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2 

Vegetation-induced soil stabilization in a coastal area: An example from a natural mangrove 19 

forest 20 

Abstract 21 

Mangrove forests provide essential ecosystem services in tropical and semitropical regions by supporting 22 

their natural regeneration and other biosystem processes, offering livelihood for local communities, and 23 

contributing significantly to the natural resources. A systematic analysis on the protective role of mangrove 24 

forests and its effect on reducing coastal erosion is rare. Mangroves form a complex ecosystem that increases 25 

substrate stabilization and dissipates wave energy favouring the deposition of fine material. This study focuses 26 

on assessing the role of the roots of the white mangrove (Avicennia marina (Forssk.) Vierh.) in stabilizing the 27 

coastline. In a study site located in Southern Iran, a series of field and laboratory measurements of root systems 28 

collected from transects perpendicular to the coastline were conduceted. Root samples were collected from soil 29 

cores at fixed distances from the tree stem in three layers at seaward and landward positions. Moreover, Root 30 

tensile tests were conducted to estimate the biomechanical characteristics of roots that provided to the 31 

parameters of root reinforcement models. The spatial distribution of root reinforcement and the intrinsic-32 

variability of stabilizing components in relation to horizontal and vertical distances from a tree stem were 33 

calculated. Three models of Wu & Waldron (W&W), Fiber Bundle (FBM), and Root Bundle Weibull (RBMw) 34 

were applied. The results showed that Root Volume Ratio (RVR) and the number of roots (NoR) decreased with 35 

distance from the tree stem. Root tensile forces increased with root diameter. Finally, calculated root 36 

reinforcements at 0.75 m distance associated with the highest value while the lowest value was observed at 1.50 37 

m from the tree stem with a minor difference between seaward and landward positions. Soil detachment ratio 38 

(SDR) as approximately 10% higher at landwards positions than seaward, due to different geomorphological 39 

conditions that affected the soil detachment process. The similartity of the values of root reinforcement among 40 

root systems at seaward and landward positions may suggest that stem density would not be an important 41 

parameter in managing mangrove forests as a coastal protection measure. Yet, RVR at different distances and 42 

NoR by increasing significantly with soil depth and being different at seaward and landward positions, could 43 

improve their potential role as a nature-based solution for shoreline protection.  44 

Keywords: Avicennia marina, root reinforcement, root system, soil-bioengineering, Soil Detachment Ratio.  45 
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1. Introduction 46 

Coastal erosion is a significant hazard to coastal communities, and the mitigation of such hazard is 47 

challenging for many reasons (Dean and Galvin, 1976; Van Rijn, 2011). Nearshore vegetation affects the rate of 48 

erosion and deposition of sediments on sandy coasts by moderating the magnitude of tides and waves (Mitra, 49 

2020). Vegetation including mangroves and seagrasses, change the hydrodynamics of waves such to dissipate 50 

energy and thus, slow down the process of erosion (Feagin et al., 2011; Shepard et al., 2011; Smee, 2019). 51 

Reduced wave velocity and turbulence may enhance sedimentation (Anderson and Smith, 2014; Cellone et al., 52 

2016). Roots and rhizomes of nearshore vegetation may reinforce and stabilize coastal sediments. Hence, the 53 

propagation of nearshore vegetation may be considered a practical bioengineering method for the protection of 54 

coastal zones (Feagin et al., 2019).  55 

Mangroves are unique forest ecosystems that reduce the negative impacts of natural soil erosion while 56 

maintaining services such as providing construction timber, firewood, charcoal, livestock forage, honey bee 57 

habitat and pharmaceutical herbs i.e. saponin, flavonoid, tannins (Rezaii, 1993; Bell and Lovelock, 2013; 58 

Thompson et al., 2017). In fact, mangroves mitigate coastal erosion during severe rainstorms by reducing the 59 

erosion caused by surge as well as reducing wind erosion (Das and Crépin 2013). They also protect coastal 60 

assets by providing bunds that face wave motion (Othman, 1994), stabilize the coastline by reducing wave 61 

erosion and enhancing sedimentation (Mazda et al. 2002). A global analysis showed that mangroves function as 62 

strong walls that break high waves and prevent water from intruding adjacent lands with high velocity causing 63 

excessive soil erosion (Gedan et al., 2011).  64 

The south coast of Iran is covered with approximately 20,000 hectares of mangrove forests with patchy 65 

distribution. Among such ecosystems, the mangroves of Qeshm Island and Bandar-e Khamir are signigicant for 66 

their vast area (10,000 hectares), also having the highest diversity and largest mangrove-dependent community 67 

in the region (Sagheb-Talebi et al., 2014). Two endemic species of Iranian mangroves include the white 68 

mangrove (Avicennia marina (Forssk.) Vierh.), and the red mangrove (Rhizophora mucronata (Poir.)) (Safiari, 69 

2003). As mentioned above, developing mangroves are considered an effective bioengineering method to 70 

protect soil against erosion as an alternative to conventional engineering methods (soil nailing or concrete 71 

piling). Yet ironically in the study area, they themselves are threatened by soil erosion from increasing flood 72 

events and forest degradation due to climate change and human interventions (Sagheb-Talebi et al., 2014). Little 73 

is known about the relationship between survival rates and biomass production of mangrove species and their 74 

impact on coastal erosion.  75 

https://www.sciencedirect.com/science/article/pii/S0272771418307583#bib11
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Seafront mangroves species such as A. marina have deep, twisted roots that spread like a net and trap soil, 76 

keeping it from erosion. Moreover, A. marina can tolerate extreme weather conditions and high salinity (Rippey 77 

and Rowland, 2004). Root systems control the hydrological and mechanical properties of soil in the rooting 78 

depth, favouring stabilization (Gyssels et al., 2005; Hudek et al., 2017; Schwarz et al., 2015; Sidle and Bogaard, 79 

2016). Root reinforcement is influenced by root distribution also, the biomechanical characteristics of soil (e.g., 80 

Wu et al., 1979). Such condition is related to botanic, climatic and environmental factors (Hales et al., 2009; 81 

Hales & Miniat, 2017) i.e. plant species, stand origin and structure and physical and chemical properties of soil 82 

(Bischetti et al., 2005; Deljouei et al., 2020). It has been observed that root reinforcement is systematically 83 

dependent on various environmental conditions such as soil moisture (Fan and Su, 2009; Hales et al., 2009), 84 

plant functional types (Moresi et al., 2019, Hales, 2018), and plant age (Dazio et al., 2018). In this study, 85 

potential environmental controls on mangrove root reinforcement are considered which comprise depth of 86 

inundation and wave energy as they actually lack quantitative information.  87 

Due to the factors of complex soil-root interactions, heterogenous root distribution and complicated 88 

mechanical properties of both soil and roots, assessing root reinforcement remains a challenge (Cohen et al., 89 

2011). Analytical models for soil reinforcement have been developed over the last four decades to support the 90 

assessment of hillslope stability as well as to enable appropriate design of soil bioengineering methods 91 

(Bischetti et al., 2021; Phillips et al., 2021). Wu & Waldron (W&W) developed a pioneering mechanical model 92 

based on the assumption that roots are elastic fibers extending perpendicular to a shear surface and that all roots 93 

break at the same time (Wu, 1976; Waldron, 1977). Simplicity of the model led to its world-wide application 94 

(Mehtab et al., 2020). On the contrary, roots with different diameters break depending on their individual tensile 95 

strength after which the stress is redistributed over the remaining roots. So, the simplified W&W model 96 

associates with significant overestimation of root reinforcement (e.g., Operstein and Frydman, 2000; Pollen and 97 

Simon, 2005; Docker and Hubble, 2008). Pollen and Simon (2005) developed the Fiber Bundle Model (FBM) as 98 

a solution. The model assumes that all roots are parallel and have similar elastic properties. When each root 99 

breaks, the load is repetitively redistributed over the remaining roots until all roots (the entire bundle) are 100 

broken. Thereofre, the FBM model was found more conservative in estimating soil reinforcement (Bischetti et 101 

al., 2009; Mao et al., 2012). An extended version of FBM developed by Schwarz et al. (2013) was the Root 102 

Bundle Model weibull (RBMw). RBMw model is based on strain-step loading of a fiber bundle. It integrates a 103 

survival function that includes various mechanical properties of roots by implementing empirical relationships 104 

along with biomechanical and geometric characteristics of roots, and root distribution in soil. Compared to the 105 
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W&W model, RBMw requires more parameters, although it predicts more accurate results (Schwarz et al., 106 

2013). 107 

This study investigates root characteristics and their mechanical behavior according to distances from the 108 

stem at seaward and landward positions by applying different root-reinforcement models. Current knowledge of 109 

the underground parts of the mangrove ecosystems is minute. While only few studies have shown that mangrove 110 

species can protect shallower soil against coastal erosion (Thampanya et al., 2006; Van Tang et al., 2020), no 111 

study has quantified soil reinforcement provided by mangrove roots. In particular, a systematic understanding of 112 

Root Volume Ratio (RVR), Number of Roots (NoR), Root Length Density (RLD), and root resistance of 113 

mangroves is obtained as measuring underground processes is very difficult, especially at regular flooding areas. 114 

Hence, this study aims to: (i) investigate root characteristics and distribution (RVR, NoR, and RLD), (ii) 115 

measure the mechanical properties of roots (i.e., root tensile), (iii) compare estimations of the root reinforcement 116 

models of W&W, FBM, and RBMw and finally (iv) underline the accuracy of different methods by comparing 117 

their estimations. Finally, the role of mangrove forests in protecting coastal erosion is verified by analyzing the 118 

results. 119 

2. Material and methods 120 

2.1. Study site 121 

Hara Biosphere Reserve situated between the southern coastline of the main body of Iran and the northern 122 

coastline of Qeshm Island is chosen as the study site. The study focuses on the mangrove forests of Qeshm 123 

Island (as part of Hormozgan province) with an area of ~6750 ha (Fig. 1). With an average annual precipitation 124 

lower than 200 mm, the regional climate is dry and classified as subtropical. The evaporation rate is higher than 125 

annual precipitation and the annual relative humidity is 64%. Therefore, the mangroves only reach heights of 3-126 

4 m. The soil (pH=7.67) has a very fine texture and consists of loam, sand, and clay. When saturated, it can 127 

retain 56.8% of moisture (Mohammadizadeh et al., 2009). Electrical conductivity (EC) of the saturated soil and 128 

water salinity is reported 63.5 dS/m and 37.5 to 38.5 ppt, respectively (Khodadadi-Jokari, 2003). Atmospheric 129 

temperature varies from 10°C to 45°C, and the water temperature fluctuates as much as 20°C between summer 130 

and winter. Tidal waves vary between 4.6 m (during fall and spring seasons) and 0.3 m (during winter and 131 

summer seasons), respectively. During the high-tide season, the mangrove trees are submerged up to their 132 

crowns.  133 
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 134 

Fig. 1. Location of mangrove forest in Qeshm Island 135 

2.2. Measurements of root distribution and biomechanical properties 136 

The underground biomass and root distribution were measured using the core sampling method for 10 A. 137 

marina trees (Montagnoli et al., 2012; Fortier et al., 2013; Berhongaray et al., 2015). Trees with the mean 138 

diameter of 0.25 m at breast height (DBH) were sampled by a hand-driven corer of 0.10 m diameter, 0.10 m 139 

length and 0.0079 m3 volume. Samples were collected along transects perpendicular to the coastline at fixed 140 

distances of 0.75 m, 1.00 m, and 1.50 m from the tree stem at both seaward and landward positions and at 0.00-141 

0.10 m (top layer), 0.10-0.20 m (midlayer), and 0.20-0.30 m (bottom layer) depths. Root biomass was collected 142 

in the field by sieving (0.002 m mesh size). Root diameters were measured in the field using a digital caliper. 143 

The final biomass was determined by washing and drying roots in a 70°C oven while weighing them until 144 

reaching a constant weight . RVR (in m3 m-3), is the total volume of roots in a particular soil volume (Ni et al., 145 

2018); NoR (dimensionless) is the, Number of Roots (as a function of diameter); and RLD (Root Length 146 

Density, in m-2) is the mean value of root length per sample soil volume which calculated. In addition, tensile 147 

tests were carried out on root samples collected around the tree stem. 148 

2.3. Tensile measurements 149 

Undamaged root specimens collected from each core were washed, sprayed with 15% alcohol, kept in 150 

plastics, and retained at 5°C until the tensile test was carried out (Chiaradia et al., 2016; Abdi and Deljouei, 151 
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2019). Within three days after the root sampling, tensile tests were conducted on fresh roots. Roots with the 152 

length of 0.15 m were placed in the clamps of the Universal Testing Machine (SANTAM Co./SMT-5, Tehran, 153 

Iran), and mechanical tests were conducted at a steady 10 mm min-1 speed until rupture. Only specimens that 154 

broke near the middle of the root segment were considered (Ji et al., 2012).  155 

The main results of the tensile tests fit the relationships between the root diameter and biomechanical 156 

properties as follows: 157 

0max FF = ,                                                                                                                                     (1) 158 

0EE =  ,                                                     (2) 159 

where Fmax is root tensile resistance (N), E is root elasticity (MPa), F0 and E0 are constant coefficients (N and 160 

MPa, respectively), ξ and β are exponents (dimensionless), and ϕ is root diameter in mm.  161 

2.4. Root reinforcement models 162 

In this study, root reinforcement (Cr in N m-2) assessment was conducted using three models: W&W, FBM 163 

and RBMw.  164 

The W&W (Wu et al. 1988) model calculates root reinforcement assuming that all roots break at the same 165 

time and thus, each root contributes individually to the tensile resistance as follows: 166 
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where k’ is a coefficient of 1.2 (Wu, 1976), N is the number of classes of root diameter and RARn is the root 168 

area ratio (the ratio between soil area covered by roots and the entire soil profile, in m2 m-2) for the n-th class.  169 

The FBM (Pollen and Simon, 2005) model applies load to the bundle of fibers and distributes it evenly over 170 

each root as a function of the number of roots in the bundle. The load is redistributed after each root breaks. This 171 

model assumes that the roots are perpendicular to the shear surface and the distribution of stress across the roots 172 

is uniform (Schwarz et al., 2010b). The shortcoming of this method is that the heterogeneous distribution of load 173 

due to different stiffness root diameter classes are not considered (Schwarz et al., 2010b). The formulation of 174 

FBM is as follows:  175 
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where j is the weakest root which is still intact upon loading of the root bundle, RARj is the RAR of the root 177 

j.  178 

The RBMw (Schwarz et al., 2013) model, is a strain-step fiber bundle model that considers the failure 179 

probability of roots due to its variable mechanical properties. RBMw simulates force-displacement behavior of a 180 

root bundle based on a distribution of root diameter and a series of power-distributed relationships between 181 

biomechanical properties (Eqs. 1 and 2) and ϕ, and between root length (L in mm) and ϕ (Eq. 5).  182 

0LL =  ,                 (5) 183 

where L0 is a constant coefficient (in mm), and α is an exponent value (dimensionless). 184 

Cr is calculated by summing up the force contributions F (in N) for each root multiplied by the Weibull 185 

survival function S, as follows: 186 


=
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N

i
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*)(),(  ,           (6) 187 

where Δx is the displacement unit in mm and S is a function of the normalized displacement Δx*. The 188 

following equation calculates S(Δx*): 189 
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where λ and ω (dimensionless) are scale and shape Weibull parameters, respectively.  191 

The ratio between displacement is estimated by each tensile test and the corresponding displacement values 192 

are calculated using fitted values of tensile forces: 193 
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xF                                                    F(ϕi, Δx) < Fmax (ϕi)                           (8) 194 

In this research, all input parameters (F0, E0, L0, ξ, β, and α) were calculated from tensile tests. 195 

2.5. Soil detachment ratio 196 

Erosion of estuaries that contain mangroves occurs primarily through the action of waves and tides that 197 

apply shear stress on surface sediments (Nguyen & Luong, 2019). Rates of soil detachment depend on the 198 

magnitude of the shear stress applied, and is resisted by the cohesion of the sediment as well as the subsurface 199 
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root system. A. marina roots develop a fibrous mat in shallow subsurface (Baylis, 1950) that adds support 200 

against such flow erosion. Without a mangrove specific erosion rule, soil detachment rates (SDR) were 201 

calculated using a standard equation developed for terrestrial root systems that are subject to concentrated flow 202 

erosion. SDR was calculated as  203 

)()( expexp −−= RDcRDbSDR  ,                                      (9) 204 

where b and c are constant parameters with 2.15 and -0.13 values, respectively (Vannoppen et al., 2017). We 205 

acknowledge the lack of data on the parameter values for mangrove, hence they are considered same as the 206 

average values for roots penetrating a silty loam (Vannoppen et al., 2017). Root Density (RD) is calculated in kg 207 

m-3 as follows:  208 

V

M
RD D=   ,                                                                                                                                                (10) 209 

where MD (kg) is the dry living root mass and V (m-3) is the volume of soil sample (i.e., 0.00785 m3). SDR 210 

values range between 0 and 1. Conrverely, higher values indicate the less efficiency of roots in reducing soil 211 

erosion.  212 

2.6. Statistical analysis 213 

The normality and homogeneity of data were checked before performing the analysis. Since the data did not 214 

fit a normal distribution, a log transformation was applied. Mean values of RVR, NoR, RLD, and Cr for seaward 215 

and landward positions were compared by ANOVA among three distances from tree stems. Additionally, an 216 

ANOVA test was applied to compare root reinforcement models (i.e., W&W, FBM, and RBMw). It was also 217 

possible to assess variations in tensile force since the roots were collected from both sides of the tree samples. 218 

Analysis of covariance (ANCOVA) was used to determine whether the position of the samples affected root 219 

tensile forces or not. Root diameter was considered as a covariate factor based on the preliminary use of 220 

ANCOVA, which yielded the lowest residuals. Confidence intervals were established at 0.05 probability levels. 221 

3. Results 222 

3.1. Root distribution 223 

3.1.1. Root Volume Ratio 224 

As indicated in Figure 2, RVR values generally decreased with soil depth at both seaward and landward 225 

positions. They decreased systematically moving away from the tree stem (from 0.75 m to 1.50 m distance), 226 
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with relatively higher ratios at seaward positions. The ANOVA test showed that mean values of RVR at 227 

different distances from tree stems were significantly different (F=5.49, p<0.05) i.e. significantly lower at 1.50 228 

m distance than the two other. At similar positions in terms of distance and depth, corresponding RVR 229 

measurements at seaward and landward postions were not significantly different (p>0.05; Fig. 2). 230 

 231 

Fig. 2. Variability of RVR values at different positions (distance from tree stem and soil depth) at seaward and 232 

landward positions 233 

3.1.2. Number of roots 234 

Highest NoR values were observed near the core of the tree stem yet, they were more dense at seaward than 235 

landward positions (Fig. 3). As illustrated, NoR generally reduced with soil depth at both sides (landward and 236 

seaward). Regarding seaward positions, average NoR values in the top and bottom layers of soil at 0.75 m from 237 

the stem were 16694 and 4982, respectively. Corresponding values reduced to 7277 and 3603 at 1.00 m, also 238 

6142 and 5061 at 1.50 m distance. Landward NoR values were generally lower. The average values obtained for 239 

the top and bottom layers were 7933 and 3414 at 0.75 m distance, 7413 and 4928 at 1.00 m distance and finally, 240 

4775 and 3603 at 1.50 m distance, respectively. While 45% percent of roots were found in the top layer, only 241 

25% were observed in the bottom layer. In cores taken from near tree stem positions, the declining rate of NoR 242 

with soil depth was sharper in comparison to farther distances (Fig. 3). Although root diameters varied from 0.1 243 

mm to 17.2 mm at seaward positions, the majority of roots (99.4%) were very fine (within the <1 mm diameter 244 



11 

class), regardless of the distance from the stem. Less than 0.4% of the roots were 1-2 mm in diameter and about 245 

0.2% were just greater than 2 mm. At landward positions, roots diameters ranged from 0.01 to 20.93 mm of 246 

which 98.2% were less than 1 mm. 1.6% of the roots were 1-2 mm in diameter and 0.2% were just thicker. 247 

Comparing the NoR between seaward and landward positions revealed no significant statistical difference 248 

between corresponding distances from tree stems and soil depths (p>0.05; Fig. 3). 249 

 250 

Fig. 3. Number of Roots at the distances of 0.75 m, 1.00 m, and 1.50 m from the tree stem for both seaward and 251 

landward positions 252 

3.1.3. Root Length Density  253 

As shown in Fig. 4, the measurements of RLD were consistent at seaward and landward positions. In most 254 

cases, the RLD value at seaward position was higher than its corresponding value at landward position. The top 255 

layer at 0.75 m and 1.50 m distances and the mid layer at 1.00 m distance were exceptions. However in all 256 

cases, the mean value of RLD at corresponding positions were not significantly different (p>0.05; Fig. 4). 257 

Furthermore, RLD values were not significantly different (p>0.05) at any specific depth of a the same distance 258 

at both sides. In addition in different soil depths at a certain distance RLD values were quite similar (p>0.05; 259 

Fig. 4).  260 
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 261 

Fig. 4. Values of RLD at different distances from the tree stem and different soil depths at seaward and 262 

landward positions  263 

3.2. Root tensile test 264 

Laboratory tests were conducted on 59 sample roots from seaward positions and 39 sample roots from 265 

landward positions with diameters ranging from 0.21 mm to 8.85 mm. The relationship between root diameters 266 

and tensile forces is shown in Figure 5. As shown, failure forces increased with root diameters at both directions 267 

(seaward and landward). Results indicated that maximum tensile forces ranged from 2.2 N to 226.6 N at 268 

seaward positions (where root diameters varied between 0.23 and 8.76 mm), and from 0.6 N to 287.9 N at 269 

landward positions (where root diameter varied between 0.21 and 8.85 mm). Failure forces were not 270 

significantly different (ANCOVA, F= 0.58; p>0.05) in the two directions whereas root diameter, as a covariate 271 

parameter, was significant (F= 114.2; p<0.05). ANCOVA verified similarities between the curves of force 272 

against root diameter at different distances, making it possible to aggregate data and achieve a single force vs. 273 

root diameter curve. 274 
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 275 

Fig. 5. Root diameter-tensile force relation at seaward and landward positions 276 

3.3. Root reinforcement models  277 

3.3.1. Input parameters 278 

All three models require the relationship between tensile force and root diameters (Eq. 1). The results of root 279 

tensile tests indicated strong correlations between the mechanical and geometrical characteristics of roots and 280 

root diameters through a power-law regression line. In particular, an appropriate fit was obtained for the 281 

ultimate resistant force and Young's modulus (Fig. 6). The results of tensile tests fitted a survival function with 282 

robust fitting performance (Fig. 6).  283 



14 

 284 

Fig. 6. Calibration of input parameters of the root reinforcement models 285 

3.3.2. Assessing root reinforcement using different root reinforcement models 286 

In all three models, Cr decreased with distance from the tree stem. The average values of Cr at 0.75 m 287 

distance seaward were 9710.55 N m-2 for W&W, 3468.90 N m-2 for FBM, and 1880.62 N m-2 for RBMw (Fig. 288 

7). Also at 1.50 m distance seaward, Cr values of 6240.85 N m-2, 3245.70 N m-2, and 1604.88 N m-2 were 289 

obtained for W&W, FBM, and RBMw models, respectively (Fig. 7). The graph shows that Cr values reached 290 

4271.33 N m-2 for W&W, 3251.80 N m-2 for FBM, and 1130.36 N m-2 for RBMw at 0.75 m distance landward. 291 

Cr values of W&W, FBM, and RBMw models at 1.50 m distance landward were 3711.35, 1947.40, and 1763.39 292 

N m-2, respectively. Therefore, the estimated value of Cr by RBMw at the distance of 1.50 m was 9.9% higher at 293 

the landward than seaward position (Fig. 7). For all models, the highest Coefficient of Variation (CV) was 294 

obtained in the top layer landward (Table 1). Except for the midlayer seaward, the RBMw model estimated the 295 

lowest CV among all root reinforcement models (Table 1). The ANOVA test showed that root reinforcement 296 

estimated by W&W, FBM, and RBMw models at different distances were not statistically significant at seaward 297 
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and landward positions (p>0.05; Fig. 7). Also, statistical analysis showed that root reinforcement in each model 298 

and at each direction did not vary significantly among distances (p>0.05; Fig. 7). 299 

 300 

Fig. 7. Root reinforcement (Cr) of Wu & Waldron Model (W&W), Fiber Bundle Model (FBM), and Root 301 

Bundle Model-Weibull (RBMw) at different distances of landward and seaward directions. Bars denote standard 302 

error (±SE). 303 

Table 1 Coefficient of variation (CV) of root reinforcement values estimated by Wu & Waldron Model, Fiber 304 

Bundle Model, and Root Bundle Model-Weibull at different distances of landward and seaward directions 305 

Position Depth (m) 
CV 

W&W FBM RBMw 

Seaward 0.00-0.10 0.74 0.94 0.69 

0.10-0.20 1.13 1.35 0.85 

0.20-0.30 0.81 0.83 0.96 

Landward 0.00-0.10 0.96 1.02 0.78 

0.10-0.20 1.69 1.68 1.14 

0.20-0.30 0.85 0.87 0.77 

Results showed that all models resulted in significant differences among root reinforcement values, ranging 306 

from 31 N m-2 to 34000 N m-2 (Fig. 8). More specifically, Cr ranged from 80 to 52000 N m-2 for W&W, 70 to 307 

34000 N m-2 for FBM, and from 31 to 9000 N m-2 for RBMw (Fig. 8). W&W provided the highest and RBM 308 

provided the lowest values (more conservative and thus, appropriate to apply).  309 



16 

The results of ANOVA tests showed that among all models, the Cr estimated by W&W was significantly the 310 

highest (F= 11.61, p<0.05; Fig. 8) and that of the RBMw was signifcantly the lowest (Fig. 8).  311 

 312 

Fig. 8. Comparison of root reinforcement of Wu & Waldron model, fiber bundle model, and root bundle model-313 

Weibull. Boxes with the different lowercase letters are significantly different (p<0.05). 314 

3.4. Soil detachment ratio 315 

According to Table 2 at seaward positions, the mean value of SDR ranged from 0.31 (at 0.75 m distance, top 316 

layer and at 1.00 m distance, midlayer) to 0.49 (at 1.50 m distance, midlayer). At landward positions, the values 317 

varied between 0.39 and 0.48 at 0.75 m distance, midlayer and 1.50 m distance, bottom layer soil depth, 318 

respectively. Overall, mean SDR values were higher at landward positions (0.42 vs. 0.38, respectively). 319 

Table 2 Soil detachment ratio (SDR) values at different distances and different soil depths at seaward and 320 

landward positions 321 

Position Distance (m) Depth (m) 
SDR 

Min Mean Max SE (±) 

Seaward 

0.75 

0.00-0.10 0.001 0.31 0.56 0.06 

0.10-0.20 0.006 0.34 0.77 0.06 

0.20-0.30 0.001 0.32 0.56 0.06 

1.00 
0.00-0.10 8.6×10-5 0.36 0.62 0.06 

0.10-0.20 0.117 0.31 0.53 0.04 

a 

b 

c 
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0.20-0.30 0.299 0.48 0.68 0.04 

1.50 

0.00-0.10 0.020 0.39 0.91 0.07 

0.10-0.20 0.187 0.46 0.89 0.07 

0.20-0.30 0.318 0.49 0.70 0.04 

Mean   8.6×10-5 0.38 0.91 0.02 

Landward 

0.75 

0.00-0.10 0.092 0.40 0.72 0.06 

0.10-0.20 0.117 0.39 0.63 0.05 

0.20-0.30 0.181 0.41 0.72 0.06 

1.00 

0.00-0.10 0.086 0.40 0.81 0.07 

0.10-0.20 0.120 0.40 0.66 0.05 

0.20-0.30 0.205 0.44 0.64 0.04 

1.50 

0.00-0.10 0.117 0.46 0.78 0.06 

0.10-0.20 0.046 0.38 0.92 0.08 

0.20-0.30 0.114 0.48 0.88 0.07 

Mean   0.046 0.42 0.92 0.02 

 322 

4. Discussion 323 

As resulted in previous studies, root density dramatically decreases with soil depth (Stokes et al., 2009; 324 

Moresi et al., 2019; Abdi and Deljouei, 2019). Decreasing root density with soil depth has been correlated with 325 

less nutrient availability, less soil aeration, and higher presence of compact layers (Moresi et al., 2019; Abdi and 326 

Deljouei, 2019). Similar investigations were carried out on Alnus subcordata, Acer velutinum, and Parrotia 327 

persica native and pioneer species of the Hyrcanian ecoregion to identify root density patterns. Results show 328 

that patterns were similar to A. marina in all layers and not significantly different (Abdi and Deljouei, 2019). 329 

Furthermore, in several studies, decreasing root densities in the horizontal direction were investigated in relation 330 

to distance from the stem, tree diameter, species, and micro-topography (Genet et al., 2005; Schwarz et al., 331 

2010a; Ji et al., 2012; Dazio et al., 2018; Bordoni et al., 2020; Cislaghi et al., 2021). Spatial variability of root 332 

expansion (i.e., vertical and horizontal) depends on many variables including climate, local soil, land use 333 

management as well as associated vegetation communities (Sidle and Ochiai, 2006). The total number of roots 334 

in this study was completely different than other researches, taking into account the species, distance from the 335 

stem, and numbers of very fine roots which could be explained by the greater concentration of soil nutrients near 336 

the soil surface (Castañeda-Moya et al., 2011). Specific environmental conditions of Iranian mangrove due to 337 

permanent tide stress may justify the unusual mass and deeper root system. In this study, fine roots were the 338 

main part of the total rootstock, providing 98.2%-99.4% of standing root biomass. The primary function of fine 339 

roots in absorbing water and soil nutrients was clarified (Sanchez 2005), especially during early root 340 

development. In contrast, coarse roots represented a higher fraction of total root biomass in Florida and Mexico 341 
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(Castañeda-Moya et al., 2011; Adame et al., 2014). The results of this study showed that root densities were not 342 

significantly different at seaward and landward positions. Chiatante et al. (2003) stated that asymmetric cross-343 

sections cause variations in mechanical characteristics of roots. Furthermore, Di Iorio et al. (2005) reported that 344 

larger root sections could be resulted from higher loading stresses. Consequently, results may support the 345 

hypothesis that the roots of the trees that were investigated by mechanical stresses had the same condition 346 

seawards and landwards. Morphoplasticity (Marler and Discekici, 1997) or phenotypic plasticity (Ganatsas and 347 

Spanos, 2005) describes the ability of plants to adapt with environmental conditions. The similarity between the 348 

number of roots in corresponding seaward and landward positions could indicate that the plant reacts to stress by 349 

thickening its roots instead of increasing its root number. 350 

RLD is a root characteristic specified as either root length per unit of soil volume or root length per unit of 351 

soil surface (Stokes et al., 2009). RLD is often used as an indicator for stabilizing slopes and soil that is explored 352 

by a root system in search of nutrients and soil water (Aziz et al., 2017; Bordoloi and Ng, 2020) since it better 353 

reflects the quantity and structural aspects of roots (Yang et al., 2018; Hamidifar et al., 2018; Lobmann et al., 354 

2020). Its value decreases with soil depth due to the higher nutrient level in top layer of soil (Pandey et al., 355 

2000; Hoad et al., 2001; Bayala et al., 2002, 2004). The erodibility of topsoil is known to be dramatically less as 356 

the density of root length is higher (e.g., Mamo and Bubenzer, 2001a, b; De Baets et al., 2006; Knapen et al., 357 

2007; Osman and Barakbah, 2011). RLD reduction with distances from tree trunks was evident in all depths. 358 

The rate suggests potential competition directly under the tree crowns for water and nutrients (Odhiambo et al., 359 

2001; Bayala et al., 2004). The most contributive factor of soil aggregate is RLD such that lower RLD in further 360 

distances is expected to reduce soil stabilization more (Demenois et al., 2017). From a soil bioengineering 361 

perspective, RLD is defined as a mechanical soil reinforcement method (Osman and Barakbah, 2011). High 362 

RLD values imply a higher cross-section area of roots on a potential shear surface per unit of soil surface in 363 

terms and thus, higher mechanical reinforcement (Ghestem et al., 2014; Boldrin et al., 2017). 364 

The relation between root diameter and tensile force was found significant which complied with the results 365 

of other studies in which the tensile force strongly depended on root size (Genet et al., 2010; Boldrin et al., 366 

2017; Abdi and Deljouei, 2019; Deljouei et al., 2020). Therefore, hence it is necessary to take the root diameter 367 

into account as a covariate for root tensile force analysis (Vergani et al., 2012; Moresi et al., 2019; Abdi et al., 368 

2019). The relationship between root diameter and tensile force was investigated as a positive power-law 369 

function in previous studies (Bischetti et al., 2005; Genet et al., 2010; Vergani et al., 2012). Different cellulose 370 

to lignin ratios justified this relationship, with smaller roots having higher cellulose:lignin (Genet et al., 2005). 371 
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Such result were also due to the chemical composition of root tissues; root tensile forces had a significantly 372 

negative correlation with cellulose and holocellulose amounts and a significantly positive correlation with lignin 373 

and its ratio to cellulose (Ye et al., 2017).  374 

According to the results, the estimates of root reinforcement by the W&W model significantly varied with 375 

those of FBM and RBMw models. In literature, the value of k’ coefficient used in the W&W model depended 376 

strongly on the root bending angle as wells as the effective internal friction angle of soil (Wu, 1995; Danjon et 377 

al., 2008). Hence, it was suggested to use the correction factor kʺ instead. Most researchers quantified its value 378 

from 0.4 (Preti, 2006) to much lower values in order to correct the overestimation of the W&W (Operstein and 379 

Frydman, 2000; Docker and Hubble, 2008; Cislaghi, 2018; Deljouei, 2019). Bischetti et al. (2009) compared 380 

W&W and FBM models, and showed that kʺ coefficient was correlated with the number of roots. For a density 381 

smaller than 400 m-2 roots, a greater than 0.5 value may be assumed for kʺ (Bischetti et al., 2009). Cislaghi 382 

(2018) suggested that various combinations of kʺ should be used with 0.3 being most appropriate. This study 383 

suggests that considering kʺ of 0.3 for the W&W model provides the closest estimation to RBMw-values. 384 

Deljouei (2019) identified kʺ be 0.3 for small Carpinus betulus trees (0.75-0.325 m DBH), 0.4 for medium trees 385 

(0.326-0.575 m DBH), and 0.1 for large trees (0.576-0.825 m DBH) for most accurate estimations in the W&W 386 

model. Moreover, the kʺ coefficient was estimated 0.3 for small and medium trees of Fagus orientalis, and 0.2 387 

for large trees. Among root reinforcement models, W&W is the simplest as it requires a limited number of input 388 

parameters (i.e., RAR and tensile force-root diameter curves). However, it is necessary to estimate the Cr value 389 

more accurately and avoid overestimation, therefore FBM will improve the estimations of root reinforcement 390 

ratios of other models and overcome the hypothesis of simultaneous root-breaking. Several authors suggested 391 

that FBM provides encouraging estimates using available parameters, whereas RBMw requires many input 392 

parameters for an accurate and reliable estimation of the mechanical characteristics of a root system (Schwarz et 393 

al., 2013). In comparison to FBM, RBMw enables a less simplified breaking process for the bundle of roots by 394 

considering a progressive failure of roots due to their heterogeneous distribution. The main variable influencing 395 

root reinforcement estimations by W&W, FBM, and RBMw models is root diameter distribution (Vergani, 396 

2013). Different studies, field observations and laboratory tests show that the mechanical properties of roots 397 

highly vary even within the same diameter class. Such quality is due to the anatomy and geometry of roots, 398 

resulting in different failure forces and displacements which is considered in the RBMw model by fitting in the 399 

survival function parameter ω.  400 
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SDR values showed that soil erosion reduction due to the presence of roots in landward position were circa 401 

10% higher than seaward position. The finding is useful in conserving or restoring mangrove forests at seaward 402 

positions and provide nature-based shoreline protection as shoreline protection in mangrove ecosystems are 403 

mostly needed is this direction. Although the soil stabilizing and erosion reduction effect of tree roots for soil in 404 

various forest ecosystems are well-known (e.g., Abdi and Deljouei, 2019; Abdi et al., 2019), the functional role 405 

of mangrove forests in reducing erosion at seaward and landward directions (i.e., landward and seaward 406 

positions) has not been described yet. In line with the results of this research, Gou et al. (2020) showed that 407 

difference in SDR values may be related to differenent geomorphological conditions that affected the soil 408 

detachment process (De Baets et al., 2007; Li et al., 2015). The study also revealed indirectly that different 409 

conditions whould be seriously considered in erosion control revegetation efforts. 410 

Compared with the simplest model (W&W), the RBMw enables a comprehensive evaluation of root 411 

reinforcement with only few additional parameters and performs reasonably accurate predictions. Results of this 412 

study provide helpful information and tools for quantifying root reinforcement as a crucial factor for 413 

understanding numerous hydrologic and earth surface processes. Our results highlighted that the RBMw model 414 

estimations for root reinforcement were more conservative in which the lowest quantities among the three 415 

adopted models were obtained. In order to apply the results of this study to other mangrove areas, the RBMw 416 

estimation is recommended among other soil erosion prediction models. Finally, the significant role of A. 417 

marina in reducing soil erosion and conserving nutrient levels in the mangrove forest were evident in this 418 

research. 419 

5. Conclusions 420 

This research estimated the effect of the most significant mangrove species (i.e., Avicennia marina) at 421 

present time in Iran on soil stability. RVR, RLD, RD, and SDR were calculated at various soil depths with 422 

respect to the biomechanical characteristics of roots. Study results showed that root reinforcement greatly 423 

enhanced soil stability, highlighting the effectiveness of white mangrove trees in preventing and mitigating soil 424 

erosion. Recently, using natural material to increase shear resistance and stiffness of soil has become very 425 

common at different places. Geotechnical engineers recognize the role of roots in strengthening soil and the 426 

contribution of root resistance in improving soil stability very well. Results indicated that RVR, RLD, root 427 

distribution, and biomechanical root characteristics were not significantly different at seaward and landward 428 

positions from the tree stem. In contrast, values of all parameters decreased with soil depth and distance from 429 

the tree stem. Additionally, it was concluded that quantifying root reinforcement with W&W, FBM, and RBMw 430 
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models reflected significantly different results through which the W&W overestimated root reinforcement 431 

compared to the FBM and RBMw models. The results are particularly important to consider in managing soil 432 

erosion in Iran and other similar regions and demonstrate that developing A. marina communities can be an 433 

effective bioengineering technique for soil stabilization in coastal regions. 434 

 435 
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