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a b s t r a c t

Measurement errors are often correlated, as in surveys where respondent’s biases or tendencies to err
affect multiple reported variables. We extend Schennach (2007) to identify moments of the conditional
distribution of a true Y given a trueXwhenboth aremeasuredwith error, themeasurement errors in Y and
X are correlated, and the true unknownmodel of Y given X has nonseparable model errors. After showing
nonparametric identification, we provide a sieve generalized method of moments based estimator of the
model, and apply it to nonparametric Engel curve estimation. In our application measurement errors on
the expenditures of a goodY are by construction correlatedwithmeasurement errors in total expenditures
X. This problem, which is present in many consumption data sets, has been ignored in most demand
applications. We find that accounting for this problem casts doubt on Hildenbrand’s (1994) ‘‘increasing
dispersion’’ assumption.
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1. Introduction

We consider identification and estimation of conditional mo-
ments of a dependent variable Y given a regressor X in nonpara-
metric regression models where both Y and X are mismeasured,
and the measurement errors in Y and X are correlated. For exam-
ple, correlatedmeasurement errors are likely in survey data where
each respondent’s reporting biases or tendencies to err affect mul-
tiple variables that he or she self reports.

An example application that we consider empirically is
consumer demand estimation, where Y is the quantity or expendi-
tures demanded of some good or service, and X is total consump-
tion expenditures on all goods. In most consumption data sets
(e.g., theUSConsumer Expenditure Survey or theUKFamily Expen-
diture Survey), total consumption X is constructed as the sum of
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expenditures on individual goods, so by construction anymeasure-
ment error in Y will also appear as a component of, and hence
be correlated with, the measurement error in X . Similar problems
arise in profit, cost, or factor demand equations in production, and
in autoregressive or other dynamic models where sources of mea-
surement error are not independent over time.

Our identification procedure allows us to distinguish measure-
ment errors from other sources of error that are due to unobserved
structural or behavioral heterogeneity. This is important in appli-
cations because many policies may depend on the distribution of
structural unobserved heterogeneity, but not on measurement er-
ror. For example, the effects of an income tax on aggregate demand
or savings depend on the distribution of income elasticities in the
population. In contrast to our results, most empirical analyses im-
plicitly or explicitly attribute either none or all of estimated model
errors to unobserved heterogeneity.

In the consumer demand application, it has long been known
that formost goods, empirical estimates of Var(Y |X) are increasing
in X . For example, Hildenbrand (1994, Figs. 3.6 and 3.7) documents
this phenomenon for a variety of goods in two different countries,
calls it the ‘‘increasing dispersion’’ assumption, and exploits it as
a behavioral feature that helps give rise to the aggregate law of
demand. This property is also often used to justify estimating Engel
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curves in budget share instead of quantity form, to reduce the
resulting error heteroskedasticity. However, in this paper we find
empirically that while this phenomenon clearly holds in estimates
of Var(Y |X) on raw data, after nonparametrically accounting for
joint measurement error in Y and X , the evidence for increasing
dispersion becomes considerably weaker, suggesting that this well
documented feature of Engel curve estimates may be in part an
artifact of measurement errors rather than a feature of behavior.

Our identification strategy is an extension of Schennach (2007),
who provides nonparametric identification of the conditional
mean of Y given X (using instruments Q ) when X is a classically
mismeasured regressor.We extend Schennach (2007) primarily by
allowing for ameasurement error term in Y thatmay be correlated
with the measurement error in X . An additional extension is
that we identify higher moments of the true Y given the true X
instead of just the conditional mean. A further extension allows
the measurement error in X to take a multiplicative form that is
particularly well suited for our Engel curve application. Our proofs
make use of recent machinery provided by Zinde-Walsh (2014).

Building on estimators like Newey (2001), Schennach (2007)
bases identification on taking Fourier transforms of the conditional
means of Y and of XY given instruments. Our main insight is that,
if additivemeasurement errors in X and Y are correlatedwith each
other but otherwise have some of the properties of classical mea-
surement errors, then their presence will only affect the Fourier
transform on a finite number of points, so identification will still
be possible. Our further extensions exploit similar properties in dif-
ferent measurement error specifications, and our empirical appli-
cation makes use of some special features of Engel curves to fully
identify higher moments.

There is a large literature on the estimation of measurement
error models. In addition to Schennach (2007), more recent
work on measurement errors in nonparametric regression models
includes Delaigle et al. (2009), Rummel et al. (2010), Carroll et al.
(2010), Meister (2011), and Carroll et al. (2011). Recent surveys
containing many earlier references include Carroll et al. (2006)
and Chen et al. (2011).1

In the literaturewe find several examples of Engel curve estima-
tion in the presence of measurement errors. Hausman et al. (1991,
1995) provide estimators for polynomial Engel curves with clas-
sically mismeasured X , Newey (2001) estimates a nonpolynomial
parametric Engel curve with mismeasured X , Blundell et al. (2007)
estimate a semi-parametric model of Engel curves that allows X to
be endogenous and hence mismeasured, and Lewbel (1996) iden-
tifies and estimates Engel curves allowing for correlated measure-
ment errors in X and Y as we do, but does so in the context of a
parametric model of Y given X .2

The conditional distribution of the true Y given the true X
in Engel curves corresponds to the distribution of preference
heterogeneity parameters in the population, which can be of
particular interest for policy analysis. For example, consider the
effect on demand of introducing a tax cut or tax increase that shifts
households’ total expenditure levels. This will in general affect

1 Earlier econometric papers closely related to Schennach (2007), but exploiting
repeatedmeasurements, areHausmanet al. (1991), Schennach (2004) and Li (2002).
Most of these assume two mismeasures of the true X are available, one of which
could have errors correlated with the measurement error Y .
2 More generally, within econometrics there is a large recent literature on

nonparametric identification of models having nonseparable errors (e.g., Chesher,
2003; Meister, 2007; Hoderlein and Mammen, 2007, and Imbens and Newey,
2009), multiple errors (e.g. random coefficient models like Beran et al., 1996 and
generalizations like Hoderlein et al., 2011 and Lewbel, 2011) or both (e.g., Matzkin,
2003). This paper contributes to that literature by identifying models that
have both additive measurement error and structural nonseparable unobserved
heterogeneity.
the entire distribution of demand, not just its mean, both because
Engel curves are generally nonlinear and because preferences are
heterogeneous. Recoveringmoments of the distribution of demand
is useful because many policy indicators, such as the welfare
implication of a tax change, will in turn depend on more features
of the distribution of demand than just its mean.

The next two sections show identification of the model with
standard additivemeasurement error and of the specificationmore
specifically appropriate for Engel curve data. We then describe
our sieve based estimator, and provide a simulation study. After
that is an empirical application to estimating food and clothing
expenditures in US Consumer Expenditure Survey data, followed
by conclusions and an appendix providing proofs.

2. Overview

Suppose that scalar random variables Y ∗ and X∗ are measured
with error, so we only observe Y and X where:

Y = Y ∗
+ S,

X = X∗
+ W ,

with S and W being unobserved measurement errors that we
assume, for now, to have the classical property of being mean zero
with S,W ⊥ Y ∗, X∗. This assumption is just made here and now to
ease exposition; our formal results will substantially relax these
independence assumptions, replacing them with Assumption 1.
We will later further generalize the model to include different
specifications for the measurement errors. We explicitly allow S
and W to be correlated with each other. This might be due to the
nature of the variables involved, or caused by the way in which Y
andX are collected, as is the case for consumptiondata as described
in the Introduction, or when related reporting biases affect the
collection of both Y and X .

The model considered might also arise because of nondiffer-
ential properties of the measurement error in X . In the statistics
literature, a measurement error W in X is called ‘‘differential’’ if
it affects the observed outcome Y , after conditioning on the true
X∗, that is, if Y | X∗,W does not equal Y | X∗ (see, e.g., Carroll
et al. (2006)). An alternative application of our identification re-
sults would be for a model in which Y is not mismeasured, and the
additive error S instead represents the effect of differential mea-
surement error W on the true observed outcome Y . In this setup
Y | X∗ is in general different from Y | X∗,W , with the two distri-
butions being equal only if S and W are independent, so that the
amount of correlation between S andW could be thought of as the
extent of the departure from the nondifferential assumption onW .
Since thenature of S does not affect our identification result, to ease
exposition, in the followingwewill refer to S only asmeasurement
error in Y ∗.

Without loss of generality we specify Y ∗ as

Y ∗
= H(X∗,U),

where H(·, ·) is an unknown function of a scalar random regressor
X∗, and a randomscalar or vector of nonseparable unobservablesU ,
which can be interpreted as regressionmodel errors or unobserved
heterogeneity in the population. The extension to inclusion of
other (observed) covariates will be straightforward, so we drop
them for now.

In this setup our primary goal is identification (and later estima-
tion) of the nonparametric regression function E [H(X∗,U) | X∗],
but we more generally consider identification of conditional mo-
ments E


H(X∗,U)k | X∗


for integers k. Thus our results can be in-

terpreted as separating the impact of unobserved heterogeneity U
from the effects of measurement errors on the relationship of Y to
X . We do not deal directly with estimation of H and of U , but these
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could be recoveredwith someadditional assumptions given our re-
sults. This, along with identification of the conditional distribution
of Y ∗ and X∗, is discussed at the end of Section 3.

The two main complications in our setup compared to a
classical measurement error problem are that the true regression
model H is an unknown, generally nonlinear, function containing
nonseparable model errors U , and that measurement errors in
Y ∗ and X∗ may be correlated. To aid identification, we assume
throughout the availability of additional information provided by
instruments Q satisfying the following relationship
X∗

= m(Q )+ V ,
for some unknown function m(Q ) = E (X∗

| Q ), with V ⊥ Q . This
independence assumption is standard in the measurement error
literature, particularly for nonlinear models.

In the special case where S is identically zero, that is Y ∗
≡

Y , Schennach (2007) shows identification of the conditional mean
function E (Y ∗

| X∗), relying on features of the Fourier transforms
of E [Y | Q ] and of E [YX | Q ]. These transforms are in general not
ordinary point-wise defined functions, but generalized functions,
being the Fourier transforms of not-absolutely integrable func-
tions.

The intuition behind our extension is that when S is not identi-
cally zero, and is in fact correlated with W , the conditional expec-
tation E [YX | Q ] is shifted by a quantity which is proportional to
E [WS | Q ], while E [Y | Q ] remains unaffected. Under the identi-
fying assumption that the covariance between S and W does not
depend on the instruments Q (which is an implication of classi-
cal measurement error), this additional term E (SW ) is a constant.
Since the Fourier transform of a constant is a function which has
a single point of support, i.e. the Dirac’s delta generalized func-
tion, this only affects the Fourier transform of E [YX | Q ] on one
point, and the identification of the conditional mean function of
interest E [Y ∗

| X∗] can proceed as before. We generalize this ar-
gument to also identify higher order conditional moments of the
form E


Y k

| X∗

, with k ≥ 2.

The same intuition can be applied to different specifications of
the measurement error. An alternative specification we consider
which as we show is particularly appropriate for Engel curves (see
also Lewbel, 1996) is:
Y = Y ∗

+ X∗S,
X = X∗W .
This model is consistent with empirical evidence that measure-
ment errors in expenditures increase with total expenditure X∗,
and is consistent with the standard survey data generating process
in which total reported expenditures X are constructed by sum-
ming the reported expenditures on individual goods.

In this Engel curve model we identify E[Y ∗k
| X∗

] = E[H
(X∗,U)k | X∗

] for an arbitrary integer k, thereby separating the
effects on Y of observed and unobserved heterogeneity (X∗ and U)
from the measurement errors S and W . This is done by relying on
two different identification strategies, depending on different as-
sumptions regarding the structure ofmeasurement errors. The first
approach builds on the fact that for utility derived Engel curves
H(0,U) ≡ 0, while the second approach makes use of the specific
dependence structure between W and S implied by the definition
of Y and the construction of X in the Engel curve framework. We
then find that this second approach has some features that make it
more appropriate for our data, and we use it in our empirical ap-
plication.

3. Identification

As discussed in the previous section, we begin by writing the
unobserved Y ∗ and X∗ as
Y ∗

= H(X∗,U),

X∗
= m(Q )+ V , (1)
where Q is a vector of instruments, V is a scalar unobserved ran-
dom variable independent of Q , U is a vector of unobserved dis-
turbances, and the function H(·, ·) is unknown. The scalar random
variable Y ∗ is unobserved, but, encompassing and generalizing the
examples given in the previous section, assume that the observed
Y is given by:

Y = Y ∗
+ X∗ lS (2)

for some non-negative integer l, where E[S|X∗
] = 0. By this con-

struction, themeasurement error X∗ lS is mean zero, but has higher
moments that can depend on X∗. Note that l = 0 corresponds to
the case of classicalmeasurement error in Y ∗, while the generaliza-
tion to l > 0 is useful for dealing withmodels such as Engel curves,
where the variance in measurement errors increases with X∗.

The regressor X∗ is also measured with error, with X satisfying:

X = X∗
+ W , with E[W ] = 0, (3)

thereby allowing for additive measurement errors in X , while
retaining the property that E[X] = E[X∗

]. We will later generalize
our identification result to the case of multiplicative measurement
error, but to ease exposition we focus for now on the specification
of measurement error given by equation (3).

In order to simplify notation let µk(x∗) = E[Y k
| X∗

= x∗
]

be the kth conditional moment of the observed random variable
Y given X∗. We now show identification of µk(x∗) for k =

1, . . . , K , given knowledge of the observable triple (Y , X,Q ). Then,
in Section 4, wewill provide conditions under which identification
of moments of the form E[Y ∗k

| X∗
] can be achieved. The following

Assumption will be maintained throughout:

Assumption 1. The random variables Q , U , V , W and S are jointly
i.i.d. and

(i) E[W k
| Q , V ,U] = E[W k

] for k = 1, . . . , K ,
(ii) E[Sk | Q , V ,U] = E[Sk] for k = 1, . . . , K ,
(iii) V is independent of Q ,
(iv) E[WS | Q ] = E[WS].
(v) U is independent of Q conditional on X∗.

The mean independence Assumptions (i) and (ii) with K = 1
are a little weaker than assuming that measurement errors are
classical. We assume these for values of k greater than one because
we consider identification of these higher moments, not just the
k = 1 conditional moment. Assumption (iii), which is also made
by Schennach (2007), is a standard control function assumption
commonly used for identification and estimation of nonlinear
models using instruments.3

Assumption (iv) is less restrictive than standard measurement
error models, because standard models assume no correlations
between measurement errors, and thereby trivially satisfy this
assumption. Assumption (iv) would also follow from, and is strictly
weaker than, the standard classical assumption that measurement
errors be independent of correctly measured covariates. Finally
Assumption (v) is a minimal instrument validity restriction.

Without loss of generality, define m(Q ) by m(Q ) ≡ E[X | Q ],
so V has mean zero and m(Q ) is nonparametrically identified.
Defining Z = m(Q ) and Ṽ = −V , we may conveniently rewrite
equation (1) as:

X∗
= Z − Ṽ , (4)

3 As pointed out by Schennach (2008), this assumption has testable implications.
Independence between the estimated residuals of the feasible regression of X on Q
and the instruments Q provides a testable sufficient condition for (iii) to be valid.
This is in fact more restrictive than Assumption (iii), since the estimated residuals
from this feasible regression are also functions of the measurement errorW .



22 M. De Nadai, A. Lewbel / Journal of Econometrics 191 (2016) 19–32
which we will do hereafter. Following Newey (2001) and Schen-
nach (2007) we will show that, under Assumption 1, knowledge of
the conditionalmoments E[Y k

| Z], for k = 1, . . . , K , and E[XY | Z]

is enough to identify µk(x∗) for k = 1, . . . , K .
To this end, under Assumption 1 we can rewrite the observed

conditional expectations of Y k and of the product XY , conditional
on Z , as follows:

E[Y k
| Z] = E[µk(x∗) | Z], (5)

E[XY | Z] = E[x∗µ1(x∗) | Z] + E[x∗ l
| Z]E[WS]. (6)

Detailed derivation of these equations is provided in the Appendix.
The proof of identification of µk(x∗) is obtained by exploiting

properties of the Fourier transform of these conditional expecta-
tions. The following assumption guarantees that these transforms
and related objects are well defined.

Assumption 2. µk(x∗), E[Y k
| Z] and E[XY | Z] are scalar functions

in S, where S is the space of functions f (t) for t ∈ R such that each
satisfies
(1 + t2)−r

|f (t)|dt < ∞, for some r ≥ 0.

Assumption 2 restricts the conditional expectations of interest
to be members of a subclass of locally integrable functions, and
also excludes specifications that rapidly approach infinity like the
exponential function.

Under Assumption 1 we may write:

E[Y k
|Z] =


µk(z − v)dF(v)

E[XY |Z] =


(z − v)µ1(z − v)dF(v)+ λ


(z − v)ldF(v),

where λ = E[WS]. These are convolution equations. We apply
Fourier transform to the functions in these equations.

Lemma 1. Equations (5) and (6) are equivalent to:

εyk(ζ ) = γk(ζ )φ(ζ ) (7)

iεxy(ζ ) = γ̇1(ζ )φ(ζ )+ λiψ(ζ )φ(ζ ) (8)

where i =
√

−1, overdots denote derivatives with respect to z, and

εyk(ζ ) =


E[Y k

| Z = z]eiζ zdz, γk(ζ ) =


µk(x∗)eiζ x

∗

dx∗

εxy(ζ ) =


E[XY | Z = z]eiζ zdz, φ(ζ ) =


eiζvdF(v)

where F(v) is the cdf of Ṽ , λ = E[WS] and ψ(ζ ) =

x∗ leiζ x

∗

dx∗.

Note that the right hand side integrals may diverge, however,
in the space of generalized functions S∗ (see Zinde-Walsh,
2014) these objects are well defined and represent generalized
functions. Examples are the well-known Dirac delta function and
its derivatives, but the generalized functions defined above could
be more complicated elements of S∗. These generalized functions
are not defined point-wise, but have awell-defined support andwe
keep the familiar (even if somewhat misleading) function notation
to indicate their domain of definition.

Lemma 1 is a generalization of Lemma 1 in Schennach (2007),
who considers the special case where l = 0 and k = 1. Note that
φ(ζ ), being the characteristic function of Ṽ , is an ordinary function.
Products of generalized functions are not necessarily well defined,
so we cannot just freely take the ratio of equations (7) and (8) like
ordinary functions to cancel out the characteristic function φ(ζ ).
Also note that the unknown quantities here are γk(ζ ) and φ(ζ ),
whileψ(ζ ) is the Fourier transform of a power function, and hence
is known and equal to the lth generalized derivative of a Dirac delta
function. For a more detailed treatment of generalized functions
see Lighthill (1962) or the supplementary material in Schennach
(2007).

Assumption 3. The characteristic function of Ṽ , φ(ζ ), is continu-
ously differentiable and φ(ζ ) ≠ 0 for all ζ ∈ R.

Assumption 4. For each k = 1, . . . , K there exists a finite or
infinite constant ζ̄k such that supp(γk) = Ωk

=

−ζ̄k, ζ̄k


.

Assumptions 3 and 4 are equivalent to Assumptions 2 and
3 in Schennach (2007) and are standard in the deconvolution
literature. Since we are seeking nonparametric identification of
γk(ζ ), the characteristic function of Ṽ needs to be non-vanishing,
thus excluding uniform or triangular like distributions, while γk(ζ )
needs to be either non-vanishing or must vanish on an infinite
interval. This is required for γk(ζ ) to be fully nonparametrically
identified. Assumption 4 would, for instance, rule out sinusoidal
specifications for µ(x∗), which are not very common in economic
applications.4

The following theorem states our main identification result.

Theorem 1. Under Assumption 1–4, if Ωk
⊆ Ω1 then µk(x∗) for

k = 1, . . . , K are nonparametrically identified. Also, if ζ̄1 > 0
in Assumption 4 then

µk(x∗) = (2π)−1

γk(ζ )e−iζ x∗dζ

where

γk(ζ ) = εyk(ζ )/φ(ζ ) for ζ ∈ (ζ̄1, ζ̄1), (9)

φ(ζ ) is the characteristic function of Ṽ ≡ −V given, for |ζ | < ζ̄1, by

φ(ζ ) = exp
 ζ

0
~(t)dt, (10)

with ~(ζ ) being the uniquely defined solution in (−ζ̄1, ζ̄1), to

iε(z−x)y(ζ ) = εy1(ζ )~(ζ ),

where εy1(ζ ) =

E[Y | Z = z]eiζ zdz and ε(z−x)y(ζ ) =


E[(Z −

X)Y | Z = z]eiζ zdz respectively.

Theorem 1 immediately implies identification of E

Y ∗

| X∗
=

x∗


= E (Y | X∗
= x∗) = µ1(x∗). Identification of higher moments

of Y ∗
| X∗ based onµk(x∗) is discussed later and in the next section.

Theorem1 is a generalization of Theorem1 in Schennach (2007)
and of Theorem 3(B) in Zinde-Walsh (2014). The proof is in the
appendix, but essentiallyworks as follows. The nonzero covariance
between measurement errors W and S, coming from λ ≠ 0,
introduces the additional term λiψ(ζ )φ(ζ ) in (8). The function
ψ(ζ ) is the lth generalized derivative of the Dirac delta function,
whose support is the set {0}. This modifies the equation of the
Fourier transform of E[XY | Z = z], εxy(ζ ). Still, it can be shown
that identification of the characteristic function of Ṽ , which is non-
zero and continuous by Assumption 3, remains unaffected, and is
obtained as in the case of λ = 0. This in turn allows identification
of the function of interest γk(ζ ) as in equation (9) by means of Eq.
(7) in Lemma 1. Finally, this function’s inverse Fourier transform

4 If H(X∗,U)were parametrically specified, then Assumption 4 could be relaxed,
because in that case information obtained from a finite number of points of γk(ζ )
would generally suffice for identification.
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gives µk(x∗). This proof of Theorem 1 only needs to consider the
case where ζ̄k > 0, since the case where ζ̄k = 0 only occurs when
µk(x∗) is a polynomial in X∗, and that specification that has already
been shown to be identified by Hausman et al. (1991).

Now consider the multiplicative measurement error structure,
where the observed random variable X is such that

X = X∗W with E[W ] = 1, (11)

where E[W ] = 1 ensures that E[X] = E[X∗
]. In this case equation

(5) still holds, while (6) becomes

E[XY | Z] = E[x∗µ1(x∗) | Z] + E[x∗ l+1
| Z]E[WS]. (12)

A detailed derivation of this equation is provided in the Appendix.
This implies that a slightlymodified version of Lemma 1 holds, that
is

Lemma 2. Under Assumption 2, equations (5) and (12) are equiva-
lent to

εyk(ζ ) = γk(ζ )φ(ζ )

iεxy(ζ ) = γ̇1(ζ )φ(ζ )+ λiψ̃(ζ )φ(ζ )

where again i =
√

−1, overdots denote derivatives with respect to z,
and now

εyk(ζ ) =


E[Y k

| Z = z]eiζ zdz, γk(ζ ) =


µk(x∗)eiζ x

∗

dx∗

εxy(ζ ) =


E[XY | Z = z]eiζ zdz, φ(ζ ) =


eiζvdF(v)

where F(v) is the cdf of Ṽ , λ = E[WS] and ψ̃(ζ ) =

x∗ l+1eiζ x

∗

dx∗.

Comparing Lemmas 1 and 2, the only effect of considering a
multiplicative rather than additive specification for measurement
error in W is that of replacing the generalized function ψ(ζ )
in Lemma 1 with ψ̃(ζ ) in Lemma 2. We show that Theorem 1
still holds under this alternative specification (details are given in
the proofs in the Appendix). Thus the moments µk(x∗) are also
identified under the multiplicative measurement error structure
defined in equation (11).

An interesting side result of Theorem 1, useful for some
applications, is that the distribution of the unobserved random
variable X∗ is also nonparametrically identified.

Corollary 1. Let φx∗(ζ ) be the characteristic function of the unob-
served X∗. Under the Assumptions of Theorem 1, φx∗(ζ ) is identified
for |ζ | < ζ̄1 and is given by:

φx∗(ζ ) =
φz(ζ )

φ(ζ )
, (13)

where φz(ζ ) is the characteristic function of the observed random
variable Z and φ(ζ ) is the characteristic function of the unobserved
random variable Ṽ whose expression is given in equation (10).
Moreover, if ζ̄1 = ∞, the density of the unobserved X∗ is also
identified as

f (x∗) = (2π)−1

φx∗(ζ )e−iζ x∗dζ .

Equation (13) is just a standard property of the characteristic
function of the difference between two independent random
variables.

Theorem 1 establishes a set of assumptions under which
µk(x∗) = E[Y k

| X∗
= x∗

] is identified for integers k. However, the
policy relevant objects are usually the conditional moments of the
true, unobserved Y ∗, that is ωk(x∗) = E[Y ∗k

| X∗
= x∗

], or more
generally the conditional distribution of Y ∗ given X∗. For k = 1
it is easy to see that E[Y | X∗
= x∗

] = E[Y ∗
| X∗

= x∗
], that is

ω1(x∗) = µ1(x∗), implying that the first moment, which is usually
the primary concern in empirical applications, is directly identified
by Theorem 1. This was also the only estimand considered by
Schennach (2007).

We now consider identification of higher order moments, that
is, identification of ωk(x∗) for k > 1.

Corollary 2. Let Assumptions of Theorem 1 hold. Then

ωk(x∗) = µk(x∗)−

k−1
j=0


k
j


ωj(x∗)x∗ l(k−j)E[Sk−j

], (14)

and hence ωk(x∗) is identified up to knowledge of E[S j] for j =

2, . . . , k.

Corollary 2, which is based on the binomial expansion of
Eq. (2), shows that in order to identify ωk(x∗) for k > 1,
knowledge of moments of the unconditional distribution of S is
needed. Identification of moments of the distribution of S requires
additional informationwhichmay be provided by a combination of
additional data, restrictions imposed on the dependence structure
between W and S, or additional information regarding features of
H(X∗,U). The availability of such additional information is not a
general feature of our model and therefore depends on context.
To illustrate, we now provide one set of additional assumptions
that suffice to identify ωk(x∗) for any integer k. Then, in the next
section we discuss alternative identifying assumptions that are
particularly appropriate for our Engel curve application.

Suppose that we let the assumptions of Theorem 1 hold with
l = 0, so Y = Y ∗

+ S and X = X∗
+ W . Assume in addition

the boundary condition that H(0,U) ≡ 0 for all values of U (in
the next sectionwe show how this boundary conditionwould hold
by construction in the Engel curve example). Using l = 0 we can
rearrange equation (14) as

E[Sk] = µk(x∗)− ωk(x∗)−

k−1
j=1

ωk−j(x∗)E[S j].

The restriction that H(0,U) ≡ 0 in turn implies that E[Y ∗k
|

X∗
= 0] = ωk(0) = 0 for all k ≥ 1, so E[Sk] = µk(0) −k−1

j=1 ω
k−j(0)E[S j] = µk(0). Combining this result with Corol-

lary 2 then givesωk(x∗) = µk(x∗)−
k−1

j=0

k
j


ωj(x∗)x∗ l(k−j)µs−k(0),

which shows identification of ωk(x∗) for any integer k, given that
µ1(x∗), µ2(x∗), . . . µk(x∗) is identified using Theorem 1.

The above argument provides one set of conditions for the iden-
tification of E[Y ∗k

| X∗
] for any positive integer k (others are in the

next section). More generally we might be interested in estimat-
ing the conditional distribution of Y ∗ given X∗, or in estimating
H(X∗

i ,Ui). We do not consider formal estimation of these objects,
but outline here how they could be identified and estimated.

Conditions under which a distribution is identified from its mo-
ments are well known. See, e.g., Assumption 7 of Fox et al. (2012).
One such condition is that the moment generating function of Y ∗

i
given X∗

i exists in an open interval around zero. This ensures both
thatωk(x∗) is finite for any positive integer k, and that the distribu-
tion of Y ∗ givenX∗ is identified from thesemoments. In terms of es-
timation, given thiswell behavedmoment generating function and
assuming that the conditional density of Y ∗ given X∗ is sufficiently
smooth, Gallant and Nychka (1987) show that we could approxi-
mate any member of that class of density functions to an arbitrary
degree of precision by means of a standard normal density times a
polynomial of a sufficiently high even power. Call this power K , so
the larger is K , the better is this approximation. Knowledge of the
conditional moments E[Y ∗k

| X∗
] for k = 1, . . . , K would then suf-

fice to recover the polynomial coefficients of this approximation,
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and thereby estimate the density of Y ∗ givenX∗, using, e.g.,method
of moments estimation.

Given identification of the distribution of Y ∗

i conditional on
X∗

i , results such as those in Meister (2007) could then be applied
to identify H(X∗

i ,Ui). One such result is that, if the conditional
distribution of Y ∗

i given X∗

i is continuous, and if H is monotonic
in a scalar Ui, then we could define Ui as equaling the conditional
distribution function of Y ∗

i given X∗

i , and construct the function H
as the inverse of this distribution function.

4. Identification of Engel curves

As discussed in the previous section, E (Y ∗
| X∗

= x∗) equals
µ1(x∗) and so is identified without additional assumptions by
Theorem 1 and its corollaries. However, identification of higher
moments ωk(x∗) = E


Y ∗k

| X∗
= x∗


for k > 1 based on µk(x∗)

requires additional information. In this section we consider such
information in the form of identifying assumptions suitable for the
particular context of Engel curve estimation. Let Y ∗

i be unobserved
expenditures on a particular good (or group of goods) i, for i =

1, . . . , I and let X∗
=

I
i=1 Y

∗

i be total expenditures on all goods.
Let Y ∗

= Y ∗

1 denote the particular good of interest. Then Y ∗
=

H(X∗,U) is the Engel curve for the good of interest, where U is
now a vector of individual consumer specific utility (preference)
related parameters. The goal is then identification of moments of
the conditional distribution of Y ∗ given X∗.

We now describe two different possible models of measure-
ment errors, each of which yields sufficient information to identify
all moments of the conditional distribution of demands Y ∗ given
total expenditure X∗ using Theorem 1 and Corollary 2. In each case
it is assumed, as is generally true empirically, that observed total
expenditures X are obtained by summing the observed expendi-
tures Yi on each good i, so X =

I
i=1 Yi.

For the first of these two models, assume Yi = Y ∗

i + Si for
each good i, corresponding to measurement error in the form of
Eq. (2) with l = 0. Assume also that one cannot purchase negative
amounts of any good, so Y ∗

i ≥ 0 since each Y ∗

i is defined as a
level of expenditures. These two conditions then suffice to yield
identification as described in the previous section. To see this,
observe first that X = X∗

+ W follows by construction from
X =

I
i=1 Yi where the measurement error W =

I
i=1 Si. In

addition, the boundary condition H(0,U) ≡ 0 holds for all values
of U , because when X∗

=
I

i=1 Y
∗

i = 0 having every Y ∗

i ≥ 0
implies that every Y ∗

i = 0, and so in particular Y ∗

1 = H(0,U) = 0.
This first model of measurement error illustrates our identifica-

tion methodology, but it imposes the restrictive (for Engel curves)
assumption that the independent measurement error is additive
even though consumption must be non-negative. Moreover, it
is likely that measurement errors in expenditures increase with
the level of expenditures. Therefore, for estimation later we will
focus on a nonparametric generalization of an alternative speci-
fication proposed by Lewbel (1996) in the context of a paramet-
ric Engel curve model. This model assumes Yi = Y ∗

i + X∗Si for
each good i, corresponding to measurement error in the form of
Eq. (2) with l = 1 for S = S1. Let S̃ =

I
i=2 Si. Assume that S

and S̃ (corresponding to measurement errors for different goods)
have mean zero and are independent of each other. Then, by equa-
tion (2), summing up expenditures on different goods we obtain
X =

I
i=1 Yi = X∗


1 + S + S̃


, corresponding to multiplicative

measurement error in X given by equation (11) with

W = 1 + S + S̃ (15)

and E (W ) = 1 as required by Theorem1. In the followingwe argue
that such a measurement error structure imposes restrictions on
the joint distribution of the couple (S,W ) which allows us to
identifymoments of themarginal distribution of S fromknowledge
of moments of the form E[W k

] and E[W kS], which we show to be
identified from the data in the multiplicative measurement error
setup. The following Theorem establishes formal identification for
these quantities.

Theorem 2. Let Assumptions 1–4 and equations (1) and (11) hold.
Let the first K moments of X be finite with E[X∗k

| Z] being a strictly
positive functions of z for every k = 1, . . . , K . Then the first K
moments of W are identified and

E[W k
] =

E[Xk
]

k
j=0

k
j


ik−jE[Z j]φ(k−j)(0)

. (16)

Furthermore, if ζ̄1 = ∞ in Assumption 4, then:

gk(z) = E[W kS]hk(z), (17)

with gk(z) and hk(z) being functions of z given by the following
expressions:

gk(z) := E[XkY | Z = z]

− (2π)−1E[W k
]


(−i)kγ (k)1 (ζ )φ(ζ )e−iζ zdζ ,

hk(z) :=

k+l
j=0


k + l
j


z j(−i)k+l−jφ(k+l−j)(0),

where γ (k)1 (ζ ) is the kth derivative of γ1(ζ ) as defined in equation (9),
whileφ(ζ ) is defined as in (10). Moments E[W kS] for k = 1, . . . , K−

l are then identified by evaluating the ratio of these two functions at
an arbitrary z.

The proof of Theorem 2 is given in the Appendix. Intuitively
identification of E[W k

] for k = 1, . . . , K follows by noting that,
from equation (11) and by Assumption 1, E[Xk

] = E[X∗k
]E[W k

],
and since the unobserved distribution X∗ is identified by Corol-
lary 1 every moment of W is also identified. Furthermore from
equation (11) we have

E[XkY | Z] = E[X∗µ1(x∗)| Z]E[W k
] + E[X∗k+l

| Z]E[W kS].

This equation depends only on E[W kS] and on identifiedmoments,
so solving this expression for E[W kS] shows that E[W kS] is
identified.

Both Y ∗ and X∗ are non-negative random variables, so the re-
quirement that the first K marginal and conditional moments of
X∗ be non-zero is satisfied as long as X∗ is non-degenerate. This
is because we are considering raw moments and not central ones,
hence we are not for example ruling out symmetric distributions,
for which the third central moment would be zero. Furthermore,
the assumption of ζ̄1 = ∞, covers empirically relevant frame-
works, as was discussed in Section 3 (see also Lewbel, 1996).

Knowledge of moments of the form E[W k
] and E[W kS] then

allows us to recover moments of S and S̃ as follows. By rearranging
equation (15) we get

E[Sk] = E[W k−1S] −

k−1
j=1


k − 1
j − 1


E[S j] E[(1 + S̃)k−j

], (18)

where E[(1 + S̃)k] is given by

E[(1 + S̃)k] = E[W k
] −

k−1
j=0


k
j


E[Sk−j

]E[(1 + S̃)j], (19)
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thereby showing that moments of S and S̃ can be recursively
obtained from the identifiedmoments in Theorem 2. Details on the
derivation of equations (18) and (19) are provided in the Appendix.

It is worth noting that, from equations (18) and (19) with k = 2,
we obtain E[S2] = E[WS] and E[(1 + S̃)2] = E[W 2

] − E[S2] =

E[W 2
] − E[WS], meaning that the second order moments of the

measurement error distributions are directly identified from the
quantities derived in Theorem 2.

More generally, under the assumptions of Theorems 1 and 2,
any conditional moment of the distribution of the unobserved Y ∗

on X∗ is identified. As noted at the end of the previous section,
assuming Y ∗

| X∗ has a sufficiently regular moment generating
function then implies that the distribution function of Y ∗ given X∗

is identified.

5. Estimation

In this section we propose a sieve based nonparametric estima-
tor for the conditional moments of the distribution of Y ∗ given X∗,
which we will apply to the estimation of Engel curves. Many stud-
ies have documented a variety of nonlinearities and substantial un-
observed heterogeneity in Engel curve shapes, see, e.g., Blundell
et al. (2003) and Lewbel and Pendakur (2009),or Lewbel (2008) for
a survey. It is therefore useful to provide an estimator that allows
for the presence of measurement error of the specific kind implied
by expenditure data, while not imposing functional form restric-
tions. Also as noted earlier, unlike previous studies, we are able to
disentangle the variance components due to measurement error
from those due to preference heterogeneity.

The estimator we propose is essentially an application of the
sieve GMM estimator of Ai and Chen (2003) under the conditional
moment restrictions outlined in Theorem 2. For ease of exposi-
tion we describe estimation of the first two conditional moments
ωk(x∗) = E


Y ∗k

| X∗
= x∗


for k = 1, 2, but given our identifi-

cation results the corresponding extension to estimation of higher
moments is purely mechanical. We focus on the model

Y = Y ∗
+ X∗S, X = X∗W , and X∗

= m(Q )+ V .

The data consist of an i.i.d. sample of size N from the triple
(Y , X,Q ) and the goal is consistent estimation of the functions
ω1(·) and ω2(·). Equations (5) and (12) imply the following speci-
fications for Y , Y 2 and XY :

Y = ω1(X∗)+ ϵ1, (20)

Y 2
= ω2(X∗)+ λX∗2

+ ϵ2, (21)

XY = X∗ω1(X∗)+ λX∗2
+ ϵ3, (22)

with E[ϵ1 | X∗
] = E[ϵ2 | X∗

] = E[ϵ3 | X∗
] = 0 and where from

equation (18) E[S2] = E[WS]; we denote this by λ. Starting from
the identification results provided in Theorems 1 and 2, and then
integrating out the unobserved distribution of V from equations
(20) to (22), yields

ρ0(W ; θ) = Y −


ω1(m(Q )− σv)f (v)dv, (23)

ρ1(W ; θ) = Y 2
−

 
ω2(m(Q )− σv)

+ λ(m(Q )− σv)2

f (v)dv, (24)

ρ2(W ; θ) = XY −

 
(m(Q )− σv)ω1(m(Q )− σv)

+ λ(m(Q )− σv)2

f (v)dv, (25)

where W = (Y , X,Q ) and θ = (λ, σ ,m(·), ω1(·), ω2(·), f (·)),
with f (·) being the probability density function of the first stage
error term V , normalized to zero mean and unit variance, and σ
being the corresponding standard deviation. As in Eq. (4), m(·) is
the function describing the first stage regression of the observed X
on Q , so

ψ(W ; θ) = X − m(Q ).

Note that the quantities ρj(W ; θ) correspond to the residuals ϵj in
Eqs. (20)–(22), while ψ(W ; θ) corresponds to the first stage er-
ror term V . Under Assumption 1 we have E[V | Q ] = 0 and
E[ϵj | Q ] = 0, for j = 1, 2, 3, so by defining ρ(W ; θ) =

(ρ0(W ; θ), ρ1(W ; θ), ρ2(W ; θ), ψ(W ; θ))′ the following vector
valued moment condition holds:

E[cj(Q )ρ(W ; θ)] = 0,

where cj(Q ) is the jth element of a vector of known (chosen by the
econometrician) basis functions c(Q ) = (c1(Q ), . . . , cK c (Q )).

Given our identification results, a consistent estimator for θ
is obtained by minimizing the sample analogue of the above
conditional expectation, that is:

1
N

N
i=1

[c(qi)⊗ ρ(wi; θ)]′ A−1 [c(qi)⊗ ρ(wi; θ)] ,

for some positive definite square matrix A, where wi = (yi, xi, qi)
denotes observations and ⊗ is the Kronecker product. The
computation of ρ(wi; θ) is complicated by two main factors. First,
the parameter vector θ is infinite-dimensional due to the presence
of the unknown functions ω1(·), ω2(·), f (·) andm(·). Second, even
if these functions were finitely parameterized, the computation of
ρ(wi; θ) would involve integrals (23)–(25) which do not have a
closed form solution.

We address both of these issues by adopting a minimum dis-
tance sieve estimator as in Ai and Chen (2003), replacing the space
H = H1 × H2 × Hf × Hm with a finite-dimensional sieve space
Hn = H1n × H2n × Hfn × Hmn which becomes dense in the orig-
inal space H as n increases as in Grenander (1981). The spaces Hi,
for i = 1, 2 and Hm are the spaces of locally integrable functions,
bounded by polynomials, while Hf is the space of continuous dis-
tributions with mean zero and well-behaved characteristic func-
tion which satisfies Assumption 3.

Computations involving integrals are simplified by a convenient
choice of the sieve space Hn. We employ cosine polynomial and
Hermite polynomial sieve spaces to approximate the conditional
moments (ω1(x∗) and ω2(x∗)), and the density function f (v)
respectively, that is,

ωt(x∗) ≈

Nt
j=0

βjtbjt(x∗), t = 1, 2, (26)

f (v) ≈

Nf
j=0

αjhj(x∗), (27)

for some N1, N2, Nf , and where the basis functions {bjt(x∗), j =

0, 1, . . .} and {hj(x∗), j = 0, 1, . . .} are given by:

bjt(x∗) = cos

iπ(x∗

− at)
bt − at


, hj(x∗) = Hj(v)φ(v)

for some at , bt , t = 1, 2. The function φ(·) is the standard
normal density function, while Hj(·) is the jth order Hermite
polynomial. Cosine polynomial sieves are chosen to approximate
conditionalmoments since they are known forwell approximating
aperiodic functions on an interval (see Chen, 2007 and Newey and
Powell, 2003). Hermite polynomial sieves, on the other hand, are
well suited for approximating the density function f (v) for two
reasons. First, standard restrictions for the approximating density
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to integrate to one and to be mean zero with unit variance are
trivially imposed by setting α0 = 1 and α1 = α2 = 0. Second,
the fact that a Hermite polynomial is multiplied by the standard
normal density allows us to easily compute the integrals in Eqs.
(23)–(25) along the lines of Newey (2001) and Wang and Hsiao
(2011). Finally, we employ a polynomial sieve space for the first
stage regression functionm(·), that is, we let

m(qi; δ) ≈

Nm
j=0

δjq
j
i, (28)

for some integer Nm and vector of parameters δ = (δ0, . . . , δNm).
By substituting (28), (26) and (27) into the sample analogue of

(23), (24) and (25) we obtain:

ρ0(wi; η) = yi −
N1
k=0

Nf
l=0

βk1αl


bk1 (m(qi; δ)− σv)

×Hl(v)φ(v)dv,

ρ1(wi; η) = y2i −

N2
k=0

Nf
l=0

βk2αl

 
bk2 (m(qi; δ)− σv)

+ λ

m(qi; δ)− σv

2Hl(v)φ(v)dv,

ρ2(wi; η) = xiyi −
N1
k=0

Nf
l=0

βk1αl

 
(m(qi; δ)− σv)

× bk1 (m(qi; δ)− σv)+ λ (m(qi; δ)− σv)2


×Hl(v)φ(v)dv,

where η = (λ, σ , α0, . . . , αNf , β10, . . . , β1N1 , β20, . . . , β2N2 , δ1,

. . . , δNm). Thus the integrals involved in ρ(wi; η) can be computed
with an arbitrary degree of precision by averaging the value of the
integrand function over randomly drawn observations froma stan-
dard normal density. For instance, let vj for j = 1, . . . , J denote
random draws from a standard normal distribution, ρ0(wi; η) is
computed as

ρ0(wi; η) = yi − J−1
N1
k=0

Nf
l=0

βk1αl

J
j=1

bk1(m(qi; δ)− σvj)Hl(vj).

Similar expressions hold for ρ1(wi; η) and ρ2(wi; η).5
It then follows from Theorems 1 and 2 and from Lemma 3.1 in

Ai and Chen (2003) that a consistent estimator for η is given by

argmin
η

1
N

N
i=1

[c(qi)⊗ ρ(wi, η)]′ [Σ(wi)]−1 [c(qi)⊗ ρ(wi, η)] ,

for a positive definite matrix Σ(wi). We implement this result by
applying a standard two-step GMM procedure:

(1) Obtain an initial estimate η̂ from the consistent estimator:

argmin
η

1
N

N
i=1

[c(qi)⊗ ρ(wi, η)]′ [c(qi)⊗ ρ(wi, η)] .

(2) Improve the efficiency of the estimator by applying the
minimization:

argmin
η

1
N

N
i=1

[c(qi)⊗ρ(wi, η)]′

Σ̂(wi)

−1
[c(qi)⊗ρ(wi, η)] ,

5 While N1 , N2 , Nf and Nm need to increase with sample size and play the role
of smoothing parameters, J only affects the degree of precision with which the
integrals are evaluated and is set as large as is computationally practical, analogous
to the choice of the fineness of the grid in ordinary numerical integration.
where Σ̂(wi) is obtained from the first step estimator η̂ as:

Σ̂(wi) =
1
N

N
i=1


c(qi)⊗ ρ(wi, η̂)

′ c(qi)⊗ ρ(wi, η̂)

.

Ai and Chen (2003) (see also Newey and Powell (2003)) show
that this is a consistent estimator for η, and derive the asymptot-
ically normal limiting distribution for the parametric components
of θ. Our primary interest is estimation of the functions ω1(·) and
ω2(·). Ai and Chen (2003) show that, under suitable assumptions,
the rate of convergence of infinite dimensional components of θ
like these is faster than n1/4.

6. Simulation study

A simulation study is employed to assess the finite sample per-
formance of the estimator derived in Section 5. For simplicity we
focus on estimation of the conditional mean of Y ∗. The simulation
design is

Y ∗
= g(X∗)+ U, U ∼ N(0, σ 2

U ),

X∗
= 1 + 0.4Q − V , Q ∼ N(5, 1.5), V ∼ N(0, 0.32)

where σ 2
U is set so that the R2 of the regression of Y ∗ on X∗

is roughly 0.75. Three different specifications for the conditional
mean function g(·) are considered. The first is the standard Work-
ing (1943) and Leser (1963) parametric specification of Engel
curves, corresponding to budget shares linear in the logarithm of
X∗. The others are a third order polynomial Engel curve and a
Fourier function Engel curve. The choice of the parameters for each
of the three specifications makes

g1(X∗) = X∗
− 0.5X∗ log(X∗)

g2(X∗) = 0.8X∗
+ 0.02X∗2

− 0.03X∗3

g3(X∗) = 4 − 2 sin(2π(X∗
− 0)/4)+ 0.5 cos(2π(X∗

− 0)/4).

Data (Y ∗, X∗) are assumed to be contaminated by measurement
errors, so what is observed is the couple (Y , X) given by

Y = Y ∗
+ X∗S,

X = X∗W ,

with W = S + S̃ + 1, E[S] = E[S̃] = 0. The variances of
measurement errors S and S̃ are chosen such that Var[log X∗

] ≈

Var[logW ], so half of the variation in the observed log X∗ is mea-
surement error. This is a substantial amount ofmeasurement error,
though it is roughly comparable to what we later find empirically.

We draw 1000 samples of 500, 1000 and 2000 observations
from these three data generating processes corresponding to g1(·),
g2(·) and g3(·). For each of these samples the conditional mean
function of Y ∗ given X∗ is estimated by the sieve estimator
proposed in Section 5.

To substantially reduce the computational burden we do not
estimate and employ correlations between ψ(wi; θ) and the
remaining components of the vector ρ(wi; θ), by setting the
corresponding elements of the GMM weighting matrix Σ(wi)
to zero. This preserves consistency and asymptotic normality
while significantly reducing the complexity of the estimator. The
only downside of this restriction on the weighting matrix is that
it potentially reduces asymptotic efficiency, which if anything
is likely to make our estimator look worse rather than better,
compared to alternatives.

Results are compared to three other estimators: the one pro-
posed by Lewbel (1996), which assumes the parametric Working
(1943) and Leser (1963) linear in logarithms budget share func-
tional form for g1(X∗); a nonparametric sieve estimator, which ig-
nores the presence of measurement error; and the infeasible non-
parametric sieve estimator computed on the unobserved data Y ∗
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Table 1
Integrated mean squared error — working-leser specification.

N1 = 2 N1 = 3 N1 = 4

N = 500

Proposed nonparametric 0.0278 0.0250 0.0374
Lewbel working-leser 0.0050 0.0044 0.0043
Sieve OLS 0.1264 0.1157 0.1367
Infeasible sieve OLS 0.0029 0.0016 0.0002

N = 1000

Proposed nonparametric 0.0194 0.0145 0.0077
Lewbel working-leser 0.0029 0.0020 0.0017
Sieve OLS 0.1338 0.1216 0.1272
Infeasible sieve OLS 0.0025 0.0013 0.0001

N = 2000

Proposed nonparametric 0.0075 0.0061 0.0044
Lewbel working-leser 0.0013 0.0014 0.0012
Sieve OLS 0.1249 0.1249 0.1238
Infeasible sieve OLS 0.0023 0.0015 0.0001

Table 2
Integrated mean squared error — polynomial specification.

N1 = 2 N1 = 3 N1 = 4

N = 500

Proposed nonparametric 0.0412 0.0316 0.0419
Lewbel working-leser 0.4450 0.3887 0.4236
Sieve OLS 0.4352 0.3664 0.4120
Infeasible sieve OLS 0.0164 0.0070 0.0008

N = 1000

Proposed nonparametric 0.0317 0.0252 0.0201
Lewbel working-leser 0.4439 0.4409 0.4397
Sieve OLS 0.4186 0.4027 0.4061
Infeasible sieve OLS 0.0146 0.0078 0.0007

N = 2000

Proposed nonparametric 0.0222 0.0134 0.0086
Lewbel working-leser 0.4449 0.4411 0.4472
Sieve OLS 0.4204 0.3927 0.4154
Infeasible sieve OLS 0.0158 0.0075 0.0006

and X∗. The latter is considered in order to compare our results
with the ideal oracle alternative scenario in which measurement
error is not an issue.

We set Nm = 2 and Nf = 3, with α0 = 1 and α1 = α2 = 0
so that the resulting density is suitably normalized to have zero
mean and unit variance. We select J = 100 in order to lower the
computational burden of the algorithm, while the constants a1 and
b1 are chosen so that the corresponding interval contains all of the
observations for X , resulting in a1 = 0 and b1 = 6. The values of
N1 considered are 2, 3 and 4, while the set of instruments is given
by a constant, Z and log(Z). These instruments, which correspond
to the cj(·) functions in the previous section, are chosen to match
standard functional forms commonly used in empirical Engel curve
analyses, including linear and Working-Leser models.

To compare estimators we calculate a measure of the distance
between each median estimated curve with the true one. The
measure considered is the Integrated Mean Squared Error (IMSE)
also considered by Ai and Chen (2003), defined as:

IMSE =
(vI − v0)

I

I
i=1

(ω̂(vi)− g(vi))2,

where (v0, . . . , vI) is a sufficiently fine equally spaced grid of
points over which the comparison is made and ω̂(x) is the median
over all the estimated curves in x.

Results are summarized in Tables 1–3, where the IMSE is
calculated for all the combinations of N and N1 for each of the
specifications considered above.

The infeasible estimator based on data that is not mismeasured
far outperforms the feasible estimators, showing that the cost
of measurement error on estimation accuracy is substantial. Not
knowing the correct functional form of the Engel curve is also quite
costly, as can be seen by comparing our proposed estimator to the
parametric estimator proposed by Lewbel (1996) in Table 1. Our
proposed estimator performs significantly better than the feasible
Table 3
Integrated mean squared error — Fourier specification.

N1 = 2 N1 = 3 N1 = 4

N = 500

Proposed nonparametric 1.2341 0.7136 0.2643
Lewbel working-leser 17.4530 17.2250 17.4841
Sieve OLS 6.9265 6.6896 7.2122
Infeasible sieve OLS 0.9254 0.5535 0.0321

N = 1000

Proposed nonparametric 0.6948 0.5832 0.1526
Lewbel working-leser 17.6906 18.1249 17.5878
Sieve OLS 7.0111 6.7868 7.0255
Infeasible sieve OLS 0.8377 0.5154 0.0173

N = 2000

Proposed nonparametric 0.6220 0.4513 0.0600
Lewbel working-leser 17.8650 18.0427 17.8537
Sieve OLS 7.1276 6.7988 6.9826
Infeasible sieve OLS 0.8377 0.4767 0.0113

estimators that ignoremeasurement error, and significantly better
than the parametric estimator when that estimator misspecifies
the Engel curve.

7. Empirical application

We provide an application of the estimator derived in Section 5
using data from the US Consumer Expenditure Survey. The sample
considered is the same as in Battistin et al. (2009), using data for
the range of years 2001–2003.We restrict our attention to couples,
composed of husband andwife, in which themale is aged between
35 and 65.6 The final sample consists of 1149 households.

We focus on the estimation of Engel curves for food and
clothing, using real income as an instrument. We implement the
estimator derived in Section 5 to estimate the conditional mean
and variance of food and clothing expenditures given true total
expenditures X∗, where N1 and N2 are set equal to 2.7 To limit the
potential effect of simulation errors resulting from the standard
normal random draws used for approximating the integrals, we
select J = 1000.8

The estimated conditional mean functions along with analo-
gous curves obtainedby several alternative estimators are reported
in Figs. 1 and 2. One alternative is a parametric model, assuming
the linear in logarithmsWorking-Leser budget share specification.
The parametricmodel is estimated bothwith andwithout allowing
for the presence ofmeasurement errors (the former being obtained
by applying the estimator discussed in Lewbel, 1996).We also con-
sider nonparametric estimates based on sieves,which either ignore
the presence of measurement errors, or allow for the presence of
measurement errors only in total expenditures X (hence relying
on themoment conditions discussed in Schennach (2007) which is
equal to imposing λ = 0 in our model). These are all compared to
our proposed estimatorwhich allows for both nonparametric func-
tional forms of the Engel curves and allows for correlatedmeasure-
ment errors in both X and Y .

A check on the adequacy of our model is to compare the
estimates of the variance of W , i.e., the measurement error in
total expenditures X , which should be asymptotically the same in
the food and clothing equations. The estimated variances are in
fact quite similar, equaling 0.098 in the food equation and 0.086
in the clothing equation. This corresponds to a noise to signal

6 Reported expenditures are deflated by the annual US Consumer Price Index, and
are deflated by the number of household members.
7 We also considered the case of N1 = N2 = 3, but that appeared to overfit

the data, resulting in highly variable estimates of the coefficients of interest, thus
suggesting the choice for the degree of smoothing of N1 = N2 = 2.
8 We further trim data by 0.5% on both Y and X in an attempt to mitigate effects

of the well known sensitivity of sieve estimators to outliers.
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Fig. 1. Food expenditure Engel curves.Notes. Estimated conditional mean functions for Y ∗ given X∗ . Parametric estimate ignoringmeasurement error (red line), parametric
estimate accounting for measurement error in both Y and X (light-blue line), non-parametric estimate ignoring measurement error (green line), non-parametric estimate
accounting for measurement error in X (blue line) and non-parametric estimate accounting for measurement error in both Y and X (black line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Clothing expenditure Engel curves. Notes. Estimated conditional mean functions for Y ∗ given X∗ . Parametric estimate ignoring measurement error (red line),
parametric estimate accounting for measurement error in both Y and X (light-blue line), non-parametric estimate ignoring measurement error (green line), non-parametric
estimate accounting for measurement error in X (blue line) and non-parametric estimate accounting for measurement error in both Y and X (black line). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
ratio for observed levels of total expenditures of 0.353 and 0.315
respectively,9 meaning that roughly one third of the variance of
observed total expenditures X may be attributed to measurement
error, which is a rather large estimate.

It is well documented that the Working-Leser log linear budget
share Engel curve model fits food demand reasonably well, but
not clothing (see, e.g., the survey Lewbel (2008) and references
therein). We similarly find evidence that food but not clothing
is close to Working-Leser. The estimated variance of W in the
Working-Leser food equation is 0.138, not too far from our
nonparametric estimate. In contrast, the estimated variance of
W in the Working-Leser clothing equation is negative (−0.588),
providing strong evidence that clothing is not Working-Leser.

The estimated correlation coefficients between W and mea-
surement errors in food and clothing are 0.068 and 0.024 respec-
tively. This implies roughly that seven and three percent of the

9 Following Eq. (11) we have X = X∗
+ X∗(W − 1), hence the estimated noise to

signal ratio is given by Var(X∗(W − 1))/Var(X∗).
standard deviation of measurement errors in total expenditures X
are accounted for by measurement errors in food and clothing re-
spectively. As Figs. 1 and 2 show, accounting for these measure-
ment errors visibly alters the estimated Engel curves.

Figs. 3 and 4 show the estimated conditional variance functions,
defined as Var(Y ∗

| X∗), for food and clothing. Reported are
(i) nonparametric estimates obtained by ignoring measurement
errors in both Y and X , (ii) accounting for measurement error in
X alone (hence applying the Schennach, 2007 estimator to the
second conditional moment) and iii) accounting for measurement
errors in both Y and X by implementing our proposed second
moment estimator as described in Section 5. These results suggest
that measurement error is responsible for a large portion of the
observed conditional variance of the observed Y .

It has long been known that formost goods, Var(Y | X) increases
with X . For example, this features prominently in Hildenbrand
(1994) (see chapter 3 on increasing dispersion), and is the reason
why Engel curves are often estimated in budget share form (since
regressing Y/X on X reduces the heteroskedasticity of the error
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Fig. 3. Conditional variance function for food. Notes. Estimated conditional variance functions for Y ∗ given X∗ . Non-parametric estimate ignoring measurement error
(green line—left hand side axis), non-parametric estimate accounting for measusement error in X (blue line—right hand side axis) and non-parametric estimate accounting
for measurement error in both Y and X (black line—right hand side axis). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 4. Conditional variance function for clothing. Notes. Estimated conditional variance functions for Y ∗ given X∗ . Non-parametric estimate ignoring measurement error
(green line—left hand side axis), non-parametric estimate accounting for measurement error in X (blue line—right hand side axis) and non-parametric estimate accounting
for measurement error in both Y and X (black line—right hand side axis). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
term relative to regressing Y on X). Figs. 3 and 4 clearly show this
feature in the uncorrected estimates. However, the estimates of
variance after correcting formeasurement error are not increasing,
which suggests that this well documented feature of empirical
Engel curves may be at least in part an artifact of correlated
measurement errors in X and Y rather than a significant feature
of underlying behavior.

8. Conclusions

We have considered identification and estimation of condi-
tional moments of Y ∗ given X∗ when both are mismeasured (so
we instead observe Y and X) and the measurement errors in Y and
X are correlated with each other. We showed nonparametric iden-
tification of E (Y ∗

| X∗) under general conditions, and we showed
identification of higher moments E


Y ∗k

| X∗

for k > 1 given

some additional structural assumptions that, in the case of Engel
curves at least, follow from the definitions and construction of Y
and X .
Given identification, we then proposed an Ai and Chen (2003)
type nonparametric sieve based GMM estimator of these con-
ditional moments. Our identification and estimation do not re-
quire strong a priori functional form restrictions. We verified
with a simulation study that in finite samples our estimator
greatly reducesmean squared error relative to alternative available
estimators.

An empirical application was also provided to the estimation of
food and clothing Engel curves. The results indicate the presence
of relatively substantial measurement errors in recorded total
expenditures, and thepresence ofmeasurement errors in both food
and clothing expenditures that correlate with the measurement
error in total expenditures. Accounting for these jointly correlated
measurement errors produces moderate changes in the shape
and location of the estimated Engel curves, and generates more
pronounced changes in the estimates of Var(Y ∗

| X∗). These latter
estimates suggest that the well documented increasing dispersion
property of Engel curves is likely due at least in part to correlated
measurement errors.
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Appendix

Derivation of Eqs. (5) and (6)

First consider the conditional expectation of Y k given Z:

E[Y k
| Z] = E


E


Y k

| X∗, Z


| Z

,

= E

E


Y k

| X∗


| Z

,

= E

µk(x∗) | Z


,

where the second equality follows from Assumption 1 (ii). Next
consider the conditional expectation of XY given Z:

E[XY | Z] = E

E


XY | X∗, Z


| Z


,

= E

(X∗

+ W )

H(X∗,U)+ X∗ lS


| Z


,

= E

X∗H(X∗,U) | Z


+ E


X∗ l+1S | Z


+ E


WH(X∗,U) | Z


+ E


X∗ lWS | Z


,

and by Assumption 1 (i) and (ii) we get:

E

X∗H(X∗,U) | Z


+ E


X∗ lWS | Z


,

which under Assumption 1 (iv) yields:

E

X∗H(X∗,U) | Z


+ E


X∗ l

| Z

E [WS] ,

and by applying iterated expectations as above, under Assump-
tion 1 (ii) we obtain:

E

E


X∗H(X∗,U) | X∗, Z


| Z


+ E


E


X∗ l

| X∗, Z


| Z

E [WS]

= E

x∗µ1(x∗) | Z


+ E


x∗ l

| Z

E [WS] .

Finally consider the multiplicative measurement error structure
implied by (11). The conditional expectation of Y k given Z is still
obtained as above, while the conditional expectation of XY given Z
becomes:

E[XY | Z] = E

E


XY | X∗, Z


| Z


,

= E

(X∗W )


H(X∗,U)+ X∗ lS


| Z


,

= E

X∗H(X∗,U)W | Z


+ E


X∗ l+1SW | Z


,

and by Assumption 1 (i) and (ii) we get:

E

X∗H(X∗,U) | Z


+ E


X∗ l+1WS | Z


,

which under Assumption 1 (iv) yields:

E

X∗H(X∗,U) | Z


+ E


X∗ l+1

| Z

E [WS] ,

and by applying iterated expectations as above, under Assump-
tion 1 (ii) we obtain:

E

E


X∗H(X∗,U) | X∗, Z


| Z


+ E


E


X∗ l+1

| X∗, Z


| Z

E [WS]

= E

x∗µ1(x∗) | Z


+ E


x∗ l+1

| Z

E [WS] .
Proof of Lemma 1

Taking Fourier transform on both sides of Eqs. (5) and (6) we
obtain:

εyk(ζ ) =

 
µk(z − v)dF(v)eiζ zdz,

=

 
µk(x∗)eiζ (x

∗
+v)dx∗dF(v),

=

 
µk(x∗)eiζ x

∗

dx∗eiζvdF(v),

=


µk(x∗)eiζ x

∗

dx∗


eiζvdF(v),

= γk(ζ )φ(ζ ),

and

εxy(ζ ) =

 
(z − v)µ1(z − v)dF(v)eiζ zdz

+

 
λ(z − v)ldF(v)eiζ zdz,

=

 
x∗µ1(x∗)eiζ (x

∗
+v)dx∗dF(v)

+ λ

 
x∗ leiζ (x

∗
+v)dx∗dF(v),

=


x∗µ1(x∗)eiζ x

∗

dx∗


eiζvdF(v)

+ λ


x∗ leiζ x

∗

dx∗


eiζvdF(v),

=


−i

∂

∂ζ


µ1(x∗)eiζ x

∗

dx∗


φ(ζ )+ λψ(ζ )φ(ζ ),

= −iγ̇1(ζ )φ(ζ )+ λψ(ζ ),

hence iεxy(ζ ) = γ̇1(ζ )φ(ζ ) + iλψ(ζ )φ(ζ ). Theorem 1 in Zinde-
Walsh (2014) ensures that these are products of Fourier transforms
in the space of generalized functions S∗.

A similar expression holds true under multiplicative measure-
ment error as in Eq. (11), by replacing ψ(ζ )with ψ̃(ζ ). �

Proof of Theorem 1

By manipulating (7) and (8) we obtain

εyk(ζ ) = γk(ζ )φ(ζ ), (29)

iε(z−x)y(ζ ) = γ1(ζ )φ̇(ζ )− λiψ(ζ )φ(ζ ), (30)

where iε(z−x)y(ζ ) = iεzy(ζ ) − iεxy(ζ ) with iεzy(ζ ) ≡ ε̇y(ζ ) =

γ̇1(ζ )φ(ζ ) + γ1(ζ )φ̇(ζ ). The main point to keep in mind is
that εy(ζ ), ε(z−x)y(ζ ), γk(ζ ) and ψ(ζ ) are generalized functions
(see Lighthill, 1962), so that some algebraic operations, like the
product, between two of them is not defined. On the other
hand φ(ζ ) is a continuous well-defined ordinary function by
Assumption 3.

Solving for γk(ζ ) in Eq. (29) gives

γk(ζ ) = εyk(ζ )φ
−1(ζ ), (31)

where the generalized function εyk(ζ )φ
−1(ζ ) is always well

defined under Assumptions 2 and 3 (see Lemma 1 in Zinde-Walsh,
2014). If φ(ζ ) were known, Eq. (31) would provide an expression
for γk(ζ ) in its support, which by Assumption 4 isΩk

= [−ζ̄k, ζ̄k].
Taking the inverse Fourier transform of γk(ζ )would then produce

µk(x∗) = (2π)−1

γk(ζ )e−iζ x∗dζ .
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In order to prove identification of φ(ζ ) we focus on (31) with
k = 1. Substitution into Eq. (30) yields

iε(z−x)y(ζ ) = εy1(ζ )φ
−1(ζ )φ̇(ζ )− λiψ(ζ )φ(ζ ), (32)

which is a differential equation involving generalized functions.
We should keep in mind that the only unknown function in Eq.
(32) is φ(ζ ), since ε(z−x)y(ζ ) and εy1(ζ ) are Fourier transforms
of observable quantities and ψ(ζ ) is a generalized derivative of
the Dirac’s delta function.10 In the following we prove uniqueness
of the continuous function φ(ζ ), which satisfies the differential
equation defined in (32).

First note that the generalized functionλiψ(ζ )φ(ζ )has support
{0}, being the product of an ordinary continuous function with a
generalized derivative of a Dirac’s delta function, whose support is
{0}. Moreover the support of the generalized function

εy1(ζ )φ
−1(ζ )φ̇(ζ )− iε(z−x)y(ζ )− λiψ(ζ )φ(ζ ), (33)

is equal to Ω1
= {−ζ̄1, ζ̄1}, by Assumption 4. Consider a

generalized function that is a restriction of function (33) to ∆̃ =

∆1
\ 0:

εy1(ζ )φ
−1(ζ )φ̇(ζ )− iε(z−x)y(ζ ), (34)

Theorem 3(b) in Zinde-Walsh (2014) shows that in ∆̃ there exists
a unique function ~ that satisfies

εy1(ζ )~(ζ )− iε(z−x)y(ζ ) = 0. (35)

By continuity ~ is defined in all of ∆1. The function φ(ζ ) is then
obtained as the unique solution to φ(0) = 1 and φ−1(ζ )φ̇(ζ ) =

~(ζ ) by

φ(ζ ) = exp
 ζ

0
~(t)dt, for ζ ∈ Ω1. (36)

Given continuity of the functions φ(ζ ), φ̇(ζ ) and hence of ~(ζ )
provided by Assumption 3, perturbation of the function (34) in
zero does not affect uniqueness and identification of ~(ζ ), which
is still obtained as the unique solution to (35), and the function of
interest φ(ζ ) is given by (36). Finally note that the above argument
provides identification of φ(ζ ) for ζ ∈ Ω1, hence implying that
γk(ζ ) is identified inΩ1

∩Ωk. Thereforeµk(x∗) is identified under
the assumption thatΩk

⊆ Ω1. �

Proof of Corollary 2

Exploiting the additive nature of measurement error in Y ∗, let
us rewrite the kth conditional moment of the observed Y as:

µk(x∗) = E


H(X∗,U)+ X∗ lS
k


=

k
j=0


k
j


E[H j(X∗,U)X∗ l(k−j)Sk−j

| X∗

i ]

=

k
j=0


k
j


ωj(x∗)x∗ l(k−j)E[Sk−j

],

where the second equality holds because of (ii) in Assumption 1.
Noting that µ0(x∗) = ω0(x∗) = 1 and solving for ωk(x∗) we
obtain Eq. (14). Since by Theorem 1 µk(x∗) is identified, if E[S j] for
j = 2, . . . , k is known then ωk(x∗) is identified.

10 The actual order of the derivative depends on the structure of themeasurement
error in X , as shown in Lemmas 1 and 2. When W enters additively ψ(ζ ) is
the lth generalized derivative of the Dirac’s delta function, while if W enters
multiplicatively ψ(ζ ) is the (l + 1)th generalized derivative of the Dirac’s delta
function. The proof we derive applies to both cases, since the order of derivative in
ψ(ζ ) does not affect identification.
Proof of Theorem 2

Using Eq. (11) we rewrite the kth moment of the observed
random variable X as E[Xk

] = E[X∗k
]E[W k

], which implies

E[W k
] =

E[Xk
]

E[X∗k]
, (37)

which is well defined since by assumption E[X∗k
] ≠ 0.

The first K moments of X exist by assumption, so that E[Zk
] also

exists for k = 1, . . . , K . Under Assumptions 1–4, from Theorem 1,
φ(ζ ) is identified in a neighborhood of the origin, hence φ(k)(0)
is identified for k = 1, . . . , K and E[Ṽ k

] = ikφk(0). Exploiting
equation (4), we can write

E[X∗k
] = E[(Z − Ṽ )k],

= E


k

j=0


k
j


Z j(−Ṽ )k−j


,

=

k
j=0


k
j


E[Z j

]E[(−Ṽ )k−j
],

=

k
j=0


k
j


E[Z j

](−1)k−j(−ik−j)φ(k−j)(0),

=

k
j=0


k
j


ik−jE[Z j

]φ(k−j)(0). (38)

Substitution of Eq. (38) into (37) yields Eq. (16).
Similarly from Eqs. (2) and (11), and by Assumption 1 we have

that

E[XkY | Z] = E[X∗kW kH(X∗,U) | Z] + E[X∗kW kX∗ lS | Z],

= E[x∗kµ1(x∗) | Z]E[W k
] + E[X∗k+l

| Z]E[W kS],

which gives

gk(z) = E[W kS]hk(z), (39)

with hk(z) = E[X∗k+l
| Z = z] and gk(z) = E[XkY | Z =

z] − E[x∗kµ1(x∗) | Z = z]E[W k
]. The functions gk(z) and

hk(z) are functions of z that involve either observable quantities,
like E[XkY | Z], or quantities already shown to be identified. In
particular hk(z) = E[X∗k+l

| Z = z] is obtained from knowledge of
φ(ζ ) as

E[X∗k+l
| Z = z] =


(z − v)k+ldF(v),

=

 k+l
j=0


k + l
j


z jvk+l−jdF(v),

=

k+l
j=0


k + l
j


z j


vk+l−jdF(v),

=

k+l
j=0


k + l
j


z j(−i)k+l−jφ(k+l−j)(0). (40)

Moreover, if ζ̄1 = ∞ in Assumption 4, it is
E[x∗kµ1(x∗) | Z = z]eiζ zdz

=

 
(z − v)kµ1(z − v)dF(v)eiζ zdz,

= (−i)kγ (k)1 (ζ )φ(ζ ),
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where γ1(ζ ) is defined as in Eq. (9) and γ (k)1 (ζ ) is the kth derivative
of γ1(ζ ). Taking the inverse Fourier transform we finally get

E[x∗kµ1(x∗)| Z = z] = (2π)−1

(−i)kγ (k)1 (ζ )φ(ζ )e−iζ zdζ . (41)

Substitution of Eq. (41) into the definition of gk(z) gives

gk(z) = E[XkY | Z = z]

− E[W k
](2π)−1


(−i)kγ (k)1 (ζ )φ(ζ )e−iζ zdζ . �

Derivation of equations (18) and (19).

From Eq. (15) it is

E[W kS] = E[S[S + (1 + S̃)]k],

= E


S

k
j=0


k
j


S j(1 + S̃)k−j


,

=

k
j=0


k
j


E[S j+1

]E[(1 + S̃)k−j
],

where the last equality follows from the independence between S
and S̃. Rearranging terms and solving for E[Sk+1

] we obtain

E[Sk+1
] = E[W kS] −

k−1
j=0


k
j


E[S j+1

]E[(1 + S̃)k−j
],

= E[W kS] −

k
j=1


k

j − 1


E[S j]E[(1 + S̃)k−j+1

],

which is equivalent to

E[Sk] = E[W k−1S] −

k−1
j=1


k − 1
j − 1


E[S j]E[(1 + S̃)k−j

].

Similarly from E[W k
] it is

E[W k
] = E


S + (1 + S̃)

k

,

= E


k

j=0


k
j


Sk−j(1 + S̃)j


,

=

k
j=0


k
j


E[Sk−j

]E[(1 + S̃)j],

= E[(1 + S̃)k] +

k−1
j=0


k
j


E[S j]E[(1 + S̃)k−j

],

which yields

E[(1 + S̃)k] = E[W k
] −

k−1
j=0


k
j


E[Sk−j

]E[(1 + S̃)j].
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