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ABSTRACT
Among the different ancillary immunohistochemical 
tools that pathologists may employ in thyroid nodules, 
the so-called Hector Battifora’s ’MEsothelioma’ 1 
(HBME-1) staining is one of the most fascinating, since 
its real identity is currently unknown. In the present 
review, the different clinical applications of HBME-1 
are analysed, with main emphasis on its role in thyroid 
pathology with overview on less impactful fields, such 
as haematopathology or mesothelial lesions. Different 
acceptable or good diagnostic performances were 
recorded for HBME-1 in thyroid pathology, being used in 
routine practice as one of the best tools to screen thyroid 
malignancy both in terms of sensitivity and specificity. 
From a speculative point of view, after many attempts 
to hunt the cryptic target antigen of this antibody, 
its identity still remains elusive. In this setting, the 
application of high-throughput technologies (mainly in 
situ proteomics) may be the exact route to improve the 
knowledge about the pathophysiology of HBME-1 and to 
finally unveil its true identity.

INTRODUCTION AND HISTORICAL PERSPECTIVE
Hector Battifora’s ‘MEsothelioma’ 1 (HBME-1) 
made its first appearance in 1992 when the Depart-
ment of Pathology at City of Hope National Center, 
California, USA, making use of a mesothelioma 
cell line, produced a monoclonal antibody capable 
of staining the microvilli of malignant mesothe-
lial cells. This provided a helpful diagnostic tool 
for the interpretation of challenging patholog-
ical cases of the thoracic region. The birth of this 
marker caused quite a sensation due to the possible 
employment on formalin-fixed paraffin-embedded 
(FFPE) tissue sections, unlike many other mono-
clonal antimesothelioma antibodies under study 
at that time. Although formerly used to define the 
human bone marrow endothelial cell line, HBME-1 
refers to ‘membrane epitope’ for some authors due 
to the distinct membranous pattern of this staining, 
even if the cytoplasmic positivity is not unusual in 
specific settings (figure 1).1 This antibody does not 
immunoprecipitate/react on western blot analysis 
and its target epitope is still under investigation. 
However, being a mouse monoclonal antibody 
of IgM class, authors postulated that it could be 
directed against a polysaccharide antigen or a 
carbohydrate determinant on a glycoprotein of 
the cellular membrane.2 Tissue microarray anal-
yses on both benign and malignant thyroid tissues 

presented interesting information regarding its 
subcellular localisation, alongside the membranous 
antibody CK19: in ‘lymph node metastatic’ and 
‘extrathyroidal tissue invasive’ papillary cancer, 
these two antibodies showed a stronger membra-
nous staining and a weaker cytoplasmic positivity 
than those found in non-metastatic thyroid carci-
nomas.3 These findings suggest a possible patho-
physiological link between these two molecules, 
stressing a potential role of HBME-1 in cytoskeletal 
and myofibrils organisation. Following these theo-
ries, Crescenzi et al demonstrated that, compared 
with their normal counterparts, neoplastic cells 
upregulate specific saccharide residues on their 
membranes, underlining the role of surface glyco-
conjugates as constituents of membrane receptors 
and their involvement in cell-cell and cell-matrix 
interaction (figure 2).4 A recently introduced in situ 
proteomic technique, matrix-assisted laser/desorp-
tion ionisation mass spectrometry imaging, could 
significantly help in deciphering the elusive epitope 
targeted by HBME-1 antibody, providing a fresh 
point of view in the application of such diagnostic 
tool in thyroid pathology.5 Moreover, a combined 
application of lipidomics in this investigation could 
potentially cover the subgroup of glycosphingo-
lipids and cholesterol which enrich the microvilli 
and brush border of cell membranes, opening the 
door for a lipidomics-based approach to this issue.6

HBME-1 antibody in action
General performances
In the years following the discovery of HBME-1, 
many studies tested its diagnostic performance, high-
lighting an 85% average sensitivity (Sn) and a 42% 
average specificity (Sp) in the differential diagnosis 
between epithelioid mesothelioma and carcinoma at 
histology on FFPE samples.7 Moreover, 93%–98% 
Sn and 71%–83% Sp, respectively, were found in 
the ability to differentiate reactive mesothelial cells 
from neoplastic malignant epithelial cells in serous 
effusion specimens.8 9 These results pointed out that 
HBME-1 had a moderate diagnostic performance 
for mesothelial cells and hence could be included in 
the immunohistochemical panel performed for the 
differentiation between mesothelial and epithelial 
cells, either on cytological and histological samples. 
Nevertheless, its current popularity has largely 
declined in this setting owing to the rising of more 
reliable, specific and handy markers of mesothelial 
origin, such as calretinin, Wilms Tumour 1 (WT-1), 
D2-40/podoplanin, Heart Development Protein 
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With EGF Like Domains 1 (HEG-1), CK5/6 and GATA Binding 
Protein 3 (GATA-3), often used in combination with glycopro-
tein markers, to create immunohistochemical panels in which 
HBME-1 is rarely employed. Furthermore, the need of a more 
detailed biological characterisation of mesothelial malignancies 
is shifting the attention towards the assessment of precise genetic 

alterations, for which immunohistochemical and in situ hybridi-
sation (FISH) surrogate markers are progressively being applied 
(eg, BAP1, MTAP and IMP3, or FISH for CDKN2A homozy-
gous deletion).10 11

Applications in pathology
Further studies found that HBME-1 also stains bronchial and 
endocervical epithelium, cartilage, lung alveolar lining cells, 
breast ducts myoepithelium, endometrial glands (apical staining 
pattern) and scattered histiocytes in lymphoid tissue (table 1).12–16 
Moreover, variable stain positivity has been described in lung, 
breast and pancreatic adenocarcinomas, as well as in ovarian 
serous carcinomas.12 13 Finally, even some mesenchymal tumours, 
such as chordoma, chondrosarcoma and synovial sarcoma may 
show HBME-1 positivity. It is interesting to note that each of 
these tumours displays some kind of microvillous membrane 
projections, stressing once again the possible nature of the target 
antigen.14 15 17 HBME-1 negativity is observed in the epithelium 
of the gastrointestinal tract, squamous epithelium, liver, kidney, 
testis, normal thyroid, placenta, connective tissue, muscle, skin 
epidermis/dermis and lymphoid tissue.16

The great lack of specificity and the development of more 
reliable antibodies, such as brachyury in chordoma, or the shift 
to genomic tests, such as the assessment of rearrangements in 
synovial sarcoma, clipped the wings of HMBE-1 with regard to 
its use in these settings.

Haematopathology
It is well known that HBME-1 marks scattered pronormoblast in 
normal bone marrow, but never marks mature normoblast and 
erythrocytes: nevertheless, in dyserythropoietic bone marrow, 
HBME-1 also labels nucleated erythroid precursors, with higher 
intensity in immature forms. The comparison of the HBME-1/
CD235a-positive cells ratio between dyserythropoietic bone 
marrow and normal samples suggests a left-shifted erythroid 
maturation when ≥10%, giving to HBME-1 a potential useful 
dyserythropoiesis recognition role.18 Another potential use for 
HBME-1 may be the detection of indolent lymphoproliferation 
processes in villous B lymphocytes, such as hairy cell leukaemia 

Figure 1  Different staining patterns of Hector Battifora’s‘ 
MEsothelioma’ 1 (HBME-1). (A) An eminently apical pattern of staining, 
supporting the possible polysaccharide nature of the target antigen 
against which HBME-1 antibody is directed, possibly located in the 
microvillar region (×40). (B) The alternative membrane pattern with 
basolateral (so-called ‘cup-like’, black arrow) or circumferential (red 
arrow) staining of neoplastic cells (×40). Although being rare, a granular 
cytoplasmic staining can be seen, alone or in combination with more 
‘classic’ patterns (C), ×40. Finally, in thyroid tissue faint staining can 
be seen in the lumen of follicles, suggesting a possible release of the 
antigen from the apical side of thyroid cells (D), ×40.

Figure 2  Schematic representation of the putative antigen against 
which Hector Battifora’s ‘MEsothelioma’ 1 (HBME-1) antibody could be 
directed. Created with BioRender.

Table 1  Immunohistochemical HBME-1-positive and HBME-1-
negative tissues12–16

Tissues showing positivity to HBME-1
Tissues eminently negative to 
HBME-1

Lung
Normal bronchial cells
Lung alveolar lining cells
Adenocarcinoma (cytoplasmic staining)

GI tract epithelium
Squamous epithelium
Liver
Kidney

Uterus
Endocervical epithelium
Endometrial glands
Adenomatoid tumour

Testis
Thyroid (normal thyroid cells)
Placenta
Benign connective tissue

Cartilage
Normal cartilage
Chordoma
Chondrosarcoma

Muscle
Skin
Lymphoid tissue
(only scattered histiocytes)

Breast
Myoepithelial cells
Ductal carcinoma

Pleura
Normal mesothelial cells
Mesothelioma

GI, gastrointestinal; HBME-1, Hector Battifora’s ‘MEsothelioma’ 1.
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(HCL). A normal proportion of hyperplastic B lymphocytes with 
villous membrane projections, which show HBME-1 staining, 
is commonly found in normal lymphoid tissue. The sharing of 
this feature with B lymphocytes of hairy cell leukaemia allowed 
this marker to be useful for the diagnosis of this disease (96% 
of cases show positivity), while it had a less relevant impact on 
other diseases of the same family (39% of cases of HCL vari-
ants and 50% of cases of splenic diffuse red pulp small B cell 
lymphoma).17

Thyroid cancer landscape: the last HBME-1 action field
HBME-1 finds its most widespread use in thyroid neoplasms 
(figure 3). The first data about its ability to distinguish benign 
thyroid conditions from malignancies, especially papillary 
thyroid carcinoma (PTC), were published in 1996, when the 
combined application of HBME-1 and CD15 has been proposed 
to highlight cellular glycoconjugates changes related to malig-
nant transformation in differentiated thyroid carcinomas.19

The overall Sn and Sp for HBME-1 immunohistochemistry are 
77% and 83%, respectively, with a high variation in Sn among 
the reports according to the different entities tested (table 2).20 
Generally, it stains follicular-derived malignant tumours: most 
PTC show intense staining in 88% of cases, with a reduction 
of percentages (from 45% to 82%) in the follicular variant of 
PTC. In the thyroid pathology setting, this marker experienced 
a further renaissance due to the recent introduction of Non-
Invasive Follicular Thyroid neoplasm with Papillary-like nuclear 
features, which often shows positivity to HBME-1, in about 
78% of cases.21 In follicular neoplasms, this marker demon-
strated a range of Sn and Sp of 61%–85% and 70%–73%,22 23 

respectively, with lower Sn (53%) and higher Sp (88%) in onco-
cytic lesions.24

Anaplastic and poorly differentiated carcinomas express 
HBME-1 in 67%–91% and 0%–50% of cases, respectively.16 
Nevertheless, HBME-1 may stain benign conditions too, such 
as adenomatous goitre (3%–12%) and follicular adenomas 
(0%–27%).22 Considering the high Sp of this marker, some 
studies stressed the need of active surveillance for benign cases 
showing focal HBME-1 staining, for their possible degeneration 
towards an incipient malignant neoplasm.16 22 25

A further useful application for HBME-1 could be in the 
setting of indeterminate fine-needle aspiration biopsies (follic-
ular proliferations), where it manifested an 80% Sn and a 96% 
Sp. Furthermore, the association of additional markers (eg, galec-
tin-3) can improve its Sn to 94%, with a high negative predictive 
value (92%) retaining moderate Sp and positive predictive value 
(73% and 50%, respectively). This can be of help to rule out 
follicular carcinoma in cytology when both are negative.26 27

Interesting results came from the correlation between 
HBME-1 immunohistochemical expression and genetic muta-
tions, with a trend noted in follicular carcinomas with peroxi-
some proliferator-activated receptor (PPAR) rearrangements 
that fail to show HBME-1 immunoreactivity in 59% of cases, 
in contrast to RAS mutated cases that are often positive (62% 
of cases).28 This strict relation with the underlying genetic back-
ground of thyroid neoplasms culminates in PTC, in which a 
direct positive correlation between BRAFV600E mutation and 
HBME-1 expression has been noted.29

In the next generation sequencing (NGS) era it is lawful to ask 
what role HBME-1 may play in thyroid cancer, if there is one. 
An interpretation to this question came recently from a paper 
that, starting from small samples of thyroid nodules, matched 
the expressions of several immunohistochemical markers with a 
large NGS panel.30 This report suggests that a satisfactory level 
of reliability in non-follicular lesions may be reached, even in 
complex cases, either with only an immunohistochemical panel 
including CK-19, galectin-3, HBME-1 and CD56, or with NGS 
alone. The combination of these two approaches proved to be 
non-cost effective. On the other hand, considering only follic-
ular lesions, neither immunohistochemical panel nor NGS alone 
seemed to have adequate diagnostic performances, while their 
combination seemed to be useful just in some difficult cases.

IS THE APPLICATION OF HIGH-THROUGHPUT 
TECHNOLOGIES THE LOGICAL SOLUTION FOR THE HBME-1 
IDENTITY DISCLOSURE?
The generally limited scope for the application of HBME-1 in 
routine pathology is nowadays known, but possible usefulness in 

Figure 3  Hector Battifora’s ‘MEsothelioma’ 1 (HBME-1) in different 
thyroid neoplasms. An encapsulated follicular variant of papillary 
thyroid carcinoma demonstrating strong and diffuse apical/membranous 
positivity to HBME-1 (A), ×2, (B), ×10 and inset on nuclear inclusions. 
More heterogeneous the expression of HBME-1 in another case of 
‘sprinkling’ Non-Invasive Follicular Thyroid neoplasm with Papillary-like 
nuclear features (C), ×2, with alternance of areas with even strong 
expression (inset, upper right) associated with completed negative 
follicles (D), ×10. Finally, rare cases of follicular tumour with uncertain 
malignant potential can show faint apical positivity, especially in 
regions with dense, microfollicular growth patterns ((E), ×2 and (F), x10 
with magnification in the upper left inset).

Table 2  Diagnostic performances of HBME-1 in different entities 
encountered in thyroid pathology

Diagnostic entity Sensitivity Specificity

Classic PTC32 95% 77%

fvPTC37 95% 94%

NIFTP21 78% 53%

Follicular neoplasm22 23 61%–85% 70%–73%

Oncocytic carcinoma24 53% 88%

Overall 77% 83%

fvPTC, follicular variant of papillary thyroid carcinoma; HBME-1, Hector Battifora’s 
‘MEsothelioma’ 1; NIFTP, Non-Invasive Follicular Thyroid neoplasm with Papillary-
like nuclear features; PTC, papillary thyroid carcinoma.
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thyroid pathology is still under discussion. Differentiating benign 
from malignant thyroid neoplasms and establishing their biolog-
ical aggressiveness could be a hard task for pathologists in some 
challenging cases, either for the presence of complex morpholog-
ical criteria to assess and the lack of reliable immunohistochemical 
markers.31 32 In this context, HBME-1 staining has a good Sn, but 
has a low Sp, in particular when used as a standalone marker.

The mystery about its precise origin and its unknown biolog-
ical role recently aroused interest surrounding this gradually 
underrated marker, indeed in-depth studies concerning its 
precise subcellular location and related immunohistochemical 
expression may reveal its true role, both in normal biological 
processes and in the mechanisms which underpin cancer devel-
opment. We already know that important functions, such as 
cell-to-cell interaction, intracellular homeostasis and numerous 
signalling pathways are usually regulated by membrane proteins 
and that, unsurprisingly, cancer progression is widely correlated 
to these protein dysfunctions.33 Recent analytical approaches 
and subcellular fractionations made it possible to study the 
plasma membrane proteome in more detail; moreover, receptor-
protein interactions are independent of protein synthesis, making 
proteomics the principal approach, as opposed to genomics 
and transcriptomics, for analysing membrane-expressed mole-
cules.34 35 Mass-spectrometry is a high-throughput system 
employed for the identification of new biomarkers, especially 
in neoplastic settings: the identification of proteomic patterns 
associated with disease development has become a promising 
approach in untargeted tumours. However, in the past, proteomic 
analysis in the setting of membrane protein expression has been 
a particularly challenging task due to their hydrophobicity.36 
In addition, membrane proteins often undergo various post-
transcriptional modifications such as glycosylation, which is the 
most common, and cancer cells frequently display glycoproteins 
with increased branching of the glycan structures, making their 
studies even more inquisitive.34 Nonetheless, recent advantages 
and novel proteomic technologies have rendered this challenge 
of thoroughly investigating the real essence of HMBE-1 afford-
able, and the stage appears to be finally set for the riddle of its 
diagnostic role in thyroid neoplasms to be solved.

CONCLUSIONS
The antibody HBME-1, directed against an elusive membrane 
marker, has a limited role in different settings of diagnostic 
pathology, although can still play a role in thyroid cancer 
thanks to its good performances alone or in combination with 
other immunohistochemical stains. The application of high-
throughput technologies (mainly in situ proteomics) may be the 

exact route to improve the knowledge about the pathophysi-
ology of HBME-1 and identify it definitively.
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