into a PB-canonical intelim proof of ¢ from X (intelim refutation of

X ), by means of any sufficiently long sequence of applications of transformations in
Table [5.0.

Definition 5.5.4. Let the depth of a PB-canonical intelim proof of ¢ from X (intelim
refutation of X') P, denoted by depth(P), be defined as follows:

 If P contains no application of PB, then depth(P) = 0;

e if P has the form

Po
TA FA
P Po
/X || p/X
o)X

then depth(P) = max (depth(P;), depth(P,)) + 1.

Definition 5.5.5. A 0-depth component of a PB-canonical intelim proof of ¢ from
X (PB-canonical intelim refutation of X)) P is any maximal 0-depth subtableau of
P, i.e., one that is not a proper subtableau of any 0-depth subtableau of P.

Note that in a PB-canonical intelim proof (refutation) P, the conclusion of every
0-depth component is the conclusion of P itself or x. Each 0-depth component P;

188



5.5. Intelim deduction in IPL

s<fo

Po

TA FA
P Po
@/ % o/ %

v
Ps

X
X

Po

TA FA
P Po
w0/ x @/ x

¥

TB FB
Ps P
w/ X w/ X

w/x

Po
TA FA
P1 P
p/x | o/
6/ x 6/ x
6/ x
Po
TA FA
P Po
p/x || w/x
Ps Ps
(0 (0
6/ x 6/ x
0/ x
Po
TA FA
P1 Po
p/x || e/x
(G (8
7 0
0
Po
TA FA
P1 P
p/x p/x
Py = Py =
X X
X X
X
Po
TA FA
P1 P
p/x p/x
TB FB TB FB
Ps Py Ps Py
w/x w/x w/>< w/><189
w/ X w/x
w/ X

Where: (i) inside the boxes on the right of ~, if x is the case in ¢/x, nothing
follows x; (ii) in the last transformation, ¢ is used in the derivation of w or X.

Table 5.6: Transformations for PB-canonicity
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Po
TA | FA Po
P1 Pa ~ P
p/x || p/x p/x
@/ x

Where ¢ = 1 if T A is vacuously discharged in P; or occurs as an undischarged
assumption in Po; @ = 2 if F A is vacuously discharged in P, or occurs as an undis-
charged assumption in P;.

Table 5.7: Transformation for PB-non-redundancy

is a proof of ¢ from (a refutation of) X; UY; such that: (i) X; C X; (ii) Y;, with
|Y:| < k, is the set of virtual assumptions introduced in P; that are subsequently
discharged in P via applications of PB; (iii) P; contains only applications of intelim
rules and PNC. The node below the last node of each 0-depth component P; is either
an occurrence of the conclusion of P itself or x, which results from applications of
PB discharging the virtual assumptions in Y;.

Definition 5.5.6. Given an intelim proof (refutation) P, we say that an application
of PB in P is redundant if one of the following conditions hold:

« at least one of its virtual assumptions is vacuously discharged, i.e., at least one
of the corresponding virtual assumptions is not used;

e its conclusion still depends on one of the virtual assumptions.

Any intelim proof (refutation) can be turned into one that contains no redundant
applications of PB by applying the transformation in Table[5.7. Note that the result
of removing all redundant applications of PB from an intelim proof of ¢ from X UY
(an intelim refutation of X UY') is an intelim proof of ¢ from Z C X UY (an intelim
refutation of Z C X UY'), where Y, with |Y| < k, is the set of virtual assumptions
introduced in P that are subsequently discharged in P via applications of PB. Now,
let d2(P) denote the number of redundant applications of PB in P. Observe that
each application of the transformation in Table yields a tableau P’ such that
dQ(Pl> < dQ(P)

Conjecture 2. Every intelim proof of ¢ from X UY (intelim refutation of X UY')
can be turned into an intelim proof of ¢ from Z C X UY (an intelim refutation
of Z C X UY) that contains no redundant applications of PB, by means of any
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sufficiently long sequence of applications of the transformation in Table[5.7 and with
no increase in the size or depth of the proof (refutation).

Remark 13. We emphasize that every application of the transformation in Table [5.7]
which decreases dy(P) does not introduce any new application of PB and so cannot
increase d; (P).

Definition 5.5.7. A detour in an intelim proof (refutation) P is an occurrence of
an S-formula as conclusion of an introduction and, simultaneously, as major premise
of an elimination.

The transformations in Tables B.§ and [£.9 show how detours can be removed
from an intelim proof (refutation); to save space we use the variable ¢ ranging over
{1,2}. Observe that the transformations in Tables and 5.9} (i) do not increase
the size nor depth of the proof (refutation); (ii) in some cases, their application may
introduce new detours, but these new detours are always of lower degree (i.e., have
lower number of occurrences of connectives) than the one that is removed by the
transformation. Thus, let d3(P) be the sum of the degrees of all detours occurring
in P and equal to 0 when there are no detours. Hence, each application of the
transformations in Tables and [5.9) decreases the value of d3(P) until it eventually
drops to 0, and so yielding a proof that does not have detours.

Conjecture 3. Any intelim proof of ¢ from X (intelim refutation of X ) can be
transformed into a intelim proof of ¢ from X (intelim refutation of X ) that contains
no detours, by any sufficiently long sequence of applications of transformations in
Tables and and with no increase in the size or depth of the proof (refutation).

Remark 14. We emphasize that the transformations in Tables and do not

introduce any new application of PB, and thus cannot increase either d;(P) or dy(P).

Remark 15. The notion of detour can be generalized by considering any sequence
(p1, ..., n) of occurrences of the same S-formula such that: (i) ¢y is the conclusion
of an introduction; (ii) ¢, is the major premise of an elimination; (iii) for all ¢ such
that 1 < i < n, ¢; is an immediate successor of ¢; ; resulting from an application
of PB. We call such a sequence a detour of level n. An example of a detour of level
2 is shown in Figure [5.6] However, those higher level detours cannot occur in PB-
canonical proofs (refutations), for ¢, would be at the same time the conclusion of
an application of PB and a premise of an intelim rule or PNC. Then, the removal
of higher level detours is a side-effect of transforming proofs (refutations) into PB-
canonical ones. Another kind of “indirect” detour is displayed in Figure and is
related to the possibility of simulating introductions via PB, eliminations and PNC.
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P
TA,; P
TA VA, ~ T A;
Po P
F A, FA;
T A(g_i) X
P
TA;
TA;V A, > 2
P TA;
F A(g,z)
T A;
P
FA P
Po F A
F Ag ~ 7)2
P
F Al VAN A2 ~ F Az
P P
T A, T A;
F A(g_i) X

Table 5.8: Transformations for removing detours 1
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P1
F A,
FAL A A ~s P
P F A,
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FA;
P1
TA, P
Po T A,
T A2 ~ 7)2
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P1
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X X
X
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TA;
Ps
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F A2 F A2
Ps Ps
X X
X

Table 5.9: Transformations for removing detours 2
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TA
TAVEB
TC FC

TAVB/x || TAV B/x
TAVEB

FA
TB

Figure 5.6: A detour of level 2

Again, the removal of this kind of indirect detours is a byproduct of transforming
proofs (refutations) into PB-canonical ones.

Definition 5.5.8. Given an intelim proof (refutation) P, an application of PNC
is canonical in P if it is not the case that its premises are both conclusions of
introductions. An intelim proof (refutation) is PNC-canonical if it contains no non-
canonical applications of PNC.

Now, non-canonical applications of PNC' can be removed by means of the trans-
formations in Table [5.10] (for ¢ ranging over {1,2}). By the degree of an application
of PNC' with premises T A and F A, we mean the degree of A. The removal of a
non-canonical application of PNC' may introduce a new non-canonical application,
but the degree of the latter is always lower. Thus, let dy(P) be the sum of the
degrees of the non-canonical applications of PNC in P and equal to 0 when all the
applications of PNC' are canonical. Each application of the transformations in Table

decreases d4(P) until its value drops to 0.

Conjecture 4. Any intelim proof (refutation) can be transformed into a PNC-
canonical one by means of any sufficiently long sequence of applications of trans-
formations in Table and with no increase in the size or depth of the proof
(refutation,).

Remark 16. Observe that applications of transformations in Table do not in-
troduce new applications of PB nor new detours, and so cannot increase any of the
parameters d; (P)-ds(P).
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Figure 5.7: An indirect detour

Po
TA
T Al V AQ
Py
F Al
Po
F A,
FA VA
X

Po
F Al VAN A2
P
TA
Po
_TA,
TANA
X

Po
F A,

- P;

TA,;

Table 5.10: Transformations for PNC'-canonicity
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Definition 5.5.9. An intelim proof (refutation) P is quasi-normal if the following
three conditions are satisfied:

e P is PB-canonical and PN(C-canonical;
e P contains no redundant applications of PB;
e P contains no detours.

Now, let
d(P) = (di(P), d2(P), ds(P), ds(P))

and consider the usual lexicographic order on d(P) for every intelim proof (refuta-
tion) P. It can be shown that a transformation that decreases d;(P) for some i < 4,
may increase d;(P) for some j > i. However, as observed in Remarks [L3{16] trans-
formations that decrease d;(P) for ¢ > 1, never increase d; for any j < i. So, each
of the transformations in Tables decreases d(P). Therefore, the repeated
application of these transformations, regardless of their order, eventually yields a
proof P’ such that d(P’) = ((0,0),0,0,0), which is thus quasi-normal.

Conjecture 5. Any intelim proof (refutation) can be turned into a quasi-normal
intelim proof (refutation), by means of any sufficiently long sequence of applications

of the transformations in Tables[5.605.10.

Further, observe that the transformations in Tables that decrease da(P)
— d4(P) never increase the size of the proof (refutation) and do not introduce any
new application of PB. Thus:

Conjecture 6. Any PB-canonical intelim proof (refutation) can be turned into a
quasi-normal intelim proof (refutation), by means of any sufficiently long sequence
of applications of the transformations in Tables[5.H5.10, with no increase in the size
or depth of the proof (refutation).

Remark 17. If P is a quasi-normal intelim proof (refutation), then every subtableau
of P is also quasi-normal.

Quasi-normal proofs and refutations avoid trivially redundant applications of PB,
intelim rules and PNC. Besides, in those proofs and refutations, the applications of
PB are pushed down at the end of the corresponding tableau, so that their conclusion
is always the conclusion of the whole proof or refutation. So, the role of applications of
PB consists in gradually discharging the virtual assumptions made in what we called
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the O-depth components. In quasi-normal proofs and refutations, PB is the only
rule that may bring about violations of the subformula property. We now continue
with the notion of normal proof (refutation), which is simply a quasi-normal proof
(refutation) where PB is applied only to subformulae either of the initial assumptions
or of the conclusion. Thus, normal proofs and refutations enjoy the subformula

property.
Remark 18. Observe that:

a) The relation “A is a proper subformula of B” is transitive;

b) the unsigned part of the minor premise of an elimination is always a proper
subformula of the unsigned part of its major premise;

c¢) the unsigned part of the conclusion of an elimination is always a proper sub-
formula of the unsigned part of its major premise;

d) the unsigned part of a premise of an introduction is always a proper subformula
of the unsigned part of its conclusion.

Definitions 5.5.10. Given an intelim proof of ¢ from X (an intelim refutation of
X) P, we say that an application of PB in P is analytic if its PB-formula is in
sub(X*“U{¢"}) (sub(X*)). An application of PB in P is atomic if its PB-formula is
atomic, i.e., the virtual assumptions discharged by it have the form T p and Fp for
some atomic p.

Definition 5.5.11. An intelim proof (refutation) P is normal if it is quasi-normal
and every application of PB in P is analytic.

Note that a quasi-normal 0-depth intelim proof (refutation), i.e., one that contains
no applications of PB, is normal by definition.

Remark 19. If P is a normal intelim proof (refutation), every subtableau of P is also
normal.

Conjecture 7. If P is a normal 0-depth proof of ¢ from X (normal 0-depth refu-
tation of X ), and ¢ is a S-formula occurring in P, then either " € X" U {p"}
(X¥) or Y™ is a proper subformula of some formula in X* U {x"} (X*), i.e., Y* €
sub(X* U {¢"}) (" € sub(X™)).

Proof sketch. Suppose that P is a normal 0-depth intelim proof of ¢ from X (normal
0-depth refutation of X). Let Y be the set of all S-formulae 6 occurring in P such
that (i) 0“ ¢ X" U {¢"} (0* ¢ X"), and (ii) 6" is not a proper subformula of any
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formula in X" U {¢"} (in X*). Let us assume that Y # () and take a formula w € Y
such that w" is of maximum degree in Y". Given that w" ¢ X" w occurs in P as
conclusion of an application of an intelim rule.

Now, w cannot be a conclusion of an elimination. To see this, note that the
unsigned part of the major premise of this elimination cannot be in X* U {¢"}
(X™), otherwise, by Remark [L8c¢), w* would be a proper subformula of a formula in
X" U{e"} (X") and thus w would not belong to Y. Moreover, the unsigned part
of this major premise cannot be a proper subformula of a formula in X* U {©"}
(X™), for in this case, by Remark [18-a) and Remark[I8c), w* would also be a proper
subformula of some formula in X" U {¢"} (X*) and so w would not belong to Y.
Therefore, the major premise of the elimination should be an S-formula in Y such
that its unsigned part is of greater degree than w", against the assumption that w*
is of maximum degree in Y.

Hence, w can only be the conclusion of an introduction. Given that w # ¢, w
must be used in P as premise of some intelim rule or of PNC. Now, w cannot be
used as major premise of an elimination rule, otherwise w would be a detour, against
the assumption that P is normal and so contains no detours. Besides, w cannot be
used as premise of PNC|, because in this case w could also be only the conclusion
of an introduction, for the same reasons as w; but this is impossible because P is
normal and so PNC-canonical (it is not the case that the premises of an application
of PNC' are both conclusions of an introduction). Moreover, w cannot be used as
minor premise of an elimination, otherwise, by Remark b), w" would be a proper
subformula of the unsigned part of the major premise. So, either the unsigned part of
this major premise belongs to X*U{¢"} (X*) and then, by Remark [I8a), w* would
be a proper subformula of some formula in X* U {¢"} (X"), in which case w would
not belong to Y; or the major premise of this elimination would be an S-formula in
Y whose unsigned part is of greater degree than w", against the assumption that w*
is of maximum degree in Y.

Thus, w must be used as premise of an introduction. But this is impossible since,
by Remark d), w" would be a proper subformula of the unsigned part of the
conclusion of this introduction. So, either (i) the unsigned part of this conclusion
belongs to X* U {¢"} (X“) and, by Remark Remark [18a), w* would be a proper
subformula of some formula in X" U {¢"} (X"), in which case w would not belong
to Y, or (ii) the conclusion of this introduction would be a S-formula in Y whose
unsigned part is of greater degree than w", against the assumption that w* is of
maximum degree in Y*. Therefore, Y must be empty. [

It would follow immediately from the above Conjecture that:

198



5.5. Intelim deduction in IPL

Conjecture 8 (SFP of 0-depth proofs and refutations). Every normal 0-depth
intelim proof (every normal 0-depth intelim refutation) has the subformula property.

Remark 20. Note that if P is a quasi-normal proof of ¢ from X (a quasi-normal
refutation of X), whose 0-depth components are Py, ..., P, every 0-depth component
P; is a normal proof of ¢ from X;UZ; (a normal refutation of X;UZ;), where X; C X
and Z; are virtual assumptions that are subsequently discharged in P by applications

of PB.

Conjecture 9 (SFP of normal proofs and refutations). If P is a normal intelim
proof of ¢ from X (normal intelim refutation of X ), then P has the subformula

property.

Proof sketch. Let Py, ..., P, be the 0-depth components of P. By Remark 20 every
0-depth component of P is normal. Recall that in a normal proof (refutation), every
S-formula occurring in P occurs also in some of its O-depth components, since all the
conclusions of applications of PB are equal to the conclusion of all 0-depth compo-
nents. Then, for every S-formula v occurring in P, there is a 0-depth component P;
of P such that, by Conjecture[7} either ¢¥* € X U Z* U {¢"} (¥* € XU ZY), or ¢
is a proper subformula of some formula in XU Z*U{p"} (Y% € XU ZY), where X;
are the assumptions of P; that are left undischarged in P and Z; are the virtual as-
sumptions subsequently discharged in P. If P is normal, for every S-formula 6 € Z;,
0" is a subformula of a formula in X*U{¢"} (X}*). So, either (i) " € X}UZ!U{p"}
(" € XU Z¥) and so " is a subformula of a formula in X U {¢"} (X}), or (ii)
Y™ is a proper subformula of some formula in X* U Z* U {¢*}) (XU Z}*). Since for
every 6 € Z;, 0" is a subformula of some formula in X} U {¢"}, it is not difficult to
verify, that if ¢* is a proper subformula of w" and w" is a subformula of x*, then
Y" is a subformula of y*. Therefore, ¥* must be a subformula of some formula in

XU e} (X7). O

Conjecture 10. If P is a quasi-normal intelim proof of ¢ from X (quasi-normal
intelim refutation of X ) and all the non-atomic applications of PB in P are analytic,
then all the atomic applications of PB in P are also analytic, i.e., P is normal.

Proof sketch. Let P is a quasi-normal intelim proof of ¢ from X (quasi-normal in-
telim refutation of X)) such that all the non-atomic applications of PB in P are
analytic. We show that P cannot contain any non-analytic atomic application of PB
and, so, P is normal. To this end we prove, by induction on k, that every k-depth
subtableau of P is normal.

By Remark every O-depth subtableau of P is normal. For k > 0, suppose that
every subtableau of P of depth k —1 is normal. We show that under this supposition
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every k-depth subtableau is also normal. Since k£ > 0, any k-depth subtableau either
ends with a non-atomic application of PB (which is by hypothesis analytic, so that
the k- depth subtableau is normal) or has the following form, for some atomic p:

Po
Tp Fp
Py P
p/x || ¢/x
o/ %
Suppose, ex absurdo, that this atomic application of PB is non-analytic, i.e. that

p does not occur in X* U {¢*}. By inductive hypothesis, we know that for some
X1, Xp C X

e Py is a normal proof of ¢ from X; UY; U{Tp} (normal intelim refutation of

e Py is a normal proof of ¢ from Xs U Yy U {Fp} (normal intelim refutation of

where Y] and Y5 are the sets of virtual assumptions that are still undischarged in P,
and P, respectively.

Since P is quasi normal, it contains no redundant applications of PB, and so
neither T p nor Fp are vacuously discharged. Thus, T p must be used as premise
of some application of an intelim rule or PNC in P;, and Fp as premise of some
application of an intelim rule or PNC in P;. Given the logical form of p, T p cannot
be used in P; as major premise of an elimination. In turn, if T p is used as minor
premise of an elimination, p would occur in the unsigned part of the major premise
and the latter would not be a subformula of some formula in X{*UY*U{p}U{p"}; this
because every formula in Y;* is either an atomic formula, or the negation of an atomic
formula, or a subformula of some formula in X} U{y"}. But this is impossible, since,
by inductive hypothesis, P; is normal and, by Conjecture [9 it has the subformula
property.

Moreover, T p cannot be used as premise of an introduction, for the unsigned
part of the conclusion of this introduction would not be a subformula of any of the
formulae in X' UY* U {p}U{¢"}, which would again contradict the hypothesis that
P1 is normal and has the subformula property. So, T p must be used in P; as premise
of an application of PNC. But, in such a case, the other premise F p cannot result
from the application of an elimination, otherwise P; would not have the subformula
property, against the hypothesis that it is normal. Thus, F p should belong to Y; and
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Po
TA FA
Po TAVB T8 FB
TAVB| FAVB P, TAVB FAV B
P P /% P Po
P/ X P/ X o/ % p/ X
o/ % p/ %
P/ X
Po
TA FA
Po TB FB FAAB
TAAB| FAAB TAAB FAAB P,
,Pl PQ 731 PQ 2 / X
p/X p/X p/ X p/x
o/ p/x
/%

Table 5.11: Transformations for normality (the transformations for — and — are
missing)

the corresponding application of PB would be redundant, against the hypothesis that
P is quasi normal, which implies that it contains no redundant applications of PB.
Hence, it is impossible that p is an atomic formula that does not occur in X*U{p"}.
Therefore, all applications of PB in P are analytic and P is normal. ]

Any intelim proof (refutation) can be turned into a normal one by applying the
transformations in Table In turn, for every intelim tableau P, let g(P) be
defined as follows:

8(A) if P ends with a non-analytic application of PB and A is the
PB-formula of this application
0 otherwise

9(P) =

where £(A) denotes the degree of A.
Observe that, in general, the transformations in Table increase the size of
the proof (refutation). Besides, they may introduce new detours; for example in the
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first transformation in the Table, it may be the case that T AV B or F AV B or both
are respectively used in P; or P, as major premises of eliminations. Moreover, the
transformations may also introduce new non-canonical applications of PNC.

Now, let do(P) = (m,n), where m is the maximum value taken by ¢ for a sub-
tableau of P, and n is the number of subtableaux for which the value of ¢ is maximum.
Consider again the usual lexicographic order on dqy. If the transformations in Table
[5.17] are applied to arbitrary subtableaux, the index dy may not always decrease.
However, it never increases, and it can be shown that eventually it reaches the min-
imum value (0,0) in a finite number of steps. Thus, there is a finite sequence of
applications of transformations in Table [5.11] independently to which subtableaux
they are applied, that yields a tableau in which all the applications of PB are either
analytic or atomic.

Conjecture 11. Any intelim proof of ¢ from X UY (intelim refutation of X UY)
can be transformed into an intelim proof of ¢ from Z C X UY (intelim refutation of
Z C X UY ) where all the applications of PB are either analytic or atomic by means
of any sufficiently long sequence of applications of transformations in Table [5. 11

Now, let
d(P) = (do(P), dr(P), d2(P), ds(P), ds(P))

and consider the usual lexicographic order on d(P) for every intelim proof (refutation)
P. By inspection of the transformations in Tables[5.645.11], it can be verified that each
transformation that decreases d;(P) for any ¢ < 4, may increase d;(P) for some j > i.
However, no transformation that decreases d;(P) for ¢ > 0, never increases d; for any
j < i. So, each of the transformations in Tables decreases d(P). Therefore,
the repeated application of these transformations, regardless of their order, eventually
yields a proof P’ such that d(P") = ((0,0),(0,0),0,0,0). Note that such a proof
(refutation) is quasi-normal, for the value of d;(P’) is equal to (0,0) and the values
of dy(P’)-d4(P’) are all equal to 0. Moreover, all the applications of PB in P’ are
either analytic or atomic. Then, by Conjecture , the proof (refutation) is normal.

Conjecture 12. Any intelim proof from ¢ of X UY (intelim refutation of X UY')
can be transformed into a normal intelim proof of ¢ from Z C X UY (intelim
refutation of Z C X UY ) by means of any sufficiently long sequence of applications

of transformations in Tables [5.60{5.11]
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5.6 Depth-bounded approximations to IPL

Definitions 5.6.1. The depth of an intelim tableau P is the maximum number of
nested boxes occurring in P which are associated with applications of PB. An intelim
tableau P is a k-depth intelim proof of ¢ from X (a k-depth intelim refutation of X)
if P is an intelim proof of ¢ from X (an intelim refutation of X) and P is of depth

k[

In Figure [5.4] both examples are 1-depth proofs. In Figure [5.5, both examples
are intelim sequences and, so, they respectively are a 0-depth proof and a 0-depth
refutation. Now, we are in a position to introduce the following definitions:

Definitions 5.6.2. For all X, ¢,

o is O-depth deducible from X, X ¢ ¢, iff there is a 0-depth intelim proof of ¢
from X;

o X is 0-depth refutable, X F, iff there is a 0-depth intelim refutation of X.

Notation 5.6.3. We shall abuse of the same relation symbol ‘" to denote 0-depth
deducibility and refutability.

Proposition 5.6.4. (L, t) is a (finitary) Tarskian propositional logic; i.e., Fq sat-
isfies reflexivity, monotonicity, cut, and structurality.

Proof. The proposition follows easily from the definitions involved. For example, to
see that - satisfies cut, suppose that there is a 0-depth intelim proof of ¢ from X
and that there is a 0-depth intelim proof of ¢ from X U {¢}. Then, clearly, there is
a 0-depth intelim proof of ¥ from X. ]

Furthermore, note that ¢ has no tautologies; i.e., for no A, it holds that () k¢
A. This is in tune with the informational tenet of the depth bounded-approach
according to which there is no way of extracting information from the empty set of
assumptions without introducing virtual information. Accordingly, tautologies make
their appearance only at depths £ > 0, when the use of virtual information is allowed,
and the set of provable tautologies increases with k. Interestingly, according to our
definitions, k¢ is not explosive. In a sort of duality with tautologyhood, explosivity
appears only at depths & > 0. Relatedly, k-depth refutability, & > 0, is stricter
than intuitionisitc refutability in that a set X may well be k-depth non-refutable but

5Note that the transformations in Tables and may increase the depth of a tableau P,
so that it is convenient to use them only to the extent they are needed to normalize P.
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intuitionistically refutable. More importantly, as stated in the following Subsection,
we conjecture that 0-depth refutability can be feasibly detected.

Now, the notion of k-depth deducibility depends not only on the depth at which
the use of virtual information is recursively allowed, but also on the virtual space
discussed and defined above. Thus, finally:

Definitions 5.6.5. For all X, v, all f € F,
o« X H ¢iff X ko

o fork>0,X |—£ 1) iff there is a tableau for X in which there is a finite sequence
(¢1, ..., n) such that ¢, = ¥ and, for every ¢;, 1 <i < n,

{@1,.; i1}y U{TB} H_| @i and {¢1,...,0i1} U{FBY H_| ; for some
B e f(X*U{y"}).

When X |—£ Y, we say that v is deducible at depth k from X owver the f-bounded
virtual space.

In turn, we shall denote the case of k-depth refutability by X l—i, assuming it as
equivalent to X |—£ 1 for all ¥, and defined as follows:

Definitions 5.6.6. For all X, all f € F,
o X Hff X by

o for k>0, X I—g iff there is a tableau for X in which there is a finite sequence
(@1, ..., n) such that for every o;, 1 <i<n, X F|_, ¢; and

{1, .., 0n} U{T B} H_, and {1, ..., 0n} U{F B} F_, for some B € f(X").

When X l—g, we say that X is refutable at depth k over the f-bounded virtual space.

Notation 5.6.7. We shall abuse of the same relation symbol ‘l—g’ to denote k-depth
deducibility and refutability over the f-bounded virtual space.

Now, it follows immediately from Def. [5.6.1} [5.6.5, and [5.6.6| that:

Proposition 5.6.8. For all X, ¢ and all f € F, X |—£ v (X I—ﬁ) iff there is a
k-depth intelim proof of ¥ from X (a k-depth intelim refutation of X ) such that all
its PB-formulae are in f(X"“U{y"}) (f(X")).
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Now, it is easy to verify that the relations |—£ satisfy reflexivity and monotonicity,
but they may or may not satisfy cut depending on the function f that defines the
virtual space. A sufficient condition obtains when f(A) is the set of all formulae of
given bounded degree that can be built out of at(A). Nonetheless, the relations I—i
always satisfy the following version of cut:

Bounded cut: It X H ¢ and X U{¢} H 4, then X H 4.

When f = sub we call the latter analytic cut. Moreover, the relations |—£ may not
be structural in that structurality depends also on the function f that defines the
virtual space. For example, F“? is structural, while F2t is not. As in the classical
and many-valued cases, in general structurality can be imposed by restricting the
operations in F to those such that, for all o and all A, o(f(A)) C f(o(A)). This
is not satisfied if f = at, but it is satisfied if f(A) = sub(A), or f(A) is the set of
all formulae of given bounded degree that can be built out of sub(A). Further, since
o is monotonic, its successors are ordered: I—f C |—£ whenever 7 < k. The transition
from H to ] 41 corresponds to an increase in the depth at which the nested use

of virtual information (restricted to formulae in the virtual space defined by f) is
allowed. Note also that F* CH{* whenever f; < fo.

5.6.1 Tractability

We conjecture that the decision problem for the k-depth logics is tractable. Analo-
gously to the cases addressed in previous Chapters, that our intelim method enjoys
the subformula property (see Remark immediately suggests a decision procedure
for k-depth deducibility: to establish whether ¢ is k-depth deducible from a finite
set X we apply the intelim rules, together with PB up to a number £ of times, in
all possible ways starting from X and restricting to applications which preserve the
subformula property. If the resulting intelim tableau is closed or ¢ occurs in its last
line, then ¢ is k-depth deducible from X, otherwise it is not.

Conjecture 13. Whether or not X |—£ o (X |—£), k >0, can be decided in polynomial
time.
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5.7 3-valued non-deterministic semantics for full
IPL

In Kripke and Beth semantics, the meanings of — and — depend on “structural”
constraints in the sense that they essentially appeal to an “accessibility” relationE]
Following the key idea of the depth-bounded approach according to which the mean-
ing of a connective is specified solely in terms of information that the agent holds,
in our proof-theoretic characterization of the hierarchy of depth-bounded approxi-
mations, the unique structural rule which introduces virtual information (PB) has
no role in specifying the meaning of the connectives. In such a characterization,
the intelim rules fix the meaning of the connectives without appealing to any struc-
tural condition["] Accordingly, a natural semantical characterization of the hierarchy
should be one under which the meanings of all the connectives are independent of
structural constraints. As a first step towards that characterization, in this section
we shall introduce an alternative semantics for full IPL where the meaning of all the
connectives is completely specified by a non-deterministic matrix (Nmatrix) and the
notion of model so defined is what must satisfy some structural constraints/™

The primary notions of our alternative semantics are intuitionistic truth, falsity
and indeterminacy. That is, holding the information that a formula is, respectively,
proven, refuted or undecided. In turn, we use the truth-values 1, 0 and u to respec-
tively denote those notions. Based on the idea that the meaning of a connective is
specified solely in terms of the information that is held by an agent, our semantics
is intended to model actual information states, as opposed to wirtual or potential
ones; the latter being those considered when evaluating the truth of some complex
formulae in both Kripke and Beth semantics. Put differently, our semantics is aimed
to model the readiness of agents to answer questions on the basis of information they
hold. Accordingly, that the value of a formula A is 1 means that the agent holds
that there is a proof of A; that the value of A is 0 means that the agent holds that
there is a refutation of A; and that the value of A is u means that the agent holds
that there is no proof nor refutation of A—the three cases, under the current actual
information state, as we explain and define below.

16Tn the case of Beth semantics also the meaning of ‘v’ depends on structural constraints.

I7Recall that, in our intelim method, the introduction rules for the truth of formulae whose main
connective is — and — are derived rules via PB.

B Avron [e.g., [I6] has already explored the use of non-deterministic Kripke frames for TPL.
However, he did so by embedding Nmatrices in intuitionistic Kripke models. Instead, here we
opt to offer a structural non-deterministic semantics for that logic which does not rely on the full
Kripke-style apparatus.
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Vi1 0 Al 0 u
L1y 1) {1} 1|41y 10} {uj
01 {1} {0} {u} 0] {0} {0} {0}
w1 {u} {u} wl{up {0} {0,u}
= 1 0 U
é {1 {0y {uj

{1y {1y {1}
{1y {0,up {1,u}

Table 5.12: 3N-tables

1
0
U

The truth-values 1, 0 and u are all defined and partially ordered by the relation
<3. As in our informational approach to the classical case, this relation is intended
as an information order and such that z <3 y (read “z is less defined than, or equal
to, y”) iff = wor z =y for x,y € {1,0,u}. Thus, a 3;-valuation v for L is a
function v : F(£) — {1,0,u}. Now, we pick out from the set of all 3;-valuations
those which agree with the intended meaning of the connectives. We do this through
the following Nmatrix, which conservatively extends the standard matrix of CPL:

Definition 5.7.1. Let M, be the Nmatrix for £ where V = {1,0,u}, D = {1} and
the functions in O are defined by the 3N -tables in Table

Remark 21. We shall show below that IPL is sound and complete with respect to the
semantics induced by the 3N-tables together with structural constraints imposed on
all corresponding refinements. To begin with, we explain the method to obtain the
3N;-tables, which is completely analogous to the method applied to obtain the 3N-
tables in the classical case (Table|3.7|and Remark: we start by pointing out that, in
this case, u plays the role of a sort of “undefined” truth-value["’] Accordingly, the part
of each 3N-table which involves solely 1 and 0 plays the role of the corresponding
“defined kernel” of the table. Each of those “defined kernels” is respectively identical
with a standard truth-table of a classical connective—where the meaning of the
truth-values is different, of course. As it is well-known, those “defined kernels” agree
with the intuitionistic meaning of the connectives in that they can be mimicked by,

19As explained below, under our conceptual framework, u is not a (genuine) undefined truth-
value. Actually, as expected, the undefined truth-value for IPL would appear just until the corre-
sponding 0-depth logic is introduced, and would denote (full) ignorance about defined truth-values.
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for example, Gentzen-Prawitz style natural deduction [see, 143]17_6] Regarding the
part of each 3N -table involving u, we follow exactly the same method applied for
getting the 3N-tables, which was outlined in Remark [5} the entries involving u are
established by checking its compatibility with the “defined kernel”. Now, as before,
a truth-value is compatible with the corresponding “defined kernel” if, on the basis
of the very “defined kernel”, such a truth-value does not imply that one particular
argument of those which are v had a defined truth-value “instead”, i.e., 1 or 0. Let
us take as an example the 3N -table for —: if the antecedent is 1 and the consequent
is u, then the conditional can only be u; it cannot be 1 nor 0 because that would
respectively imply that the consequent was already 1 or 0. Now, when the antecedent
is 0, the conditional can only be 1 regardless of the truth-value of the consequent.
Analogously, if the consequent is 1, the conditional can only be 1 regardless of the
truth-value of the antecedent. In turn, if the antecedent is u and the consequent
is 0, the unique excluded truth-value for the conditional is 1 since it would imply
that the antecedent was already 0. By contrast, the conditional may well be either
u or 0, depending on whether or not the agent holds the additional information that
antecedent and consequent cannot be both 0, i.e., in case one is the negation of the
other. Similarly, when both antecedent and consequent are wu, the only excluded
truth-value for the conditional is 0 since it would imply that the consequent was
already 0. However, the conditional may well be either v or 1, depending on whether
or not the agent holds the additional information that antecedent and consequent
can be either both 1 or 0, i.e., in case one is not the negation of the other.

The entries involving u in the rest 3N;-tables can be explained in similar terms.
Furthermore, a fortiori, all those entries can be analogously be explained in terms of
Gentzen-Prawitz style natural deduction. To give an example, the first case of the
3N -table for — explained in the previous paragraph, can be analogously explained
as in Figure (Where the “falsum” logical constant A is assumed to be part of
L and intended as an absurd proposition. Besides, the numerals are used to keep
track of the temporary assumptions that are discharged by the application of a rule.
The numerals corresponding to the discharged assumptions are shown beside the
inference line.)

Definition 5.7.2. A 3N;-valuation is a 3;-valuation v satisfying the following con-
ditions for all A, B € F(L):

1. v(=A) € S(v(A));

20T his simulation requires replacing each occurrence of 1 by the formula to which it is assigned,
and each occurrence of 0 by the negation of the formula to which it is assigned.
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[B]?
~(A— B]' A—B
A [A — B]l A

2

B -B

Figure 5.8: Explaining a non-deterministic truth-table table entry

2. v(Ao B) €s(v(A),v(B)).
Where o is V, A or —.
We take 3N -valuations as partially ordered by the following relation:

Definition 5.7.3. Let v,w be 3Nj;-valuations. Then, w is a 3-refinement of v,
v C3 w, iff v(A) <3 w(A) for all A.

Definition 5.7.4. Given a 3N-valuation v, let © be a partial function defined as
follows:

s i S(0(4)) = o)
0(-4) = { undefined otherwise

R x if 5(v(A4),v(B)) = {z}
(Ao B) = { undefined otherwise

Where o is V, A or —. We call © the deterministic restriction of v.

Definition 5.7.5. Let § = (S, R) be an intuitionistic Kripke frame. A 3N;-model is
a pair M3 = (F, {va taes), where for all a,b € S, aRb iff v, T3 v, and which satisfies
the following structural constraints:

If v,(A) = u, then
i. there is v, such that v, C3 v, and 9,(A) = 1;
i1. there is v, such that v, C3 v, and 9.(A) # 1.

Remark 22. A 3N-valuation can be seen as describing an actual information state
that is closed under the implicit information that depends only on the meaning of
the connectives. This is information that an agent holds and with which she can
operate. Accordingly, v, denotes a 3N;-valuation relative to an actual information
state which, in turn, is an element of a partially ordered structure representing an
informational process where an agent progressively gains more information—much
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as in Kripke and Beth semantics. Nonetheless, a crucial difference with the latter
is that, unlike a Kripke valuation v, and a Beth valuation to,, a 3N -valuation
v, records which atomic and mon-atomic formulae hold at state a. In turn, that
the truth-value of a formula A is u under the 3N;-valuation at issue (i.e., at the
current actual information state) means that an agent holds the information that
currently there is no proof nor refutation of A. However, the possibility is open
that the agent acquires new information, which is not even potentially contained in
the current information state, according to which there is a proof or a refutation
of A. Otherwise, if that possibility was closed, then the agent would already hold
the information that there was, respectively, a refutation or a proof of A at the
current state. Thus, u can—and, in fact, eventually will—become 1 or 0, yet not
by the agent’s deployment of the information she holds in the current state but
only by the acquisition, and possibly deployment, of new information. In turn,
intuitively, new information comes from reliable external sources—say, from another
agent or theory—and so it is used as actual information in the corresponding future
information states (i.e., refinements of the current state) by the agent who acquired
it. To illustrate these ideas, recall Euclid’s Fifth postulate which, after two thousand
years!, was showed to be independent from—in our terminology “undecided according
to”—the remaining four postulates. As it is well-known, counterexamples to the Fifth
postulate emerged outside the theory based on the other four postulates, thanks to
the information exchange between agents.

Now, regarding the structural constraints and according to the meaning of u,
constraint ¢ intuitively says that if an agent can never envisage a future information
state where 1 is the truth-value of A, then 0 is A’s truth-value already. As for
constraint i, we are still working on an intuitive explanation for it. For now, we
restrict ourselves to say that iz conveys the idea that every valuation eventually
becomes deterministic, and that it is conceptually close to the notion of bar in Beth
semantics.

Definition 5.7.6. For every Mj, and for all ' and A,
o Ms is a model of A iff v,(A) =1 for all a € S;
e Mj is a model of ' iff it is a model of every B € T’;

o Ais a logical consequence of I', I" Fap, A, iff every model M5 of I' is a model
of A.

Remark 23. Our 3N -semantics differs from Kripke and Beth semantics in two crucial
intertwined aspects that render the former suitable for applying the depth-bounded
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approach to IPL, unlike the latter: (i) In 3N;-semantics, the meaning of each connec-
tive is specified solely by an Nmatrix. (ii) The structural constraints of 3N;-semantics
do not involve at all the meaning of the connectives. On the other hand, a rather
expected concurrence between our semantics and Kripke and Beth semantics is that
the notion of model requires to be defined considering a set of information states.
However, while in Kripke and Beth semantics the information states are partially
ordered by an “accessibility” relation, in our semantics those states are so ordered by
the usual refinement relation. Now, as explained above, refinements from u to 1, 0
or u are related to the introduction of new information, which is not even potentially
contained in the information that the agent holds, but that is intuitively provided by
reliable external sources and so used as actual information once it is acquired. Thus,
those refinements are not related with the introduction of virtual information; i.e.,
information that the agent does not hold but temporarily assumes as if she held it.
Put differently, those refinements are an integral part of the evaluation of formulae
in TPL because—via the structural constraints—they are required for defining the
notion of model. So, there is no virtual information involved in those refinements: if
an agent is at a state in which the value of a formula A is u, then in that very state
she holds also the information that (i) there is a refinement (of that state) under
which the value of A is deterministically 1; and (i7) there is a refinement under which
the value of A is deterministically different from 1. That is, whenever an agent holds
the information that the truth-value of A is wu, she also holds the information that
the structural constraints are satisfied.

Before proving the adequacy of our 3N;-semantics, let us consider some examples.
Notation 5.7.7. We write Ay, ..., A, Esn, B instead of {Ay, ..., A, } Esn, B.

Example 9. F3y, AV -A

Let M3 be s.t. there is a € S s.t. v,(A) = v,(—=A) = w. Then, v,(AV —A) = wu.
Besides the structural constraints (s.c.) are satisfied: For i, let v, be s.t. v, T3 vy
and v,(A) = 1, and so 0,(AV —A) = 1. For ii, let v. be s.t. v, T3 v, v.(A) = v and
ve(mA) =0, and so 9.(AV —A) = u.

Example 10. —|(A A B) PngI -AV-B

Let M3 be s.t. there is a € S s.t. v,(A) = vu(B) = va(-A) = v,(-B) = u and
va(AANB) = 0. Then v,(=(A A B)) =1 and v,(—mAV —B) = u. Besides s.c. are
satisfied: For i, let v, be s.t. v, T3 v, and v,(A) = 0; then v(—A) = 1 and so
Op(mA VvV —-B) = 1. For ii, let v. be s.t. v, C3 v, and v.(—A) = v.(-B) = u; then
V(A V -B) = u.
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Example 11. F3y, -—(AV —A)

Suppose that there is M3 s.t. there is a € S s.t. either a) v,(==(AV =A)) =0 or b)
V(7 (AV —A)) = u. In either case, v,(—(AV —A)) = u since, if v,(-(AV-A4)) =1,
then v,(AV —A) = 0, which is impossible. Thus, s.c. 7 is not satisfied: For i to be
satisfied there should be v, s.t. v, C3 v, and 0,(—(A V = A)) = 1. That is, v, should
be such that vy(—~(AV —A)) =1 and so v,(A V = A) = 0, which is impossible.

Example 12. -AV =B E3n, 7(A A B)

Suppose that there is Mj s.t. there is a € S s.t. v,(mAV =B) = 1 but either a)
Va(7(A A B)) =0 or b) v,(-(AAB)) = u. If a), either a;) v,(AA B) =1 or ay)
Va(AA B) = u. In turn, if a1), v,(A) = v,(B) = 1; but then v,(-AV -B) = 0. If
az2), Va(A) = u or v,(B) = u; but then either v,(mAV —B) = u or v,(—AV -B) = 0.
Now, if b), v,(A A B) = u, which amounts to as).

Example 13. AVB,A—C,B— CFksy, C

Suppose that there is Mj s.t. there is a € S s.t. v,(AV B) = v,(A — C) = v,(B —
C) = 1 but either a) v,(C) = 0 or b) v,(C) = u. If a), v,(A) = v,(B) = 0, but
then v,(AV B) = 0. If b), either v,(A) = 0 or v,(A) = u and either v,(B) = 0 or
va(B) = u, but then either v,(AV B) =0 or v,(AV B) = u.

Example 14. F3n, (A= C) = A) - A) - C)—C

Suppose that there is M3 s.t. there is a € S s.t. either a) v, ((((A — C) - A) —
A)—=C)—=C)=0o0rb) v,((A—=C)—=A) - A) - C)— C) =u. If a), either
ar1) V(A —C) - A) - A) - C) =1and v,(C) =0, or ag) v,(((A — C) —
A) - A) = C) = uwand v,(C) = 0. Now, if a1), v,((A = C) - A) - A) =0
which, in turn, implies that either a; 1) v,((A — C) - A) = 1 and v,(A) = 0, or
a12) Va((A— C) - A) =w and v,(A) = 0. In turn, if a;4), v,(A — C) = 0, which
is impossible. Now, if a; ), 7 is not satisfied: For ¢ to be satisfied there should be
vp 8.t vy C3 v and 95((A — C) — A) = 1. That is, v, s.t. v((A = C) - A) =1
and vy(A) = 0, which amounts to a;1). Now, if ag), ¢ is not satisfied: for ¢ to be
satisfied there should be vy, s.t. v, T3 v, and 0,((((A - C) - A) - A) — C) = 1.
That is, vy s.t. v(((A - C) — A) - A) — C) = 1 and v,(C) = 0, which
amounts to ap). In turn, if b), 47 is not satisfied: for 7i to be satisfied there should
be v, s.t. v, T3 v. and 7.((((A — C) - A) - A) - C) — C) # 1. That is,
ve s.b. either by) v.(((A — C) - A) - A) — C) = 1 and v.(C) = 0, or by)
(A= C)—= A) - A) — C) =1 and v.(C) = u. by) amounts to a;) and if by),
either ba) v.(((A = C) = A) = A) =0 or bys) v(((A— C) = A) — A) = u.
Analogously to aj, byy) implies that either byj1) v.((A — C) — A) = 1 and
ve(A) = 0, or boy1a) v.((A — C) — A) = uw and v.(A) = 0. Now, if byj1),
ve(A — C) = 0, which is impossible. Similarly, if by;2), v.(A — C) = 0, which
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is also impossible. In turn, if bys), 7 is not satisfied: for iz to be satisfied there
should be vy s.t. v. C3 vg and 94(((A — C) — A) — A) # 1. That is v,y s.t. either
bg.g.l) Ud<<A — C) — A) =1 and Ud(A> = O, or b2.2.2) Ud<<A — C) — A) =1
and vg(A) = u. bgo) amounts to baq1). If bosy), either vy(A — C) = 0 or
va(A — C) = u. If the first, v4(C') = 0, which is impossible (cf. by).) If the second,
171 is not satisfied: For i7 to be satisfied there should be v, s.t. vgy E3 v, and v, s.t.
Ue(A — C) # 1. That is, v, s.t. either v.(A) = 1 and v.(C) = 0, or v.(A) = 1 and
ve(C') = u, which are both impossible (cf. bys).)

We now show that 3N -semantics can simulate the Hilbert-style presentation of
IPL:

Proposition 5.7.8. Every intuitionistic tautology is valid in 3Ni-semantics.

Proof. 1t suffices to show that (I) every axiom of IPL is valid in 3N;-semantics and
(IT) MP preserves validity.

(I) We must check all the 11 axioms. It is time-consuming but routine. As an
example, we check one:

e Fsn, (A= B)A(B—C)) = (A—=C)

Suppose that there is Mj s.t. there is a € S s.t. either a) v,(((A — B)A (B —
C) = (A—=C) =0o0rb) v(((A—= B)AB—C) - A—=C)) =u
If a), either a;) v,((A — B) A (B — C)) = 1 and v,(A — C) = 0, or ay)
V,((A = B)AN (B — C)) = u and v,(A — C) = 0. In turn, if a1), v,(A —
B) = v,(B — C) =1 and, either v,(A) = 1 and v,(C) = 0, or v,(A) = u and
v,(C') = 0; which are both impossible. Now, if ay), 7 is not satisfied: For i to be
satisfied there should be vy s.t. v, T3 v, and 0,((A — B)A(B — C)) = 1. That
is, vy should be s.t. v,((A — B)A (B — C)) =1 and vy(A — C) = 0, which
amounts to aj). In turn, if b), i is not satisfied: For ii to be satisfied there
should be v, s.t. v, C3 v, and 0.(((A — B)A(B — C)) — (A — C)) # 1. That
is, v. should be s.t. either by) v.((A — B)A(B — C)) =1 and v.(A — C) =0,
or by) v.((A— B)A (B — C)) =1and v.(A — C) = u. by) amounts to ay),
and if bs) then 4 is not satisfied: For i to be satisfied there should be v, s.t.
Ve E3 vg and 04(A — C') # 1. That is, vg should be s.t. either vy(A) = 1 and
v4(C) =0, or v4(A) =1 and v4(C) = u; which are both impossible.

The rest of the axioms are checked similarly.
(IT) From the 3N;-table for — it follows immediately that for every 3N -valuation
v, if v(A) =1 and v(A — B) =1, then v(B) = 1. O

In fact, 3N -semantics is equivalent to Kripke semantics in the following sense:
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Theorem 5.7.9 (Semantics equivalence).

1. For every intuitionistic Kripke model 9N, there is a 3N;-model Mz such that
for every A, M is a model of A iff Mz is a model of A.

2. For every 3Nj-model Ms, there is a Kripke model 9N such that for every A, My
is a model of A iff M is a model of A.

Proof.
1. Given an 9 = (F, {0, }aes), we generate out of it an M3 = (§, {v, }acs) by defining
each v, € {v,}aecs as follows: For all A, for all p € at({A}), let

1 ifo,(p)=T
u if v,(p) = F, and there is b s.t. aRb and v,(p) =T
0 otherwise

Va(p) =

Recall that the structural constraints, ¢ and 7i, on M3 must be satisfied. Next,
we show, by induction on the degree of A, that the given 9 is a model of A iff the
generated M3 is a model of A:

Base case: Suppose that A :=p. Thus, M, a lFx p for all a € S iff v,(p) =T for
all a € S. Now, according to the generation of Mj, the latter holds iff v,(p) = 1 for
alla € S.

Inductive hypothesis: Suppose that if A has degree n, then 9, a IFx A for all
acSiff v,(A)=1foralla € S.

Inductive step: Let A have degree n + 1, then we have four cases.

(V) Suppose that A := BV C. Thus, M,al-x BV C for all a € S ift M, a lFx B
or M,a kg C for all a € S. By inductive hypothesis, the latter holds iff
va(B)=1orv,(C)=1forallaecs, iff v,(BVC)=1forallaecS.

(A) Suppose that A := BAC. Thus, M,al-x BAC for all a € S ift M, a lFx B
and M, a IFx C for all @ € S. By inductive hypothesis, the latter holds iff
va(B) =1and v,(C)=1foralla e S, iff v,(BAC)=1forallaecS.

(—) Suppose that A := B — C. Thus, there is a € S s.t. v,(B — C) # 1 iff there
is a € S s.t. either a) v,(B — C) =0 or b) v,(B — C) = u. Now, a) holds iff
there is a € S s.t. either a;) v,(B) = 1 and v,(C) = 0, or as) v,(B) = u and
v,(C) = 0. By inductive hypothesis, a;) holds iff there is a € S s.t. M, alFx B
but M, a Wy C, iff thereisa € S s.t. M, a Wi B — C. Now, ay) holds iff there
are a,b € S s.t. v, T3 vy, Ua(B) = u, v,(C) =0, 0(B) = 1, and v,(C") = 0. So,
by inductive hypothesis, as) holds iff there are a,b € S s.t. aRb, M, b IFx B
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but M, b Wx C, iff there is a € S s.t. M, a W B — C. In turn, b) holds iff
there are a,b € S s.t. v, T3 vy, v4(B — C) = u, and either by) 0,(B — C) =0
or by) 0p(B — C) = u. Thus, by) is analogous to a;); whereas by) holds iff
Up(B) = 1 and 0,(C) = u, and so by) is analogous to ag).

(=) Suppose that A := —=B. Thus, there is a € S s.t. v,(—B) # 1 iff there is a € S
s.t. either a) v,(=B) = 0 or b) v,(—B) = u. Now, a) holds iff there is a € S
s.t. either a;) v, (B) =1 or ay) v,(B) = u. By inductive hypothesis, a;) holds
iff there is a € S s.t. M, a IFx B, iff there is a € S s.t. M, a ¥ -B. Now,
az) holds iff there are a,b € S s.t. v, T3 vy, vo(B) = w and 0,(B) = 1. So, by
inductive hypothesis, as) holds iff there are a,b € S s.t. aRb and MM, b IFx B,
iff there is @ € S s.t. 9, a Wx —B. In turn, b) holds iff there is a € S s.t.
v,(B) = w and so b) is analogous to as).

2. Conversely, given an M3 = (§, {v, }aes), we generate out of it an M = (F, {0, }acs)
by defining each v, € {v,}.cs as follows: For all A, for all p € at({A}), let

0u(p) = { T ifou,(p) =1

Fif vy(p) =wor v,(p) =0

Next, we show, by induction on the degree of A, that the given Mj3 is a model of
A iff the generated 91 is a model of A:

Base case: Suppose that A := p. Thus, according to the generation of 91,
va(p) =1 for all a € Siff v,(p) =T for all a € S, iff M, a kg p for all a € S.

Inductive hypothesis: Suppose that if A has degree n, then v,(A) = 1foralla € S
ift M, allFg Aforallaes.

Inductive step: Let A have degree n + 1, then we have four cases.

(V) Suppose that A := BV C. Thus, v(BV C) =1foralla € Siff v(B) =1 or
v(C) =1 for all @ € S. By inductive hypothesis, the latter holds iff M, a IFx B
or MalFg Cforallae S, it M albxy BV C forallaeS.

(A) Suppose that A := BAC. Thus, v(BAC) =1 forall a € S iff v(B) =1 and
v(C) = 1for all @ € S. By inductive hypothesis, the latter holds iff 9, a I-x B
and M, alFx C for all a € S, iff M, albx BAC for all a € S.

(—) Suppose that A := B — C. Thus, there is a € S s.t. M, a W B — C iff there
are a,b € S s.t. aRb, M, b - B but M, b ¥ C. By inductive hypothesis, the
latter holds iff there is a € S s.t. v,(B) = 1 but either v,(C) = 0 or v,(C) = u,
iff there is @ € S s.t. either v,(B — C) = 0 or v,(B — C) = u, iff there is
a€ S st v,(B—C)#1.
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(=) Suppose that A := —=B. Thus, there is a € S s.t. M, a Wi - B iff there are a, b
s.t. aRb and MM, b Ik B. By inductive hypothesis, the latter holds iff there is
a € S st. v,(B) =1, iff there is a € S s.t. v,(—B) = 0, iff there is a € S s.t.

va(~B) £ 1.
O
Corollary 5.7.10 (Completeness). If [ sy, A, then ' Fx A.

Proof. Suppose that every model M3 of I is a model of A, but that there is a model
M of I' that is not a model of A. Given 1. in the previous proposition, from the
latter assumption it follows that we can generate, out of 9, an M3 such that Mj is
a model of ' but is not a model of A; which contradicts the first assumption. ]

Corollary 5.7.11 (Soundness). If ' Fx A, then I' F3n, A.

Proof. Analogous to the previous one. [

5.7.1 Coda

Our 3Nj-semantics is interesting in its own right. However, we conceived it as a
basis to extend the notions of depth-bounded consequence and inconsistency to IPL.
We consider that 3N;-semantics paves the way for developing a non-deterministic
semantics suitable for the hierarchy of approximations defined in proof-theoretic
terms above.

As explained above, the truth-values 1, 0 and u are all defined and respectively
denote the primary notions of intuitionistic truth, falsity and indeterminacy. Now,
when a formula A takes neither of those truth-values, we could say that the truth-
value of A is unknown. Accordingly, a partial valuation v for £ would be a partial
function v : F(L) — {1,0,u}, and we would denote by v(A) = L whenever v
is undefined for A. As in the cases addressed in previous Chapters, it would be
then technically convenient to treat L as a fourth truth-value, and so interpret it as
denoting a fourth primary notion: (full) ignorance. Here it is important to note that u
and L would denote two different notions. Again, that the truth-value of a formula
A is u means that an agent holds the information that, under the current actual
information state, there is no proof nor refutation of A. In contrast, that the truth-
value of a formula A is 1 would mean that an agent does not hold any information
determining whether or not there is a proof or a refutation of A. Intuitively, 1 would
represent situations where, at the current actual information state, an agent has not
deployed the information she holds, either because she has not started the deployment
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process yet or the process is still running. Accordingly, | would eventually become
1, 0 or u, but becoming so could involve not only actual information (which either
the agent holds or receives from external sources), but also virtual information (that
she temporarily assumes as she held it). Thus, intuitively, unlike 3-refinements (from
u to 1, 0 or u) which correspond to the structural constraints of our 3N;-semantics
and involve solely actual information, the corresponding refinements from L to the
defined values may involve the introduction of virtual information.

Therefore, the four truth-values would be partially ordered by the relation =<y,
defined as the minimum partial order over {1,0,u, L} such that L is the least ele-
ment, and v <4 1, u =<, 0. For the sake of clarity, the graph corresponding to this
partial order is depicted in Figure [5.9%1] Thereby, a 4;-valuation v for £ could be
defined as a function v : F(£) — {1,0,u, L}. In turn, as we did in previous cases,
we could pick out from the set of all 4;-valuations those that agree with the intended
meaning of the connectives by means of an Nmatrix, which would conservatively
extend M;. Currently we are still working on devising such an Nmatrix. In the case
of IPL, obtaining suitable semantics for our depth-bounded approximations is not
so straightforward since we deal with the additional difficulty that the corresponding
Nmatrix is embedded into a partially ordered structure.

Figure 5.9: Information order over {1,0, u, L}

2IMoreover, the graph allow us to represent an important intuition: L can directly turn into 1
or 0, without necessarily turning into w first.
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A digression into complexity
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Chapter 6

Computational complexity
revisited

6.1 Introduction

Rational decisions on the relative computational merits of different formalizations of
a logic are of paramount importance for the mechanization of deduction. Is there a
rational and relatively stable basis for such decisions? In Chapters 2, 3 and 5, we
have considered the traditional approach to the relative complexity of proof systems
in terms of the p-simulation relation introduced by Cook and Rechow [49]. In this
Chapter, we propose a way of enhancing such an approach and produce results which
are more relevant to the problem of mechanical proof.
In [35] pp. 133-134], Bibel wrote:

[...] evaluation of the performance of theorem provers is quite a compli-
cated thing, so that it would be helpful to have a clearer view of what we
mean by “quantitatively better” or by “improved methods”. In princi-
ple, the performance may be measured either by experience with running
systems or by mathematical analysis. In the former case, one would com-
pare the relative performance of implementations of different methods on
a number of samples. Since [...] there is relatively little experience in the
current state of the art of building and testing theorem provers, any such
experimental comparisons at present should be taken with much cau-
tion. [...] Under these circumstances it is not surprising that the present
techniques of mathematical analysis, the other possibility of measuring
performance, are rather limited as well. For such an analysis, what we
would need is a realistic mathematical model of the binary relation which
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captures the natural and practically relevant meaning of the term “better
than” with respect to proof procedures.

Almost forty years later the situation has not changed much. The unreliability of
experimental “evidence” is a general methodological problem: its results are mean-
ingless if they are not supported by theoretical analysis. On the theoretical side, the
methods which can be found in the literature are the worst-case and average-case
analysis of particular algorithms, as well as the analysis of the relative efficiency
of (non-deterministic) proof systems in terms of the p-simulation relation. None of
these treatments seems, on its own, to provide an adequate basis for positive judge-
ments on the relative complexity of proof systems. All proof procedures are very
likely (if P# NP) to have a superpolynomial worst-case complexity. On the other
hand, are such worst-case results sufficient to describe the computational behaviour
of an algorithm? In Karp’s words:

The traditional worst-case analysis—the dominant strain in complexity
theory—corresponds to a scenario in which the instances of a problem to
be solved are constructed by an infinitely intelligent adversary who knows
the structure of the algorithm and chooses inputs that will embarrass it
to the maximal extent [104], p. 106].

Karp suggests an alternative approach in which “the inputs are assumed to come
from a user who simply draws his instances from some reasonable probability dis-
tribution, attempting neither to foil nor to help the algorithm” [104, p. 106]. This
approach too involves methodological difficulties. As Karp admits, a result obtained
in this way “is meaningful only if the assumed probability distribution of problem
instances bears some resemblance to the population of instances that arise in real
life, or if the probabilistic analysis is robust enough to be valid for a wide range of
probability distributions” [104, p. 106]. To put it with Rabin:

We may postulate a certain distribution such as all instances being equally
likely, but in a practical situation the source of instances of the problem
to be solved may be biased in an entirely different way. The distribution
may be shifting with time and will often not be known to us. In the
extreme case, most instances which actually come up are precisely those
for which the algorithm behaves worst [130, p.632].

The situation is even more complicated than it appears to be, if we consider that
what we often intend to compare are non-deterministic proof systems rather than
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deterministic proof procedures. Roughly, a proof system is a collection of inference
rules with only partial or no control on their application, so that in some cases we
choose which rule to apply next among several possibilities. As mentioned above, ra-
tional decisions on the relative computational merits of proof systems are extremely
important when selecting a system as the underlying formalization of future algo-
rithmic developments. From this point of view, a comparison between deterministic
algorithms based on different formal systems—mnamely, on two different sets of al-
lowed inference rules—is not a crucial test unless the algorithms in question can be
proven to be optimal. Otherwise it is always possible to produce a better version
of one of the two algorithms which overthrows the previous judgement. In this way
negative empirical evidence can always be blamed on the particular “current version”
of the algorithm and diverted from the formalization itself. On the other hand, a
mathematical model of the notion “is better than” when referred to proof systems,
is meaningful only if its results are both relevant and stable. It may seem, then, that
such a mathematical model cannot be obtained. However, there is a natural limit
on the possible algorithms that can be developed on the basis of a given formaliza-
tion, and this limit could be different for different systems. So, we need criteria for
measuring the relative potential of different formalizations from the point of view of
mechanical proof.

6.2 How hard is it to find an easy proof?

The standard way of measuring the resources r (time or space) required by a non-
deterministic algorithm M for a given input [ is in terms of the best case for the
input I—if we are interested in the time complexity of our algorithm, this is repre-
sented by the shortest path in the computation tree which leads to success. Then
the complexity of M itself is measured as a function of the input size, by taking
the maximum value of r over all inputs of a given size—alternatively one can take
the average value over a given probability distribution. Accordingly, Cook and Re-
chow [49] [50] addressed the problem of comparing different proof systems in terms
of their shortest proofs. This measure of complexity is certainly adequate to estab-
lish negative results with respect to a given proof system, like in Haken’s proof that
resolution has exponential size shortest proofs for the pigeon-hole principle [95]. The
p-simulation relation, introduced and studied by Cook and Rechow, serves the pur-
pose of propagating such negative results to other proof systems: if S, p-simulates
S1 and S, is not polynomially bounded, than neither is S;. On the other hand, if S,
does not p-simulate S; there is still a chance that S; is polynomially bounded.
However, the p-simulation relation is misleading if it is taken as a basis for positive
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judgements about the superiority of a proof system over another with respect to the
problem of mechanical proof. If we assumed that “Ss is better than S;” is modelled
by

Sy p-simulates S1 but not viceversa

we would soon run into highly counterintuitive judgements. For instance, the exis-
tence of polynomial-size proofs of the pigeon-hole principle in Frege (i.e. Hilbert-style
axiomatic) systems, proven by Buss in [40], together with Haken’s result on the in-
tractability of this problem for resolution [95], imply that

resolution cannot p-simulate Frege systems.
Since it is well-known [49] that
Frege systems can p-simulate resolution
we should conclude that
Frege systems are essentially more efficient than resolution.

Nonetheless, this clashes with our intuition that an unrestricted Frege system, as
it stands, with no control structure, is no use for the purpose of mechanical proof. In
fact, this kind of result does not take into account the difficulty of finding the short
Frege proofs of the pigeon hole principle required to prove that resolution cannot
p-simulate Frege systems. In fact these proofs are so “hard” to find that Cook and
Rechow had conjectured that they did not exist [50]. In general, if we show that Sy
p-simulates S7 in Cook and Rechow’s sense, we know that every algorithm for S can
be turned into an algorithm for Sy which can perform the same inferences within
(essentially) the same resource bounds. However, proving that the converse does not
hold, namely that S; cannot p-simulate Sy would not be sufficient to show that S,
is “more efficient” than S; in any intuitive sense of this expression: it may very well
be that the short Ss-proofs of classes of formulae which are hard for S require a
good deal of ingenuity to be found, as is the case for the short Frege proofs of the
pigeon-hole principle.

This difficulty of the present theoretical framework in expressing positive results
has led many researchers in the area of automated deduction to dismiss the work
on the computational complexity of proof systems as irrelevant. We are usually
interested in knowing not only that a system admits short proofs in cases in which
another does not, but also how hard it is to find such short proofs. We need some
extra information that cannot be obtained from the standard way of evaluating the
relative efficiency of non-deterministic proof algorithms via p-simulation.
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6.3 From p-simulation to p-emulation

A natural way of measuring the “difficulty” of finding the solution of a problem
within a given formal system is in terms of the amount of information required to
obtain it. This amount of information is, in turn, inversely related to the probability
of finding the required solution “by chance”, using the rules of the formal system
completely “at random”. So, it seems natural to measure the relative “difficulty” of
finding short proofs within two proof systems in terms of the relative frequency with
which such short proofs are found when we apply the rules of the system “blindly”.
This approach suits very well the non-deterministic nature of a proof system. In
general, proof systems are characterized by a set of rules such that the next rule to
be applied is not uniquely determined by the current state of the proof. The proof
generated by the algorithm on input I can be seen as the outcome of a random process
whose sample space contains all possible sequences of rule-applications[l] Since such
sequences depend on random choices, we shall call them choice sequences.

The resource requirement of the system for input [ is treated as a random variable
whose value depends on these choice sequences. This approach embraces algorithms
with lower and lower “degree of freedom” including the usual deterministic ones as
a limiting case. By a proof algorithm based on a proof system S we shall intend the
proof system S plus some control structure on the applications of its rules, including
as a limiting case, the original proof system with no control structure. The successive
configurations will be proof-states. A determination M* of a proof system M is a
proof system with a smaller degree of freedom; i.e., for each given input, its sample
space is properly contained in the sample space of M. A determination of a proof
system is obtained as a result of a stricter control on the applications of the derivation
rules. A deterministic proof algorithm is just the limit of a sequence of determinations
of a proof system, obtained when the sample space for each given input is a singleton;
that is, the control structure determines uniquely the next configuration at each given

IThis sample space is often referred to in the literature as the search space associated with the
proof system. This terminology can be misleading, since it suggests that such a space should in
some sense be “explored” and, therefore, it is always convenient to reduce it to smaller proportions.
However, in many proof systems, finding a proof (or a short proof) does not depend at all on
exploring the space of all possible sequences of rule applications, since either all sequences lead to
a proof or no sequence does. In this case, there is no guarantee that restricting the “search space”
will improve the performance. It may well be that most of the short proofs which are possible in
the unrestricted system are left out by the restriction. So if we applied the rules at random in
the original system we might have a better chance of obtaining short proofs than we have in the
“refinement” with a smaller “search space”. This is perfectly clear if we look at the space of all
possible proofs as at the sample space of a random process: a bigger sample space does not mean
a smaller probability of obtaining short proofs.
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step. Following this approach, we shall define a series of notions which yield a more
complete profile of the complexity of a proof system. On the basis of these notions,
we shall then define a preorder relation, called p-emulation, which is more adequate
than p-simulation to capture the intuitive meaning of “more efficient” when referred
to non-deterministic algorithms. In fact, we shall show that “Sy p-emulates S; but
not viceversa” is a good rendering of the intuitive notion of “Ss is a refinement of
S17, so allowing for relevant positive results about the relative efficiency of logical
systems. We shall also show how such results can be made stable by means of a
stronger relation that we call monotonic p-refinement. These relations lead to a
different classification of proof systems than Cook and Rechow’s p-simulation, which
agrees with our intuitions about efficiency in the clear-cut cases, and provides a
rational basis for comparing the computational merits of different formalizations.

6.3.1 Random algorithms and choice sequences

Random algorithms have been employed successfully by Karp and Rabin for different
purposes. Karp focused on algorithms which allow errors, whereas Rabin was more
interested in algorithms which always solve the problem in exact terms. In particular,
Rabin was interested in studying random algorithms with a polynomially bounded
expected computation time for problems whose membership of P is still open. As far
as exact algorithms are concerned, this is of course possible only if the problem under
consideration is in NP. However, we shall show in the sequel that even for problems,
like the tautology problem for CPL (TAUT), whose membership of NP is unknown
(and unlikely), or indeed for every problem at all, probability considerations can
be fruitfully used to evaluate the relative efficiency of non-deterministic algorithms
and to measure the relative “difficulty” of finding short proofs when such proofs are
possible. The analysis in this chapter will be rather informal; although everything
said here can be (tediously) translated into rigorous definitions. There is a trade-off
between precision and readability. We have decided to privilege readability in a way
that still captures the essential features of the problem we are considering, without
letting “overprecision” hide the main points.

Let II be a computational problem, i.e., a collection of computational tasks each
of which is called an instance of II. For every instance I, let |I| be the size of I,
measured in any reasonable WayE] A non-deterministic algorithm M is, informally,
characterized by a set of transition rules {F;} for passing from a configuration to
another, a (possibly empty) control component which partially determines the set
of allowed transition steps for each given configuration, and by a halting condition.

2For a definition of “reasonable” in this context, see [89].

226



6.3. From p-simulation to p-emulation

Non-determinism here means that the control component may, in some cases, allow
several alternatives for the step to enter next; that is, for some configuration C' there
may be d > 1 possible C” such that C' F; C” is allowed for some i, and even the local
transition rules ; may be non-functional. So, the possible computations generated
by M on input I can be arranged as a tree that we shall call the computation tree of
M on input I.

Thereby, the efficiency of a non-deterministic algorithm can be measured (at
least) in two different ways. The first way is the traditional one, in which the minimal
resource requirements of the algorithm for each given input are taken into account.
The second way consists in regarding a non-deterministic algorithm as a random
algorithm. We look at its computation tree on a given input as at a description
of a random process, where the branches represent the possible outcomes. Let us
suppose that the immediate successors of each node in the computation tree are
enumerated. Then, computations are identified by sequences of integers that we
call choice sequences. If we make the simplifying assumption that all the steps
(including the control component) have the same unitary time-cost, the length of a
choice sequence corresponds to the time-cost of the computation that it encodes. If
we are interested in other resources, like space, we can consider a function that maps
each complete choice sequence to the integer representing the amount of resources
consumed by the particular computation that it encodes. In the sequel we shall
consider only the length of computations; i.e., their time-requirements, but clearly
whatever we say can be referred, mutatis mutandis, to other resources.

We shall denote the length of choice sequence a by |a|. This length is then treated
as a random variable taking values in the positive integers. We can imagine that at
each configuration C' with d possible successors, the algorithm uses some random
process to choose which of the d successors of C' to enter nextf]| In this approach,
randomness is not in the occurrence of the instances I, but is introduced into the
algorithm itself, in the choice of a particular sequence. For each given input I there is
a well-defined sample space €2; containing all the possible outcomes. The successive
configurations of M on input I can be described by a partial function M (I, a), where
I is the usual input and a is a string of integers, which is undefined when « is a string
not corresponding to any path in the computation tree.

A non-deterministic algorithm computes a partial function ¢y (1, a). If M(1,a)
is not a halting configuration, ¢,,(/,a) is undefined and the choice sequence is said

3This does not mean, of course, that the algorithm needs to enumerate all the possible successor
configurations before choosing one, just as we do not need to be aware of all the possibilities before
we take some action. The issue here is that the probability of choosing one alternative or the other
is determined by the number of alternatives, not by our (the algorithm’s) knowledge of them.
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to be partial. Otherwise, the choice sequence is said to be total. The sample space
(2; contains all and only the choice sequences generated by the algorithm on input [
which are either total or infinite (just total, if the algorithm always terminates). If M
is an ezxact algorithm, ¢y (1, a) = ¢p(1,a’) for all total a,a’ in ;. In the sequel we
shall deal only with exact algorithms. A determination of a non-deterministic algo-
rithm M is a non-deterministic algorithm M™* such that for each input I, its sample
space 2] is properly included in the sample space €2; generated by M on the same
input. A determination results from a more restrictive control component on the
application of the transitions rules. A deterministic algorithm is a non-deterministic
algorithm, such that for every input I the sample space €2; is a singleton.

6.3.2 Notation

In the rest of this chapter we shall consistently use the following notation

Notation Definition

|al length of the choice sequence a

M;(I,a) Configuration associated with input I and choice sequence a
in algorithm M;

Q7 sample space generated by algorithm M; on input /

pr(A) probability of the event A

pir(r)  pria:lal =71}

Plr)  Suer pia(s)

24 set of all subsets of set A

6.3.3 Simulations

Let us write a C b if the choice sequence a is a prefix of the choice sequence b. We
also denote by | €2; ; the set of all b such that b C a for some a € €, ;.

Definition 6.3.1. Let M; and M, be non-deterministic algorithms computing the
functions ¢ and ¢9 respectively. A simulation of My in Ms is a computable function

[l Q7 — 24921 mapping choice sequences of M to sets of choice sequences of
M such that:

1. (VI), (\V/CL S 9171), (\V/b S f(x)),gzﬁl(],a) = ¢2(I,b>

2. If (Va,b € Q47),a T b then (Ve € f(a)),(3d € f(b)), ¢ T d and (Vd €
f(0),(Fc € f(a), cEd.
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Figure 6.1: Simulation process.

Condition 1 means that the function ¢ computed by M is a refinement of the
function ¢ computed by M;. Conditions 2 means that the function f is a step-by-
step simulation of one algorithm into the other. In general, we allow for more than
one Ms-computation for each given M;-computation. Let ~; be the equivalence
relation defined as follows:

a~;biff f(a)= f(b). (6.1)

Let ||a||f denote the equivalence class of a under ~;. Clearly,

lall = [Ib[] iff f(a) = f(b).

Let My@) denote the determination of M, consisting in the simulation of M,
by f; i.e., at each step if the random process generated by M; has outcome a,
My “reads” the outcome, maps it to the set (possibly a singleton) f(a) of M-
computations and enters another random process to generate an outcome b € f(a).
A typical simulation step is illustrated in Figure (6.1, where a4, ..., a,, are the outcomes
of My and f(a1), ..., f(a,) the outcomes of the simulation algorithm My ).

Clearly,

pr(a) < pr(f(a)) and pr(|lall;) = pr(f(a)).
Suppose, moreover, that the function f has the additional property that

If a % b then f(a)N f(b) = 0. (6.2)

Then, for every I, the partition induced by ~; in €2;; induces a corresponding
partition in the image of €2y ; under f, and the partitions are one-one. If is
satisfied, we say that the simulation function is discriminating.

Then, the following holds:
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Proposition 6.3.2. Let A be an event (a set of outcomes) in the sample space
Qi1 of My on input I. Let us denote by f(A) the set Usea f(a). Then, if f is a
discriminating simulation function,

pr(A) < pr(f(A)) = >_ pr(f(a)).

a€A

We shall make use of this property in the sequel.
In this context, the p-simulation relation can be redefined as follows:

Definition 6.3.3. M, p-simulates M, iff there are a simulation function f :] €4 ; —
2221 computable in polynomial time and a fixed polynomial p such that, for every
input I, every a € €4 ; and every b € f(a), |b] < p(|al).

This definition is slightly different from the Cook and Rechow definition in that it
expresses the requirement that the simulation proceeds step by step. It is also differ-
ent from another notion of p-simulation that frequently occurs in the literature—for
instance in [40]—according to which M, p-simulates M, iff there is a fixed polyno-
mial p such that, for every input [ and every computation a generated by M; on
input I, there exists an Ms-computation b on the same input with ¢o(7,0) = ¢1(1, a)
and |[b] < p(|a|). We shall refer to this weaker notion of p-simulation as to weak
p-simulation.

6.3.4 Complexity functions

Throughout this Chapter we make the simplifying assumptions that the random pro-
cess which leads from one configuration to the next has unitary cost. If we think of a
non-deterministic algorithm as an algorithm which makes “guesses”, this means that
guesses which lead to an illegal step are not charged for. Although this assumption
is hardly realistic, it is reasonable to assume that the process of “applying an arbi-
trary transformation rule to the present configuration”, which involves (a) selecting a
rule and (b) checking its applicability to the present configuration, is bounded above
by some polynomial function of the size of the current configuration (since there is
always a finite number of rules)f_f] Therefore, our simplifying assumption is theoret-
ically appropriate. In practice the cost of the process of “applying a rule”; if the

4The fact that there is always a finite number of transformation rules should not be confused
with the fact that there are finitely many applications of rules. For instance, if the rules of our
non-deterministic algorithm are the rules of an axiomatic system of logic with a fixed number of
axiom schemes, the number of possible next configurations is infinite.
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rules are reasonable from the algorithmic point of view, can be considered roughly
the same for all non-deterministic algorithms [’
Given a particular input I and a non-deterministic algorithm M;, we can consider:

1. its worst-case requirement, i.e., maX,eq, , |al;
2. its expected requirement, i.e., the expected value of |a| for a € €; ;
3. its best-case requirement, i.e., mingeq, , |al.

The latter corresponds to the time requirement of a non-deterministic algorithm as
it is traditionally defined. Notice that here the expressions “worst-case”, “expected”
and “best-case”, do not refer to the global resource requirements of the algorithm as a
function of the complexity of the input, but to the local resource requirements for each
particular input [ as a function of the choice sequence. Each of these local functions
gives rise to a different global time (space) complexity function depending on whether
we are interested, respectively, in its maximal value, its expected value, or its minimal
value over all the inputs of a given size. So, if we are interested in the worst-case
complexity over all the inputs of a given size, we have the following functions, where
|1| is the size of input I, and we write pr(a) for pr({a}), the probability of the event
consisting only of the choice-sequence a:

1. WW-complexity
WW(n) = max{ max la| : |I| =n}

2. WE-complexity

WE(n) =max{ Y  pr(a)-la|:|I| =n}

aeﬂj,[

3. WB-complezity
WB(n) = max{ renén la| : [I| = n}
a 3,1

One can define similar functions EW, EE, EB, BV, etc., by taking the expected
or the minimal value of the different local functions over all inputs of size n. The
complexity of a non-deterministic algorithm, as traditionally defined, corresponds to

5An example of an “unreasonable” rule would be the following: given a set S of formulae of
propositional logic, extend S with A if A is a logical consequence of S. On the other hand, the
rules of logical systems are usually reasonable.
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its WB-complexity. There is no special reason—except reasons related to the devel-
opment of the NP-completeness theory—that this measure should play a privileged
role in evaluating the performance of non-deterministic algorithms. In fact both the
WIW-complexity and the WE-complexity appear to play an equally important role.
The former yields an upper bound on the resources required by any deterministic
version of the non-deterministic algorithm under consideration. The latter yields an
estimate of the worst-case expected performance of the non-deterministic algorithm
(seen as a random algorithm) over all inputs of given size. This measures allows
us to ask interesting questions about “heuristics”. A heuristic can be described as
a determination of a non-deterministic algorithm. So we can ask ourselves: is the
WE-complexity of this determination lower than the corresponding complexity of
the original algorithmf| If not, the original algorithm augmented with a module for
making random choices could be a better bet.

The complexity functions defined above obviously satisfy the following condition,
for all arguments n:

WB(n) < WE(n) < WWi(n) (6.3)

So, as far as this type of measures are concerned, the strongest result we can prove
about the relative efficiency of two non-deterministic algorithms, say M; and M, is
that the WB-complexity of one algorithm (WBj(n)) is not bounded above by any
polynomial in the WWW-complexity of the other(WWs(n)). Namely,

—3dp, Vn, WB1(n) < p(WWs(n)) (6.4)

However, these measures are not sufficient for our purposes. A result like the
above does not provide a complete description of the relative complexity of two
non-deterministic algorithms. It might detect only a local improvement which is
compatible with a worse global behaviour of the algorithm.

6.3.5 Distribution functions

We want to capture the notion of a proof system’s global behaviour being “better”
than another. As argued in the introduction to this section, “Sy p-simulates S; but
not viceversa” cannot serve this purpose. Notice that:

If S5 p-simulates S; then there is a polynomial p such that
WBs(n) < p(WBi(n)),

60f course such a question makes sense also in the case in which the determination is determin-
istic, so that for instance its WE-complexity coincides with its WIV-complexity.
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where W, indicates the WWB-complexity of proof system S;. However the p-simulation
relation says nothing about the WW and the WE-complexity of the two proof sys-
tems. So we look for an alternative preorder of proof systems which yields a more
complete profile of the relative efficiency of two non-deterministic algorithms and
reflects more faithfully our intuitions.

Let us go back to the non-deterministic algorithm M seen as generating a random
process where the length of a computation is treated as a random variable. Let us
denote by p;(r) the probability that M; terminates exactly in r steps on input [
that is

pji(r) =prirfa:la] =r}.
Clearly, for each M; and each fixed I:

pi1(r) >0, > pia(r) =1

so that p;;(r) is the (probability) mass function of the discrete random variable r.
Hence,

Pii(r) <= 3" pjals)

s<r

is the distribution function of the random variable r. Notice that for all I, ry, ry:
If ry <y then P;;(r1) < Pj(ra). (6.5)

The distribution function yields the probability of terminating on input I within
resources r if a “blind”, purely random, strategy is adopted in the choice of the next
step when several are allowed. As argued above, this appears to be a rather natural
way or measuring the “difficulty” of terminating within a given resource bound for a
non-deterministic algorithm (i.e., a set of rules). If we are given a problem and a set
of rules which does not uniquely determine a particular solution, we can measure the
“difficulty” of finding that particular solution as the inverse of its probability in the
random process generated by the rules. So the difficulty of finding a solution within
bounded resources will be the inverse of the probability of the event consisting of all
the possible solutions which can be obtained within the given resources. So, given a
non-deterministic algorithm A;, we define

def 1
Hy(1,r) = Pj1(r)
J’

and take this as a measure of the difficulty of finding a solution within resources r.

(6.6)
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Note that for » — oo, the above measure yields an estimate of the “absolute”
difficulty of finding a solution. This is still meaningful even when the problem is
not mechanically solvable. So, anyone who is not interested in resource bounds, or
believes that an exponential resource bound is acceptable—so that from her point of
view the tautology problem is “easy”—can still apply this criterion meaningfully.

Thereby, we are now able to express the fact that, for instance, finding a short
proof of the pigeon-hole principle may be hard in unrestricted Frege systems: the
probability of generating such a proof simply applying the rules (axioms plus proof-
rules) at random, without any control structure, may be vanishing. If we define a
strategy—in our terminology a “determination”—which helps us generating these
short proofs, it may very well be that the same strategy would not work for simple
examples which are easily solved by resolution or other proof systems which are
strictly “less powerful” from the point of view of the p-simulation relation.

Now that we are able to express the difficulty of finding solutions within bounded
resources, we can express the relative difficulty of this problem for different non-
deterministic algorithms.

6.3.6 p-emulation

Given two non-deterministic algorithms M; and M, it is interesting to compare the
distribution functions P ;(r) and P ;(r) of the random variables associated with
them. Suppose we can show that, given algorithms M; and M, there is a polynomial
p such that for every input I, the distribution of the random variable r for M is less
than or equal to the distribution of p(r) for My, in symbols:

Ip, VI Vr, Py i(r) < Py y(p(r)). (6.7)

What does mean? It means that for every input I and every resource bound r,
the non-deterministic algorithm M, (seen as a random algorithm) terminates within
the resource bound p(r) at least as often as M;. This can be taken as a formal way of
expressing the fact that finding a solution within the resource bound r is (essentially)
no harder for M, than it is for M; [Z] In terms of the H-measure defined above:

IpVIVrHs 1(p(r)) < Hyf(r).

Definition 6.3.4. We say that My p-emulates M, if holds.

TOf course, for all practical purposes, the relation is meaningful only when p is a polynomial of
low degree.
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The p-emulation relation is clearly a preorder so that its symmetric closure is an
equivalence relation. Non-deterministic algorithms which p-emulate each other can
be considered equivalent from the computational point of view. Notice that unre-
stricted Frege systems or the unrestricted sequent calculus with cut cannot p-emulate
any of the “mechanical” proof systems, like the cut-free sequent calculus, tableaux
or resolution, because of the unlimited number of “misleading” alternatives which
are available at each step, so that the probability of stumbling upon the required
short proof is vanishing: these systems do not have an “algorithmic nature”ﬁ. For
the same reason, any of the algorithmic proof system can p-emulate Frege systems.
In this way the p-emulation relation agrees with our intuitions about the relative
efficiency of different formalizations from the point of view of algorithmic proof.

Note that My p-simulates M; does not imply that M, p-emulates M, but only
that there is a determination of M, say M;, which p-emulates M;; namely, that
determination of M, which consists of the simulation of M;. So if we prove that
the converse does not hold, namely that M; does not p-simulate Ms we have shown
that no determination of M; can simulate M, but we have shown nothing about M;:
it may very well be that M; p-simulates M; and the short M,-computations which
cannot be simulated in M, lie outside the scope of M;.

Suppose, instead, that we can show that My p-emulates M;, but M; cannot
p-emulate Ms. That is holds and, moreover,:

_'Hp7 V_[, VT’, PQ,I (T) S Pl,I(p(T))- (68)

Then and taken together allow us to say that M, provides a uniform
and essential improvement on M;—especially if the polynomial p in has the
form cr for some small constant ¢. Note that in the limiting case of deterministic
algorithms the relation is one of dominance: for all inputs, the time required by M, is
bounded above by a fixed polynomial of the time required by M; on the same input,
but not viceversa. This corresponds to the intuitive meaning of “M, is uniformly
and essentially more efficient than M;” in the case of deterministic algorithms. Our
definition can be seen as a generalization of this intuitive idea to the case of non-
deterministic algorithms.

Proposition 6.3.5. If My p-emulates My, then My weakly p-simulates M.

8The fact that the sample space is infinite is not, per se, the reason of this bad algorithmic
behaviour. An algorithm with an infinite sample space in which most of the outcomes are “good”
ones is perfectly conceivable. Again, it is not the size of the sample space which determines the good
or bad computational behaviour of the algorithm, but the frequency of “good” choice sequences.
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Proof. If M, p-emulates My, then for every input I and every integer r, Ps (p(r)) <
P, f(r). If there exists an M;-computation on input [ which terminates within r
steps, then Py ;(r) > 0 and therefore P (p(r)) > 0; that is, there exists an M-
computation which terminates on input I within p(r) steps. O

That the p-emulation relation is much more informative than the p-simulation
relation is also shown by the following propositions.

Proposition 6.3.6. If M; p-emulates My, then there is a polynomial p such that for
all n

1. WBsy(n) < p(WB;(n))
2. WéEs(n) < p(WEi(n))
8. WWs(n) < p(WWi(n))

Proof. Observe that 1 follows from the previous Proposition. To show 3 reason as
follows. The negation of 3 is equivalent to

Vp, In, p(WWi(n)) < WWy(n).

Therefore, let N be a value of n satisfying the above condition and let WW5(N) = r.
By definition of WW(n), for all inputs I with |I| = N, and all choice sequences
a € Qy, la| <r. But there is an I, with |/| = N, such that b > p(r) for some choice
sequence b € €5 ;. Therefore for such an I, P ;(r) =1, but P ;(p(r)) < 1. Hence

\V/p, EII, EIT) Pl,[(p(r)) < PQ,I(T)7

that is My cannot p-emulate M;, against the hypothesis. Now, to show 2, consider
that if My p-emulates M, then there is a fixed polynomial function of r, say ¢, such
that for all r» and all inputs I:

Py (r) < Pap(re),

and therefore

So,
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and

Z pTz,I(a) “la] = sz,l(r)'T
aeﬂgyl r=0
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Since

o5 pnr(s) <D s pui(s) < Qs pra(s))”,

then for every input I the expected resource requirement in the sample space €29 ;
is bounded by n® where n is the expected resource requirement in the sample space
Q7. O

Proposition 6.3.7. If M, p-emulates My, then there is a polynomial p such that for
alln

1. EWs(n) < p(EW1(n))
2. EBy(n) < p(EB1(n))
3. EE5(n) < p(EE1(n))

Proposition 6.3.8. If Ms p-emulates My, then there is a polynomial p such that for
all n

1. BWsy(n) < p(BWi(n))

2. BBy(n) < p(BBi(n))

5. BE(n) < p(BE (1))

The proof of these propositions is similar to the proof of Proposition [6.3.6]
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6.3.7 p-refinement
Propositions above indicate that the p-emulation relation provides a much

more complete picture of the relative efficiency of two non-deterministic algorithms
than the p-simulation relation. As argued above, “M; p-emulates M; but not vicev-
ersa” is a good mathematical modelling of the informal notion of “Ms is uniformly
and essentially more efficient than M;” when referred to non-deterministic algo-
rithms. We can assert something even stronger. Suppose that M, p-emulates M; as
before, but that M; cannot even weakly p-simulate M,. This means that there are
problems II such that for every I € II there is a finite probability that M, solves [
within, say, ¢g(|/]) steps for some fixed function g, but for every polynomial p, the
probability that M, solves I within p(g(|I|)) steps is null for almost all /. This leads
to the following definitions:

Definition 6.3.9. A non-deterministic algorithm M, is a p-refinement of another
non-deterministic algorithm M, if My p-emulates M; but not viceversa. We also say
that M, is a strong p-refinement of M, if My p-emulates M; but M; cannot weakly
p-simulate M.

However, this is not the whole story. We would like our efficiency estimates to
be “stable”. So, we would like to be able to show that the improvement of the
distribution function of M, over the distribution function of M; is preserved under
every possible determination of the latter algorithm. So our rational preference for
M, does not risk to be overturned by further “heuristic” developments of M;. This
is a form of monotonicity. More precisely:

Definition 6.3.10. A non-deterministic algorithm M, is a (strong) monotonic p-
refinement of a non-deterministic algorithm M iff for every given determination M7y
of M, there is a determination Mj of Mj such that M is a (strong) p-refinement of
M.

If M5 is a monotonic p-refinement of M; according to this definition, then the
improvement of My on M is stable and cannot be reversed by any further determi-
nation of the weaker algorithm. We can visualize this property by immagining an
enumeration of all possible determinations of M; :E|

* *ok *okok
My, My, M* M

9The reader with an interest in the Philosophy of Science may notice the analogy between this
way of representing the p-refinement relation and Lakatos’ notion of a research programme that
supersedes another research programme in his Methodology of Scientific Research Programmes
[108]. In this context, the proof systems are rival research programmes and the sequence of M-
determinations is a progressive shift.
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If M, is a (strong) p-refinement of M, there is a corresponding sequence of determi-

nations of M,
* ok kK%
My, My, My™ My™ ...

such that

n n

ﬁ * *
M, 77 is a (strong) p-refinement of M; """

Y

for all n > 0. Monotonic p-refinement is, like p-refinement, a strict partial order
of proof systems and can be employed to make appraisals of the relative efficiency
of proof systems that are more relevant to the problem of mechanical proof than
the appraisals based on the p-simulation relation, and are also more stable than the
appraisals based on specific deterministic algorithms.

The problem arises of how to show that an algorithm is a monotonic p-refinement
of another. The following lemma provides a sufficient condition for strong p-refinement.

Lemma 6.3.11. Let M; be a non-deterministic algorithm and let 2y ; denote its
sample space on input I. The non-deterministic algorithm Ms, with sample space
Qy 1, is a strong monotonic p-refinement of My if there is a simulation function
[ Qi 26220 (see above Sec. , computable in polynomial time, such that
the following conditions are satisfied:

1. The function f is a p-simulation, i.e. there is a polynomial p such that

(VI)(Va € 1,1)(Vb € f(a)) [b] < p(|al).

2. There is a problem 11, such that for all polynomials p

(3 e )(Va € Q,1)(3b € f(a)) [a] > p(]b]).

3. The function f is a discriminating simulation (see above, Sec. , i.e.,
If a %4 b then f(a)n f(b) = 0.

Proof. If conditions 1-3 are fulfilled, then, for every determination M7 of M;, there
is a determination MJ of M, such that M p-emulates M but M cannot weakly
p-simulate M. For, let M be an arbitrary determination of M;. Let M}‘(l) be the
determination of M; consisting in the simulation of M via f (see above page ,
so that

Q= U fla).

a€Qqx g
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Clearly,
pr(a) < pr(|lally),
where ||al| s is the equivalence class of a under ~ defined as in (6.1). Since
pr(a) < pr(f(a)),
It follows from Proposition that, for all r:
pria:|al <r} <pr{f(a):lal <r}.
Since, again by Proposition [6.3.2],

prif(a):lal <r}=pr J f(a),

|a|<r

then, by condition 1,

pria:laf <r} <pr{b: |b] <p(r)},

for the fixed polynomial p. So

Y opea(s) < D0 prayr(s),

s<r s<p(r)

therefore for all r
Py 1(r) < Pray-1(p(r))-

This shows that M7} ;) p-emulates M. Now, it follows from condition 2 that there is
problem II such that for all polynomials p there is an I € II such that for all choice
sequences a in the sample space €21+ ;1 C €2, ;, there exists a choice sequence b in the
set f(a) such that p(|b]) < |a|. This means that M}, cannot weakly p-simulate M.
Therefore, for every determination M« of M, there is a determination My« of Mo,
namely M7z, such that My« p-emulates M;- but M7 cannot weakly p-simulate M3
(Mo« is a strong p-refinement of M« ), that is M, is a strong monotonic p-refinement
of Ml. ]

6.4 A case study: KFE vs. Smullyan’s tableaux

In this section we show that KFE is a strong monotonic p-refinement of Smullyan’s
(binary) tableaux [I38]. We first define a p-simulation of such a tableau method in
KFE; then we show that all conditions in Lemma[6.3.11] are satisfied. In this context,
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each choice sequence in | Q7p 7, the sample space of the tableau method, identifies
a tableau (a completed tableau) which is mapped by the simulation function to a
finite set of KE-trees (completed KE-trees).

With the notation

T

T

we denote a tree such that ¢ is among its leaves.

We consider a tableau as a tree with a labelling function [ mapping the nodes of
T to formulae. Below we define simultaneously the relation 77 is a KE-simulation
of T, and a partial function v which for every pair < 7,7’ > in the relation, maps
the labelled nodes of T to labelled nodes of 7' (v is one-one). So, the simulation
function f will simply be defined as

f(T)={T": T'is a KE-simulation of T}

Definition 6.4.1. Let 7 be a tableau. The relation 7' is a KE-simulation of T
and, for every such 77, the partial function v from nodes of 7 to nodes of 7’ are
defined by induction on the number of nodes of 7T

A. For every one-node tableau 7, with x as its only labelled node, the KFE-tree T’
with y as its only labelled node and I(z) = I(y) is a KE-simulation of T and v(z) = y.

B. Let T be a tableau of the form
To
x
yl(al)
ya(a2)

for some « such that I(u) = o and w is on the path to z, and let 7] be a KE-simulation
of 7y. Then,

1. if v(x) is defined, the following is a KFE-simulation of 7

7’0/
v(x)
21 (Oél)
22((1/2)

and v(y;) = 2z, 1 = 1,2;
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2. if v(z) is undefined, then 7 is a KE-simulation of 7.

C. Let T be a tableau of the form
To

X

y1(51) ‘ Ya(B2)

for some 3 such that I(u) = 8 and w is on the path to z. Let 7, be a KE-simulation
of Ty. Then,

1. if v(x) is defined and w, with I(u) = f}, is on the path to v(z) in 7, then the
following is a KE-simulation of 7

76/
v(x)
z(B;)

where j is equal to 1 if ¢ = 2 and to 2 if ¢ = 1; moreover v(y;) = z and v(y;) is
undefined;

2. if v(x) is defined and u, with I(u) = §; (i = 1,2), is on the path to v(z) in Ty,
then 7, is a KE-simulation of T;

3. if v(z) is defined and, for all i(= 1,2) and all u on the path to v(z), {(u) # B!
and [(u) # f3;, then both the following trees are KE-simulations of 7T

To To
v(z) v(z)
z1(B1) | s(B1) s(B3) | z2(52)
22(52) 2’1(51)

and v(y;) = z;, 1 = 1,2;
4. if v(z) is undefined, then 7 is a KE-simulation of T.
This concludes the definition.

Remark 24. The simulation procedure can be easily adapted to the case in which
disjunctions with more than two components are allowed in the language. So the
procedure can deal with trees of clauses.
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Let f be the function mapping every tableau 7 to the (finite) set of KE-simulations
of T. It is easy to show that:

Proposition 6.4.2. If T is a closed tableau, then every T' in f(T) is also closed.
Moreover, by construction, every T' € f(T) enjoys the subformula property.

Note that it follows immediately from the above proposition that KF is complete
and enjoys the subformula property.

Theorem 6.4.3. KF is a strong monotonic p-refinement of Smullyan’s tableaux.

Proof. Let f be the simulation function defined above and let (7)) be the number
of branches in the tree 7. We can consider the “crude” complexity measure £(7) as
adequate in this context, since each branch is assumed to contain only subformulae
of the assumption nodes (and only one occurrence of each). Hence any more precise

measure is bounded above by a polynomial in our crude measure. It is easy to see
that for all 7 and for all 7" € f(7):

8(T") < 8(7). (6.9)

This implies that condition 1 in Lemma is satisfied.

Let H be the class of “truly fat” expressions recalled in Subsection [3.3.2] It is
not difficult to verify that if 7 is a closed tableau for Hf, and f is the simulation
function defined above, then for every KE-tree T' in f(T):

8(7) =281 (6.10)

Given that the minimal closed tableau for H must have a factorial number of
branches (Theorem [3.3.19)), condition 2 in Lemma is also satisfied.

Finally, by inspection of the definition of the simulation f, it is easy to verify
that condition 3 of Lemma is satisfied. O

Remark 25. In fact, and Theorem taken together are much stronger
than what we need to satisfy condition 2: for all polynomials p and for all tableaux
T for Hf, not only there is a KE-tree T’ in f(7T) such that #(7") < p(4(7)), but
the latter holds for all 7' in f(7). To satisfy condition 2, Cook and Rechow’s
examples H,, recalled in Subsection [3.3.2] would be sufficient. As observed in that
Subsection, while in the case of the examples H the size of the resulting refutation
is not affected by the choice of the atom to which the branching rule PB is applied,
in the case of the H,, examples wrong choices can increase the size of the refutation
trees up to an exponential factor. However, as we recalled also there, D’Agostino and
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Mondadori [65] suggested a simple heuristic principle that is sufficient to overcome
the problem as far as input in clausal form is concerned. The study of more general
criteria for input in non-clausal form is a topic we consider for further investigation.
In the context of this Chapter, however, it is worth remarking that even without any
additional heuristics there is a very low probability that a randomized KFE-procedure
generates a tree whose number of branches is as big as that of the shortest tableau for
this examples. Such a KFE-tree is obtained only when the atom with the least number
of occurrences in the branch is always chosen. Since the probability of choosing any
particular atom among n atoms is % and there are 2" — 1 atoms in H,, it is easy
to see that the probability of generating a refutation tree whose number of branches
is as big as the number of branches in the smallest tableau is ﬁ All the other
possible KFE-trees have a strictly smaller number of branches.

The simulation function f can be seen as an optimization technique: given a
tableau-based deterministic algorithm My we can turn it into a KE-based algorithm
Mg which is uniformly and essentially more efficient. In terms of p-simulation, our
results show that no deterministic Myp can p-simulate its KF-optimization. The
reader can verify how tableaux “shrink”, when they are processed by the simulation
function: in most cases the KFE-tree obtained via the simulation closes (or becomes
completed) much more quickly than the simulated tableaux. Since the simulation is
a step-by-step one, our results can be read in the following more pictorial way. Let
Mrp be any deterministic algorithm based on the tableau method. The simulation
function maps every instruction of Mrp to another instruction which expands a KE-
tree. For the case 3 of the definition, we can imagine that one of the two alternative
simulations is chosen at random. The algorithm Mg consisting of the composition
of Mrp and the simulation function (plus the random mechanism) is a uniform and
essential improvement of the original algorithm Mrypg; i.e., Mgg always terminates
within approximately the same number of steps as Mrg, but often terminates before
and sometimes (very) long before. For input in clausal form, Mg has in fact a much
better worst-case complexity than Myrp: O(2%) vs. O(k!).

Now, let KE; be the determination of KE obtained by simulating the tableau
method, where f is the simulation function. Then, it is not difficult to see that KEy
linearly emulates (and so linearly simulates, as shown in [65]) the main refinements
of Smullyan’s tableaux; namely, merging and “lemma generation”. So, a certain
restricted use of the rule PB is sufficient to simulate and emulate both refinements.
On the other hand, clearly, more liberal uses of PB yield strictly more powerful
versions of KE which may well be more powerful from the complexity viewpoint and
still obey the subformula property. As pointed out in [65], an interesting question
is whether more liberal uses of the rule would lift KF to a better complexity class
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in terms of the p-simulation relation, and we add here that the same question is
interesting in terms of the p-emulation relation. As mentioned in [65], an answer
to this question is presently available only for the totally unrestricted version of
PB, which yields a version of KE equivalent to the sequent calculus with cut and
to unrestricted Frege systems. However, obviously, the complete lack of control
resulting from such an unrestricted use would render the corresponding version of
KFE useless in practice; that is, the unrestricted version would not p-emulate the
restricted versions. Hence, such a version does not provide any improvement from
the point of view of automated deduction. Nonetheless, it is still an open question
whether between the totally unrestricted version and the severely restricted one
employed to obtain the simulation results recalled in Section [3.3.1], there is room for
a more liberal, yet “controlled”, version which is strictly more powerful in terms of
both the p-simulation and the p-emulation relations.
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Chapter 7

Conclusions and future work

We reassessed and extended the depth-bounded approach to CPL introduced by
D’Agostino and co-authors. Part of our reassessment of the proof-theoretic basis of
the approach—constituted by a KE/KI system that we called the intelim method—
led us to prove new lower bounds on analytic tableaux. Namely, we introduced a class
of examples in the pure disjunction-conjunction fragment of the language, and proved
a factorial lower bound on that class of examples for all tableau methods sharing the
A and V rules with classical tableaux. On the other hand, our new examples are easy
for KE-style (and so KE/KI-style) variants of those tableau systems. Moreover, we
stated factorial lower bound for the strongest possible version of clausal tableaux on
the class of “truly fat” expressions used in [54] to state an analogous factorial lower
bound for simple clausal tableaux (by contrast, the “truly fat” expressions are easy
for truth-tables and KFE). The latter settled a problem left open in the literature
[115, 116, @]. Another result of our reassessment is that, following a suggestion in
[65], we explored a hierarchy of depth-bounded approximations to CPL based only
on KFE. Although arguably less natural than the analogous hierarchy based on the
intelim method, the hierarchy based on KF might be preferred for potential uses in
automated reasoning.

We also showed how the depth-bounded approach can be naturally extended to
useful non-classical logics such as FDE, LP, K3 and IPL. In each case, the basis for
the extension was the introduction of a corresponding KE/KI-style system. Each
of these systems: (i) is formulated in terms of signed formulae, where the signs have
an intuitive informational interpretation; (ii) has linear introduction and elimina-
tion (intelim) rules, which fix the meaning of the connectives; (iii) has branching
structural rule(s) expressing a generalized rule of bivalence; (iv) can be used as both
a direct-proof and a refutation method; (v) obeys the subformula property. Given
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our new lower bounds on analytic tableaux, these KFE/KI-style systems are inter-
esting independently of the depth-bounded approach since they have an exponential
speed-up on their tableau systems counterparts.

Then, we focused on showing that each of our KE/KI-style systems naturally
leads to defining an infinite hierarchy of tractable depth-bounded approximations
to the corresponding logic, in terms of the maximum number of nested applications
that are allowed of the branching rule(s)[] The latter is (are) essentially cut rule(s)
which intuitively govern(s) the manipulation of virtual information, as opposed to
the operational rules that intuitively govern the use of actual information. As in
the classical case, the key intuition is that the more virtual information needs to
be invoked via the branching rule(s), the harder the inference is for the agent, from
both the cognitive and computational viewpoints. Thus, the nested application of
those rules provides a sensible measure of inferential depth, and so the levels of the
corresponding hierarchy can be naturally related to the inferential power of agents.
Furthermore, we showed that, in the case of the many-valued logics, each hierar-
chy admits of a 5-valued non-deterministic semantics. As for the case of IPL, we
paved the way for a non-deterministic semantics suitable for the corresponding hier-
archy by providing an alternative 3-valued non-deterministic semantics for full IPL
which specifies the meaning of the connectives without appealing to any “structural”
condition.

Finally, we presented what we consider is a methodological enhancement for com-
paring the relative complexity of proof systems. Namely, we proposed a refinement
of the p-simulation relation; refinement that is adequate to establish positive results
about the superiority of a proof system over another with respect to proof-search.
We tested our refinement with a case study; viz., we showed the superiority of KE
over Smullyan’s (binary) tableaux.

We consider that our new lower bounds on analytic tableaux, our hierarchies of
tractable depth-bounded approximations to classical and non-classical logics, as well
as our refinement of the p-simulation relation, can be of interest for researchers in
Computer Science, Artificial Intelligence, Philosophy and Cognitive Science, to name
some. The Thesis contribution is added to recent and ongoing work showing that the
depth-bounded approach is flexible enough to cover a variety of reasoning phenomena
in a natural and fruitful way, accounting for the computational and cognitive cost of
those phenomena as performed by situated resource-bounded agents. In this sense,
the approach seems to comply with the virtues that we suggested (in Chapter 1) one
may expect from an informational approach to Logic.

"While in the case of the many-valued logics tractability of the approximations is proven, in
the case of IPL it is (for now) only conjectured.
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Some future directions of research suggest themselves and others have been
pointed out by the external reviewers. The trio of many-valued logics (closely re-
lated to each other) addressed in Chapter 4 provides a case study for extending
the depth-bounded framework to a variety of finite-valued logics, in the spirit of
[43, 94, [42]. In fact, [42] already paves the way for carrying out such an extension
since it introduces a general method for extracting analytic cut-based tableaux for
any finite-valued logic. Given this general method, defining hierarchies of depth-
bounded approximations to any finite-valued logic suggests itself as a natural next
step in our research. Further, in the same [42] a generalized notion of analyticity—
different to the f-analyticity of our framework—is proposed. When extending the
depth-bounded approach to finite-valued logics we shall test whether the generalized
notion in [42] is better suited than f-analyticity for such a extension.ﬂ

Moreover, the hierarchy of approximations to IPL that we defined in Chapter 5
paves the way for defining similar hierarchies for a wide variety of logics characterized
by Kripke-style semantics. Even further, it seems plausible to extend the depth-
bounded approach to relevant and linear logics, and even to non-monotonic reasoning
and paradigmatic phenomena of logical dynamics. The latter two extensions would
imply: (i) a switch from hard (knowledge-like) information—which is the one present
in all the logics hitherto covered by the approach—to soft (belief-like) information
[see B, 113, [152]; (ii) considering the single agent case as the limit of the multi-agent
case, and so not considering the latter as a mere extension of the former. Intuitively,
the way agents access or fail to access certain information is tied to the distributed
nature of information. In the real world, agents cannot access all information at once
and, thus, using information in inference often involves communication and, more
generally, information flow between agents. Anyway, the adaptation of the approach
to multi-agent settings seems natural: the focus would be on distributed systems,
possibly assigning different inferential powers to different agents [see [46].

Thereby, we envisage extensions of the depth-bounded framework covering an
ample variety of non-classical logics. What is more, hierarchies of depth-bounded
approximations to these logics based only on the “ KE-fragment” of the corresponding
KFE/KI-style systems seem also worth of further research. As in the classical case,
these hierarchies may be preferred for potential uses in automated reasoning.

Last but not least, among other useful and interesting remarks, Joao Marcos
has pointed out that the “imprecise truth-values” in our approach to many-valued
logics—associated to the signs of our respective proof systems—seem to be related to
the designated/anti-designated “cognitive attitudes” used in [38, 91] when advocat-

2 Another generalized notion of analitycity which seems worth exploring when further extending
the depth-bounded framework is the one introduced in [91]
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ing a two-dimensional approach to consequence. However, the latter approach allows
one to dispense with signs in the formulation of the corresponding proof systems, and
allows also for a perspective on logical pluralism which is different to that outlined
in our Chapter 1. The key difference between those perspectives is that while ours
crucially relies on pragmatic/extra-logical criteria (viz., on the purpose of the agents’
modelling), the perspective arising from the two-dimensional approach vindicates “a
variety of logical pluralism in which logics of different kinds may be said to ‘cohab-
itate’ the same generalized logical structure” [38, p. 258]. So, this point raised by
Marcos seems worth exploring, for choosing between our approach in terms of signs
or the two-dimensional approach when implementing the depth-bounded framework
would clearly yield different results, both technically and conceptually. We shall deal
with this point in future work.
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