
Information Processing Letters 152 (2019) 105851
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Mixing time bounds for graphlet random walks

Matteo Agostini, Marco Bressan ∗, Shahrzad Haddadan

Sapienza University of Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 February 2019
Received in revised form 15 August 2019
Accepted 18 August 2019
Available online 27 August 2019
Communicated by Benjamin Doerr

Keywords:
Graph algorithms
Motif mining
Random walks
MCMC

A popular technique to sample fixed-size connected induced subgraphs of a graph, also
known as graphlets, is based on running a certain random walk designed over the space
of all graphlets in the graph. This technique requires knowledge of the mixing time of the
walk but, unfortunately, no satisfying bounds are known. In this paper we provide upper
and lower bounds on such a mixing time, showing how it is intimately tied to the mixing
time of the original graph, and to its maximum and minimum degree.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Sampling small subgraphs of a graph, or graphlets, is a
central problem in graph mining and network analysis. The
two most popular techniques are color coding [1–3], which
gives strong guarantees but is computationally intensive,
and random walks [4–7], which are lightweight but whose
guarantees are poorly understood. Given a graph G , the
random walk method works by running a simple random
walk over the virtual graph Gk = Gk(G) defined as follows.
The vertices are all the induced connected k-node sub-
graphs of G , called its k-graphlets; and there is an edge
between two k-graphlets g and g′ if and only if g can
be obtained from g′ by replacing one vertex. With some
adaptations, the simple random walk on Gk converges to
a distribution where each k-graphlet of G has probability
proportional to its degree in Gk , and since that degree is
easy to compute, we can finally sample k-graphlets uni-

* Corresponding author.
E-mail addresses: agostini.mat@gmail.com (M. Agostini),

bressan@di.uniroma1.it (M. Bressan), shahrzad.haddadan@gmail.com
(S. Haddadan).
https://doi.org/10.1016/j.ipl.2019.105851
0020-0190/© 2019 Elsevier B.V. All rights reserved.
formly via e.g. rejection sampling. The key obstacle of the
technique is that one needs knowledge of how long it
takes for the walk to approach stationarity, that is, of the
mixing time t(Gk) of Gk . Indeed, any graphlet observed be-
fore the mixing time follows a distribution potentially far
from the stationary, making the samples far from uniform.

Despite the popularity of the random walk technique,
no good bounds on t(Gk) are known. The sole results avail-
able [2] say that there are graphs where t(Gk) = �(nk−1),
and that if G has n nodes and maximum degree � then
t(Gk) = O (n2�2k). These bounds fail to capture the na-
ture of t(Gk), and except for very small graphs they are
useless in practice, too. In this work we develop novel
bounds on t(Gk) that improve over those of [2] and that
establish an intimate connection between t(Gk) and t(G).
On the one hand, we show graph families with t(Gk) =
t(G) · �(�k−1/δk), where δ is the minimum degree of G .
On the other hand, we show that t(Gk) = t(G) · Õ (�2(k−1))

for every G1; this is useful in social graphs, where t(G) is
typically small [8], and is almost always tighter than the
bound of [2] since t(G) = Õ (n2�2) for any connected G .

1 The Õ (·), �̃(·), �̃(·) notations hide poly log(·) factors.

https://doi.org/10.1016/j.ipl.2019.105851
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:agostini.mat@gmail.com
mailto:bressan@di.uniroma1.it
mailto:shahrzad.haddadan@gmail.com
https://doi.org/10.1016/j.ipl.2019.105851
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2019.105851&domain=pdf

2 M. Agostini et al. / Information Processing Letters 152 (2019) 105851
Fig. 1. The graph G of Theorem 1, for n = 42, k = 4, � = 6, δ = 3, and ψ = 1. The highlighted nodes are layers L1 (on the left) and R3 (on the right).
1.1. Preliminaries and notation

Consider a graph G = 〈V , E〉. The simple lazy random
walk on G starts at an arbitrary vertex X0 ∈ V , and for ev-
ery t ≥ 0 moves from Xt to Xt+1 as follows: if Xt = v ,
then Xt+1 = v with probability 1/2, and Xt+1 = u with
probability 1/2dv , where dv is the degree of v and u is
any neighbor of v . Let πt be the distribution of Xt . By a
folklore theorem, if G is connected then πt converges to
a unique stationary distribution π where π(v) = dv/2|E|.
The number of steps needed for πt to approach π is called
the mixing time. Formally:

Definition 1. The ε-mixing time of the simple walk on G
is tε(G) = min{t : ∀t′ ≥ t : ‖πt′ − π‖1 ≤ 2ε}. When we drop
the subscript we assume ε = 1/4.

To bound t(G) we use the strictly related conductance
	(G) of G , defined as follows. For any subset U ⊆ V , de-
fine its volume vol(U) = ∑

u∈U du . The cut induced by U is
C(U) = {uv ∈ E : u ∈ U , v /∈ U }, and we let c(U) = |C(U)|.
The conductance of U in G is 	(U) = c(U)/ vol(U). Then:

Definition 2. The conductance of G is

	(G) = min
U⊂V :vol(U)≤ 1

2 vol(V)

	(U).

Crucially, �((G)−1) ≤ tε(G) ≤ �̃((G)−2). Therefore we
can bound tε(G) by bounding 	(G). All definitions and
claims reported above can be found in [9].

Finally, a k-graphlet in G is a connected induced sub-
graph g = (V g, E g) of G with |V g | = k. To lighten the nota-
tion we write g for V g . Two k-graphlets g, g′ are adjacent
if |g ∩ g′| = k − 1. We let Vk be the set of all k-graphlets
of G , and Ek be the set of (unordered) pairs of adja-
cent k-graphlets. The k-graphlet graph of G is defined as
Gk = (Vk, Ek). One can immediately adapt the definitions of
lazy simple random walk to Gk , and similarly define tε(Gk)

and 	(Gk). Our goal is to bound 	(Gk) in terms of 	(G),
and thus t(Gk) in terms of t(G). To avoid trivialities we
assume that G is connected and n ≥ k ≥ 2. Note that in
this paper k is a constant; in particular, k is independent
of G .

2. A lower bound on the mixing time of Gk

Theorem 1. Fix any functions �(n), δ(n), φ(n) with �(n) ∈
�(1) ∩ O (n), δ(n) ∈ �(1) ∩ O (�(n)), and t(n) ∈ �(δ(n)) ∩
O (δ(n)2). There is a family of arbitrarily large graphs whose
generic element G on n nodes satisfies � = �(�(n)), δ =
�(δ(n)), t(G) = �(t(n)), and t(Gk) = t(G) · �(�k−1/δk).

Proof. The graph G = (V , E) is as follows (see Fig. 1). Fix
� ∈ �(�(n)), δ ∈ �(δ(n)) so that d = �/δ ∈ N . Fix ψ ∈
�(δ(n)/

√
t(n)) with ψ ∈ [δ] (note that this is always possi-

ble). The graph contains two nodes a, b that are connected
by d parallel identical “fat” paths. For each j ∈ [d], the
j-th path consists of 2k layers L1, j, . . . , Lk, j, Rk, j, . . . , R1, j .
Each layer has exactly δ nodes, except for Lk, j, Rk, j that
have ψ nodes each. Every node is connected to all nodes
in the immediately preceding/succeeding layers. Finally, let
Li = ∪d

j=1Li, j and Ri = ∪d
j=1 Ri, j ; then a is connected to all

nodes in L1 and b to all nodes in R1. One can check that
if G has n nodes then � = �(�(n)) and δ = �(δ(n)).

First, we show t(G) = O (t(n)). Suppose first the walk
starts at X0 ∈ {a, b}. Note that, conditioned on Xt ∈ Li (Ri),
the distribution of Xt is uniform over Li (Ri). Thus, as far
as t(G) is concerned, we can equivalently analyse a walk
on the line graph a, l1, . . . , lk−1, lk, rk, rk−1, . . . , r1, b with
edge weights δ, δ2, . . . , δψ, ψ2, δψ, . . . , δ2, δ (i.e. the cuts
between the layers, all divided by d). Standard calcula-
tions show that t(G) = O (k2 max(δ, δ2/ψ2)). For the case
X0 /∈ {a, b}, we add a bound on the worst-case hitting time
h0 from X0 ∈ V \ {a, b} to {a, b}. Obviously, X0 ∈ V \ {a, b}
means X0 ∈ Li, j (Ri, j) for some i, j. But then, before hit-
ting {a, b} the walk is again equivalent to the weighted line
graph above, for which standard calculations show h0 =
O (k2δ). Hence in any case t(G) = O (k2 max(δ, δ2/ψ2)),
which one can check is in O (δ2/ψ2) = O (t(n)).

We now bound t(Gk) using t(Gk) = �(1/	(Gk)). Let
U = {a} ∪ (∪k

i=1Li) and U = {b} ∪ (∪k
i=1 Ri). Let U = {g ∈

Vk : |g ∩ U | ≥ k
2 }, and U = Vk \ U . Clearly U (U) con-

tains the
(

�
k−1

) = �(�k−1) stars centered in a (b), each
of which has degree �(�), so vol(U), vol(U) ∈ �(�k).
Also, min(vol(U), vol(U)) ≤ vol(Vk)/2. Therefore, in any
case 	(Gk) = O (c(U)/�k) and so t(Gk) = �(�k/c(U)). We
thus bound c(U) from below. First, c(U) = |{gg′ ∈ Ek : g ∈
U , g′ ∈ U}|. Now, for each such gg′ observe that g ∪ g′ in G
must be spanned by a (k + 1)-tree containing only nodes
of degree ≤ δ and including some edge uv in some cut
c(Lk, j, Rk, j). But there are O (dψ2δk−1) such trees, since uv
can be chosen in O (dψ2) ways and, with uv fixed, the
remaining k − 1 nodes can be chosen in O (δk−1) ways.
So c(U) = O (dψ2δk−1) = O (�ψ2δk−2), and consequently
t(Gk) = �(�k−1/ψ2δk−2). Comparing this bound to t(G)

proves the thesis. �

M. Agostini et al. / Information Processing Letters 152 (2019) 105851 3
3. An upper bound on the mixing time of Gk

This section is devoted to prove:

Theorem 2. 	(Gk) ≥ 	(G) 1
4k3(4�)k−1 .

By the inequalities between t(G) and 	(G) (Section 1.1),
Theorem 2 implies t(Gk) = t(G) · Õ ((4�)2(k−1)). To prove
the theorem, we start with two ancillary lemmata. For
every v ∈ V we let Vk(v) = {g ∈ Vk : v ∈ g}. More gen-
erally, for every A ⊆ V we let Vk(A) = {g ∈ Vk : A ⊆ g}
and Gk(A) = Gk[Vk(A)].

Lemma 1. Consider any nonempty set A ⊆ V such that G[A] is
connected. Then in Gk(A) any two graphlets g, ̄g are connected
by a path g = g0, . . . , g� = ḡ where gi ∩ gi+1 is connected for
all i = 0, . . . , � − 1.

Proof. We assume |Vk(A)| > 1, otherwise the claim is triv-
ial. Fix a node r ∈ A ⊆ g ∩ ḡ . Let C(r) be the connected
component of r in g ∩ ḡ; notice that A ⊆ C(r) since A is
connected. Consider any spanning tree T of g that is a su-
pertree of a spanning tree of C(r). Clearly T must have a
leaf z /∈ C(r). Moreover, since ḡ is connected, there exists
x ∈ ḡ \ g adjacent to C(r) in G . Let then g1 = g \ {z} ∪ {x},
and let C1(r) be the connected component of r in g1 ∩ ḡ .
Now g, g1 are adjacent in Gk(A), g ∩ g1 = g \ z is con-
nected by construction, and |C1(r)| = |C(r)| + 1. Repeat the
construction until |C�(r)| = k, and g� = ḡ . �
Lemma 2. dg ≤ k(k − 1)� for all g ∈ Vk, and |Vk(v)| ≤
4dv(4�)k−2 for all v ∈ G.

Proof. Any neighbor of g can be built by replacing one
of the k nodes of g with one of the at most (k − 1)�

neighbors of the other k − 1 nodes, so dg ≤ k(k − 1)�.
For |Vk(v)|, an upper bound is the number of trees on k
nodes rooted at v , since any g ∈ Vk(v) is spanned by some
such tree. Now, the number of non-isomorphic unlabeled
rooted trees on k nodes is at most 22(k−1) = 4k−1, since
with 2(k − 1) bits we can encode any such tree by the di-
rection of its edges in a DFS visit. Moreover, any given tree
on k nodes has at most dv�k−2 copies rooted at v by a
simple counting argument. Thus, |Vk(v)| ≤ 4k−1dv�k−2 =
4dv(4�)k−2. �

Let us now delve into the proof of Theorem 2. The
idea is to take the partition (U , U) of Vk that realizes
	(U) = 	(Gk), build from it a certain partition (U , U)

of G , and show that 	(U) is bounded from below by
	(U)/4k3(4�)k−1. To this end we must properly decom-
pose the volumes and the cuts of U and U and relate
them to each other. Before moving on note that, if 	(Gk) ≥

1
8k(4�)k−1 , then 	(Gk) ≥ 	(G)

4k3(4�)k−1 (the theorem’s claim)
since 1 ≥ 	(G) and 8k < 4k3. From now on we thus as-
sume 	(Gk) < 1

8k(4�)k−1 .

A cut for G. Let U ⊂ Vk satisfy vol(U) ≤ 1
2 vol(Vk) and

	(Gk) = 	(U) = c(U) . Such U exists by Definition 2. We
vol(U)
partition G by taking every node whose graphlet set lies in
U by at least a half. Formally:

U = {v ∈ G : |Vk(v) ∩ U | ≥ 1

2
|Vk(v)|} (1)

We now decompose vol(U) according to U . By defini-
tion, vol(U) = ∑

g∈U dg where dg is the degree of g in
Gk . Let N (g) be the set of neighbors of g in Gk . For any
g ∈ Gk and any v ∈ G , let dg(v) = |Vk(v) ∩ N (g)| if v ∈ g
and dg(v) = 0 otherwise. Since for each ḡ ∈N (g) we have
|g ∩ ḡ| = k − 1, then ḡ appears in dg(v) for exactly (k − 1)

nodes v . Therefore dg = 1
k−1

∑
v∈V dg(v). We now general-

ize this expression to arbitrary subsets of V and Vk .

Definition 3. For all X ⊆ V and X ⊆ Vk we let volX (X) =
1

k−1

∑
v∈X

∑
g∈X dg(v).

It follows immediately that vol(X) = volX (X) + volX (X),
where X = V \ X , for any X ⊆ V and X ⊆ Vk . For X = U
and X = U , we obtain:

	(Gk) = c(U)

volU (U) + volU (U)
(2)

We shall then bound volU (U), volU (U) in terms of vol(U),
c(U). We start by showing that c(U) dominates volU (U),
so we can focus on volU (U) and c(U).

Lemma 3. volU (U) < c(U) · 4(k − 2)(4�)k−1 .

Proof. Recall that volU (U) = 1
k−1

∑
v∈U

∑
g∈U dg(v). Since

dg(v) �= 0 only for g ∈ U ∩ Vk(v), we can restrict the outer
sum to ν = {v ∈ U : U ∩ Vk(v) �= ∅} and the inner sum to
U ∩ Vk(v). Hence volU (U) = 1

k−1

∑
v∈ν

∑
g∈U∩Vk(v) dg(v).

Now, for v ∈ U , we have |U ∩ Vk(v)| < 1
2 |Vk(v)| by con-

struction, while Lemma 2 gives |Vk(v)| ≤ 4dv (4�)k−2 and
dg(v) ≤ k�. Thus:

volU (U) = 1

k − 1

∑

v∈ν

∑

g∈U∩Vk(v)

dg(v)

<
∑

v∈ν

dv

2(k − 1)
4(4�)k−1 (3)

Let us now consider each v ∈ ν in turn. Note that U ∩
Vk(v) �= ∅ since ν ⊆ U , and U ∩ Vk(v) �= ∅ by definition
of ν . By Lemma 1, there is an edge g ḡ ∈ Gk(v) with g ∈
U ∩ Vk(v) and ḡ ∈ U ∩ Vk(v). Let N(g ∩ ḡ) = ∪u∈g∩ḡ N(u).
Consider the graph Gk(g ∩ ḡ); observe that it is a clique of
size at least dv

2(k−2)
+1. We let f (v) = C(T) ∩Gk(g ∩ ḡ), and

note that | f (v)| ≥ dv
2(k−2)

. Finally, if hh̄ ∈ f (v) then v ∈ hh̄;
and since |h ∩ h̄| = k − 1, then |{u : hh̄ ∈ f (u)}| ≤ k − 1, i.e.
hh̄ is counted at most k − 1 times. Summing over ν yields ∑

v∈ν
dv

2(k−1)
1

(k−2)
≤ c(U); comparing to (3) concludes the

proof. �
We can now prove:

Lemma 4. 	(Gk) > 1
2

c(U)
volU (U)

.

4 M. Agostini et al. / Information Processing Letters 152 (2019) 105851
Proof. By chaining (2) and Lemma 3, we obtain:

1

8k(4�)k−1
> 	(Gk) = c(U)

volU (U) + volU (U)

>
c(U)

volU (U) + 4k(4�)k−1c(U)
(4)

This implies 4k(4�)k−1c(U) < volU (U), which plugged in
the right-hand side proves the thesis. �
By Lemma 4 we can now focus on bounding c(U)

volU (U)
. We

indeed bound c(U) and volU (U) in the following two lem-
mata.

Lemma 5. c(U) ≥ k−2c(U).

Proof. Consider any edge uv ∈ C(U) with u ∈ U , v ∈ U .
First, Gk({u, v}) is connected by Lemma 1. So if Gk({u, v}) ∩
C(U) �= ∅ then there is an edge g ḡ ∈ C(U) with u ∈ g
and v ∈ ḡ . Suppose instead that Gk({u, v}) ∩ C(U) = ∅, so
Vk({u, v}) ⊆ U or Vk({u, v}) ⊆ U . Assume Vk({u, v}) ⊆ U
(a symmetric argument applies to the other case). Fix any
ḡ ∈ Vk(v) ∩ U and let g = ḡ \ {z} ∪ {u} where z �= u is
any leaf in a spanning tree of ḡ rooted at v . Then uv ∈ g ,
and so g ∈ Vk({u, v}) ⊆ U . Therefore again g ḡ ∈ C(U) with
u ∈ g and v ∈ ḡ . In conclusion, every edge uv ∈ C(U) can
be mapped to an edge g ḡ ∈ C(U) where u ∈ g and v ∈ ḡ .
Since for any g ḡ we have at most k2 such pairs uv , it fol-
lows that g ḡ can be the image of at most k2 distinct edges
of C(U). �
Lemma 6. volU (U) ≤ k(4�)k−1 vol(U).

Proof. For any v we have dg(v) ≤ dg . Moreover, Lemma 2
gives |Vk(v)| ≤ 4dv(4�)k−2 and dg ≤ k(k − 1)�. Via the
definition of volU (U) we then obtain:

volU (U) = 1

k − 1

∑

v∈U

∑

g∈U∩Vk(v)

dg(v)

≤ 1

k − 1

∑

v∈U

4dv(4�)k−2k(k − 1)� (5)

and the last term equals k(4�)k−1 vol(U). �
It remains to wrap up the results proven above, tak-

ing care of two possible cases. Suppose first that vol(U) ≤
1
2 vol(G) (the “good” case). This means c(U)/ vol(U) is a
valid upper bound to 	(G). Then by chaining Lemma 4,
Lemma 5 and Lemma 6 we obtain:

	(Gk) ≥ 1

2

c(U)

volU (U)
≥ 1

2

k−2c(U)

k(4�)k−1 vol(U)

>
1

4k3(4�)k−1
	(G) (6)

Suppose now vol(U) > 1
2 vol(G) (the “bad” case). We

then use c(U)/ vol(U) as an upper bound to 	(G), but
we must bound vol(U) in terms of volU (U). Recall that
	(Gk) < 1

8k(4�)k−1 . On one side, this implies vol(U) ≥
8k(4�)k−1c(U). On the other side, it implies volU (U) <
4k(4�)k−1c(U); this follows from Lemma 3, by noting
that it holds with U and U in place of U and U . How-
ever, vol(U) ≤ vol(U) = volU (U) + volU (U), thus volU (U) ≥
vol(U) − volU (U) > 4k(4�)k−1c(U) or, equivalently, c(U) <

1
4k(4�)k−1 volU (U).

We turn to volU (U). First, volU (U) ≤ vol(U) ≤ vol(U) =
volU (U) + volU (U). Lemma 3 and the bound on c(U) give
volU (U) < volU (U). Then by Lemma 6:

volU (U) ≤ volU (U) + volU (U) < 2 volU (U)

≤ 2k(4�)k−1 vol(U) (7)

By invoking (7), Lemma 4, and Lemma 5, we finally obtain:

	(Gk) >
1

2

c(U)

volU (U)
>

k−2c(U)

4k(4�)k−1 vol(U)

≥ 1

4k3(4�)k−1
	(G) (8)

concluding the proof of Theorem 2.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Acknowledgements

M. Bressan and S. Haddadan are supported in part by
the ERC Starting Grant DMAP 680153, by a Google Focused
Award “Algorithms and Learning for AI”, and by the MIUR
grant “Dipartimenti di Eccellenza 2018-2022” awarded to
the Department of Computer Science of the Sapienza Uni-
versity of Rome.

References

[1] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, A. Panconesi, Counting
graphlets: space vs time, in: ACM WSDM 2017, pp. 557–566..

[2] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, A. Panconesi, Motif
counting beyond five nodes, ACM Trans. Knowl. Discov. Data 12 (4)
(2018) 48.

[3] M. Bressan, S. Leucci, A. Panconesi, MOTIVO: fast motif counting
via succinct color coding and adaptive sampling, Proc. VLDB Endow.
12 (11) (2019) 1651–1663.

[4] M.A. Bhuiyan, M. Rahman, M. Rahman, M. Al Hasan, GUISE: uniform
sampling of graphlets for large graph analysis, in: IEEE ICDM 2012,
pp. 91–100.

[5] P. Wang, J.C.S. Lui, B. Ribeiro, D. Towsley, J. Zhao, X. Guan, Efficiently
estimating motif statistics of large networks, ACM Trans. Knowl. Dis-
cov. Data 9 (2) (2014) 8.

[6] X. Chen, Y. Li, P. Wang, J.C.S. Lui, A general framework for estimating
graphlet statistics via random walk, Proc. VLDB Endow. 10 (3) (2016)
253–264.

[7] G. Han, H. Sethu, Waddling random walk: fast and accurate mining of
motif statistics in large graphs, in: IEEE ICDM 2016, pp. 181–190.

[8] A. Mohaisen, A. Yun, Y. Kim, Measuring the mixing time of social
graphs, in: ACM SIGCOMM 2010, pp. 383–389.

[9] D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times,
American Mathematical Society, 2009.

http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4272657373616E263230313862s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4272657373616E263230313862s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4272657373616E263230313862s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4272657373616E2632303139s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4272657373616E2632303139s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4272657373616E2632303139s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib57616E672632303134s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib57616E672632303134s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib57616E672632303134s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4368656E2632303136s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4368656E2632303136s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4368656E2632303136s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4C6576696E2632303039s1
http://refhub.elsevier.com/S0020-0190(19)30134-6/bib4C6576696E2632303039s1

	Mixing time bounds for graphlet random walks
	1 Introduction
	1.1 Preliminaries and notation

	2 A lower bound on the mixing time of Gk
	3 An upper bound on the mixing time of Gk
	Acknowledgements
	References

