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Abstract
Approximating the stationary probability of a state in a Markov chain through Markov chain
Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require
Õ(τ/π(v)) operations to approximate the probability π(v) of a state v in a chain with mixing
time τ , and even the best available techniques still have complexity Õ(τ1.5/π(v)0.5); and since
these complexities depend inversely on π(v), they can grow beyond any bound in the size of the
chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there
exists a simple randomized approximation algorithm that breaks this “small-π(v) barrier”.
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1 Introduction

We investigate the problem of approximating efficiently a single entry of the stationary
distribution of an ergodic Markov chain. This problem has two main motivations. First,
with the advent of massive-scale data, even complexities linear in the size of the input
are often excessive [19]; therefore computing explicitly the entire stationary distribution,
e.g. via the power method [10], can be simply infeasible. As an alternative one can then
resort to approximating only individual entries of the vector, in exchange for a much lower
computational complexity [13, 20]. In fact, if such a complexity is low enough one could
efficiently “sketch” the whole vector by quickly getting a fair estimate of its entries. Second,
in many practical cases one is really interested in just a few entries at a time. A classic
example is that of network centralities, many of which are stationary distributions of an

© Marco Bressan, Enoch Peserico, and Luca Pretto;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bressan@di.uniroma1.it
mailto:enoch@dei.unipd.it
mailto:pretto@dei.unipd.it
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.18
https://arxiv.org/abs/1801.00196v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 On Approximating the Stationary Distribution of Time-reversible Markov Chains

ergodic Markov chain [4]. Indeed, the problem of approximating the Personalized PageRank
score of a few nodes in a graph has been repeatedly addressed in the past [5, 6, 16, 15].

In this paper we seek for efficient algorithms for approximating the stationary probability
π(v) of some target state v in the state space of a discrete-time ergodic Markov chain.
Besides the motivations above, the problem arises in estimating heat kernels and graph
diffusions, testing the conductance of graphs and chains, developing local algorithms, and has
applications in machine learning; see [3, 12] for a thorough discussion. We adopt a simple
model where with a single operation one can either (i) simulate one step of the chain or
(ii) retrieve the transition probability between a pair of states. Although recent research
has provided encouraging results, existing algorithms suffer from a crucial bottleneck: to
guarantee a small relative error in the approximation of π(v), they incur a cost that grows
with 1/π(v) itself (basically because estimating π(v) via repeated sampling requires 1/π(v)
samples). This is a crucial issue since in general there is no lower bound on π(v); even worse,
if the state space has n states, then most states have mass π(v) = O( 1

n ), and one can easily
design chains where they have mass exponentially small in n. In general, then, the cost of
existing algorithms can blow up far beyond O(n) for almost all input states v. It is thus
natural to ask if the dependence of the complexity on π(v) is unavoidable. Unfortunately,
one can easily show that Ω(τ/π(v)) operations can be necessary to estimate π(v) within any
constant multiplicative factor if one makes no assumption on the chain (see Appendix 5.2).
To drop below this complexity barrier one must then necessarily look at special classes of
Markov chains.

We present an algorithm that breaks this “small-π(v) barrier” for time-reversible Markov
chains. Time-reversible chains are a well-known subclass of Markov chains which lie at the
heart of the celebrated Metropolis-Hastings algorithm [11] and are equivalent to random
walks on weighted undirected graphs [14]. Formally, given any ε, δ > 0 and any state v
in a time-reversible chain, our algorithm with probability 1 − δ returns a multiplicative
(1± ε)-approximation of π(v) by using Õ(τ‖π‖−1) operations, where τ is the mixing time of
the chain, ‖ · ‖ is the Euclidean norm and Õ(·) hides polynomials in ε−1, ln(δ−1), ln(‖π‖−1).
The complexity is independent of π(v), and for all but a vanishing fraction of states in the
chain improves by factors at least

√
n or

√
τ over previous algorithms. The heart of our

algorithm is a randomized scheme for approximating the sum of a nonnegative vector by
sampling its entries with probability proportional to their values. This scheme requires
Õ(‖π‖−1) samples if π is the distribution over the vector entries, which generalizes the O(

√
n)

algorithm of [17] and is provably optimal. We prove that our algorithm for estimating π(v)
is essentially optimal as a function of τ , n and ‖π‖; in fact one cannot do better even under
a stronger computational model where all transition probabilities to/from all visited states
are known. Finally, we show the number of distinct states visited by our algorithm may be
further reduced, provided such a number satisfies some concentration hypotheses. This is
useful if visiting a new state is expensive (e.g. if states are users in a social network). All
our algorithms are simple to implement, require no tuning, and experimentally they appear
faster than existing alternatives already for medium-sized chains.

The rest of the paper is organized as follows. Subsection 1.1 pins down definitions and
notation; Subsection 1.2 formalizes the problem; Subsection 1.3 discusses related work;
Subsection 1.4 summarizes our results. Section 2 presents our vector sum approximation
algorithm. Section 3 presents our approximation algorithm for π(v). The proofs of our lower
bounds (Theorem 3 and Theorem 5), the pseudocode of our algorithms, and our experimental
results can be found in the full version of this paper [7].
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1.1 Preliminaries
A discrete-time, finite-state Markov chain is a sequence of random variables X0, X1, . . . taking
value over a set of states V = {1, . . . , n}, such that for all i ≥ 1 and all u0, . . . , ui ∈ V

with Pr(X0 = u0, . . . , Xi−1 = ui−1) > 0 we have Pr(Xi = ui|X0 = u0, . . . , Xi−1 = ui−1) =
Pr(Xi = ui|Xi−1 = ui−1). Denote by P = [puu′ ] the transition matrix of the chain, so
that puu′ = Pr(Xi = u′|Xi−1 = u). We assume the chain is ergodic, and thus has a limit
distribution that is independent from the distribution of X0; the limit distribution then
coincides with the stationary distribution π. Thus π is the unique distribution vector such
that for any distribution vector π0:

π = πP = lim
t→∞

π0Pt (1)

We denote by π(u) the stationary probability, or mass, of u, and we always denote by v the
target state whose mass is to be estimated. For any V ′ ⊆ V we let π(V ′) denote

∑
u∈V ′ π(u).

We also assume the chain is time-reversible, i.e. that for any pair of states u and u′ we have:

π(u)puu′ = π(u′)pu′u (2)

We denote by τ the standard 1
4 -mixing time of the chain. In words, τ is the smallest integer

such that after τ steps the total variation distance between π and the distribution of Xτ

is bounded by 1
4 , irrespective of the initial distribution. Formally, τ := min{t : d(t) ≤ 1

4},
where

d(t) := max
π0
‖π0Pt − π‖TV = max

π0

1
2‖π0Pt − π‖1 (3)

After τ steps, the distribution of Xt converges to π exponentially fast; that is, if t = ητ with
η ≥ 1, then ‖π0Pt − π‖TV ≤ 2−η. In the rest of the paper, ‖ · ‖ always denotes the `2 norm.
One may refer to [14] for a detailed explanation of the notions recalled here.

Unless necessary, we drop multiplicative factors depending only on ε, δ (see below)
from the asymptotic complexity notation. Furthermore, we use the tilde notation to hide
polylogarithmic factors, i.e. we denote O(f · poly(log(f))) by Õ(f).

1.2 Problem formulation
Consider now a discrete-time, finite-state, time-reversible, ergodic Markov chain on n states.
The chain is initially unknown and can be accessed via two operations (also called queries):

step(): accepts in input a state u, and returns state u′ with probability puu′
probe(): accepts in input a pair of states u, u′, and returns puu′

These queries are the de facto model of previous work. step() is used in [5, 12, 6, 16, 15, 3]
to simulate the walk, assuming each step costs O(1). probe() is used in [16, 15, 3] to access
the elements of the transition matrix, assuming again one access costs O(1). Here, too, we
assume step() and probe() as well as all standard operations (arithmetics, memory access, . . . )
cost O(1). This includes set insertion and set membership testing; in case their complexity
is ω(1), our bounds can be adapted correspondingly. The problem can now be formalized
as follows. The algorithm is given in input a triple (v, ε, δ) where v is a state in the state
space of the chain and ε, δ are two reals in (0, 1). It must output a value π̂(v) such that, with
probability 1− δ, it holds (1− ε)π(v) ≤ π̂(v) ≤ (1 + ε)π(v). The complexity of the algorithm
is counted by the total number of operations it performs. Obviously we seek for an algorithm
of minimal complexity.

STACS 2018



18:4 On Approximating the Stationary Distribution of Time-reversible Markov Chains

A final remark. We say state u has been visited if u = v or if u has been returned by
a step() call. In line with previous work, we adopt the following “locality” constraint: the
algorithm can invoke probe() and step() only on visited states.

1.3 Related work
Two recent works address precisely the problem of estimating π(v) in Markov chains. The key
differences with our paper are that they consider general (i.e. not necessarily time-reversible)
chains, and that we aim at a small relative error for any π(v) and not only for large π(v).

[12] gives a local approximation algorithm based on estimating return times via truncated
random walks. Given any ∆ > 0, if π(v) ≥ ∆ the algorithm with probability 1−δ outputs
a multiplicative εZ(v)-approximation of π(v), where Z(v) is a “local mixing time” that
depends on the structure of the chain. The cost is Õ(ln(1/δ)/ε3∆) step() calls. If one
wants a multiplicative (1± ε)-approximation of π(v) for a generic v, the cost becomes
Õ(τ/π(v)) step() calls since one must wait for the walks to hit v after having mixed.
[3] gives an algorithm to approximate `-step transition probabilities based on coupling
a local exploration of the transition matrix P with simulated random walks. Given
any ∆ > 0, if the probability to be estimated is ≥ ∆ then with probability 1 − δ

the algorithm gives a multiplicative (1± ε)-approximation of it at an expected cost of
Õ(`1.5

√
d ln(1/δ) / ε∆0.5) calls to both step() and probe(), for a uniform random choice

of v in the chain, where d is the density of P. To estimate π(v) for a generic v one must
set ` = τ and ∆ = π(v), and since if the chain is irreducible then d = Ω(1), the bound
stays at Õ(τ1.5/π(v)0.5). This does not contradict our lower bound of Appendix 5.2, since
their model allows for probing transition probabilities even between unvisited states.

Similar results are known for specific Markov chains, and in particular for PageRank
(note that in PageRank τ = O(1)). [5, 6] give an algorithm for approximating the PageRank
π(v) of the nodes v having π(v) ≥ ∆, at the cost of Õ(1/∆) step() calls; again, if one desires
a multiplicative (1± ε)-approximation of π(v), the cost becomes Õ(1/π(v)). [16] gives an
algorithm, with techniques similar to [3], for estimating the Personalized PageRank π(v) of a
node v; if one aims at a multiplicative (1± ε)-approximation of π(v), the algorithm makes
Õ(d 0.5/π(v)0.5) step() and probe() calls where d is the average degree of the graph. Similar
bounds can be found in [15] for Personalized PageRank on undirected graphs.

Summarizing, existing algorithms require either Õ(τ/π(v)) or Õ(τ1.5/π(v)0.5) step() and
probe() calls to ensure a (1± ε)-approximation of π(v) for a generic state v. Note that the
complexity and approximation guarantees of these algorithms depend on knowledge of τ ; our
algorithms are no exception, and we prove our bounds as a function of τ .

Finally, for the problem of estimating the sum of a nonnegative n-entry vector x by
sampling its entries xi, with probability πi = xi/

∑
i xi, the only algorithm existing to date

is that of [17]. That algorithm takes O(
√
n) samples independently of π, while ours needs

O(
√
n) samples only in the worst case, i.e. if π is (essentially) the uniform distribution.

1.4 Our results
Our first contribution is SumApprox, a randomized algorithm for estimating the sum γ of
a nonnegative vector x, assuming one can sample its entries according to the probability
distribution π = x/γ. Formally, we prove:

I Theorem 1. Given any δ, ε ∈ (0, 1), SumApprox(ε, δ) with probability at least 1− δ returns
a multiplicative (1± ε)-approximation of γ by taking O

(
‖π‖−1ε−3(ln 1

δ )3/2) samples.
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SumApprox is extremely simple, yet it improves on the state-of-the-art O(
√
n) algorithm

of [17]. We prove Ω
(
‖π‖−1) samples are necessary, too, to get a fair estimate of γ.

We then employ SumApprox to build MassApprox, a randomized algorithm for approxi-
mating π(v). Random-walk-based sampling and time reversibility are the ingredients that
allow one to make the connection. We prove:

I Theorem 2. Given any δ, ε ∈ (0, 1) and any state v in a time-reversible Markov chain,
MassApprox(ε, δ, v) with probability (1− δ) returns a multiplicative (1± ε) approximation of
π(v) using Õ(τ‖π‖−1ε−3(ln 1

δ )3/2) = Õ(τ‖π‖−1) elementary operations and calls to step()
and probe().

Previous algorithms work also for general (i.e. non-reversible) chains; but on the n−o(n) states
with mass π(v) = O(1/n), their complexity becomes at least Õ(τn) [12] or Õ(τ1.5√n) [3].
In fact, π(v) can be arbitrarily small (even exponentially small in n and τ) for almost all
states in the chain, so for almost all states the complexity of previous algorithms blow up
while that of MassApprox remains unchanged: since ‖π‖−1 ≤

√
n for any π, the complexity

of MassApprox is at most Õ(τ
√
n).

Next, we show that MassApprox is optimal as a function of τ , n and ‖π‖, up to small
factors. In fact, no algorithm can perform better even if equipped with an operation neigh(u)
that returns all incoming and outgoing transition probabilities of u. Formally, we prove:

I Theorem 3. For any function ν(n) ∈ Ω(1/
√
n) ∩O(1) there is a family of time-reversible

chains on n states where (a) ‖π‖ = Θ(ν(n)), and (b) there is a target state v such that, to
estimate its mass π(v) within any constant multiplicative factor with constant probability,
any algorithm requires Ω(τ‖π‖−1/ lnn) neigh() calls where τ is the mixing time of the chain.

Although bounding time complexity is our primary goal, in some scenarios one wants to
bound the footprint, i.e. the number of distinct states visited. Obviously, the footprint
of MassApprox is bounded by its complexity (Theorem 2). We give a second algorithm,
FullMassApprox, whose footprint can be smaller than that of MassApprox depending on τ, n,
and ‖π‖. More precisely, we prove a footprint bound that is conditional on the concentration
of the footprint itself (see Subsection 3.1 for the intuition behind it).

I Theorem 4. Let Nv,T be the number of distinct states visited by a random walk of T steps
starting from v. Assume for a function τ̄ of the chain we have Pr[Nv,T /∈ Θ(E[Nv,T ])] =
o
(

τ̄
E[Nv,T ] ). Then, given any δ, ε ∈ (0, 1), with probability (1−δ) one can obtain a multiplicative

(1± ε)-approximation of π(v) by visiting O(f(ε, δ)(τ lnn+
√
τ̄n)) distinct states.

If in Theorem 4 we have τ̄ = τ , then FullMassApprox is essentially optimal too. Formally:

I Theorem 5. For any function τ(n) ∈ Ω(lnn) ∩O(n) there is a family of time-reversible
chains on n states where (a) the mixing time is τ = Θ(τ(n)), and (b) there is a target state
v such that, to estimate its mass π(v) within any constant multiplicative factor with constant
probability, any algorithm requires Ω(

√
τn/ lnn) neigh() calls.

2 Estimating sum by weighted sampling

In this section we analyse the following problem. We are given a vector of nonnegative
reals γu indexed by the elements u of a set V . The vector is unknown, including its length,
but we can draw samples from V according to the distribution π where u has probability
γu/

∑
u∈V γu. The goal is to approximate the vector sum γ =

∑
u∈V γu. We describe a

STACS 2018
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simple randomized algorithm, SumApprox, which proceeds by repeatedly drawing samples
and checking for repeats (i.e. a draw that yields an element already drawn before). The
key intuition is the following: at any instant, if S ⊆ V is the subset of elements drawn so
far, then the next draw is a repeat with probability

∑
u∈S γu/γ. By drawing a sequence of

samples we can thus flip a sequence of binary random variables, each one telling if a draw is
a repeat, whose expectation is known save for the factor 1/γ. If the sum of these random
variables is sufficiently close to its expectation, one can then get a good approximation of γ
by simply computing a ratio. The code of SumApprox is listed below.

Algorithm SumApprox(ε, δ).
1: S ← ∅ . distinct elements drawn so far
2: wS ← 0 .

∑
u∈S γu for the current S

3: w ← 0 . cumulative sum of
∑

u∈S γu so far
4: r ← 0 . number of repeats so far
5: kε,δ ← d 2+4.4ε

ε2 ln 3
δ
e . halting threshold on the number of repeats

6: while r < kε,δ do
7: w ← w + wS
8: (u, γu)← sample drawn from distribution π

9: if u ∈ S then . detect collision
10: r ← r + 1
11: else
12: S ← S ∪ {u}
13: wS ← wS + γu

14: return w/r . estimate of γ

We prove:

I Theorem 6. SumApprox(ε, δ) with probability at least 1− 2δ
3 returns an estimate γ̂ such

that |γ̂ − γ| < εγ.

Proof. We make use of a martingale tail inequality originally from [9] and stated (and
proved) in the following form as Theorem 2.2 of [1], p. 1476:

I Theorem 7 ([1], Theorem 2.2). Let (Z0, Z1, . . .) be a martingale with respect to the filter
(Fi). Suppose that Zi+1 − Zi ≤M for all i, and write Vt =

∑t
i=1 V ar(Zi|Fi−1). Then for

any z, v > 0 we have

Pr
[
Zt ≥ Z0 + z, Vt ≤ v for some t

]
≤ exp

[
− z2

2(v +Mz)

]
Let us plug into the formula of Theorem 7 the appropriate quantities from SumApprox:

Let Xi be the (i + 1)th sample (i.e. (Xi, γXi) is the pair (u, γu) drawn at the (i + 1)th
invocation of line 8).
Let Fi be the event space generated by X0, . . . , Xi, so that for any random variable Y ,
with E[Y |Fi] we mean E[Y |X0, . . . , Xi] and with V ar[Y |Fi] we mean V ar[Y |X0, . . . , Xi].
Let χi = 1[Xi ∈

⋃i−1
j=0{Xj}] be the indicator variable of a repeat on the (i+ 1)th sample.

Let Pi =
∑
u∈∪i−1

j=0{Xj}
γu
γ be the probability of a repeat on the (i + 1)th sample as a

function of all the (distinct) samples up to the ith, i.e. Pi = E[χi|Fi−1] ≤ 1.
Let Zi =

∑i
j=0(χj − Pj); it is easy to see that (Zi)i≥0 is a martingale with respect

to the filter (Fi)i≥0, since Zi is obtained by adding to Zi−1 the indicator variable χi
and subtracting Pi i.e. its expectation in Fi−1. More formally, E[Zi|Fi−1] = E[Zi−1 +
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χi − Pi|Fi−1], and since Zi−1 and Pi are completely determined by X0, . . . , Xi−1, the
right-hand term is simply Zi−1 + (E[χi|Fi−1]− Pi) = Zi−1. Note also that Z0 = 0.
Let M = 1, noting that |Zi+1 − Zi| = |χi+1 − Pi+1| ≤ 1 for all i.

Finally, note that V ar(Zj |Fj−1) = V ar(χj |Fj−1) (as Zj = Zj−1 + χj − Pj and, again, Zj−1
and Pj are completely determined by X0, . . . , Xj−1). Since V ar(χj |Fj−1) = Pj(1−Pj) ≤ Pj ,
we have Vi =

∑i
j=1 V ar(Zj |Fj−1) ≤

∑i
j=1 Pj . Theorem 7 then yields the following:

I Lemma 8. For all z, v > 0 we have

Pr
[
Zi ≥ z,

i∑
j=1

Pj ≤ v for some i
]
≤ exp

[
− z2

2(v + z)

]
(4)

Recall now SumApprox. Note that
∑i
j=1 Pj and Zi are respectively the value of wγ and of

r − w
γ just after the while loop has been executed for the (i + 1)-th time. Note also that,

when SumApprox returns, r = kε,δ. Therefore the event that, when SumApprox returns,
w
r ≤ γ(1 − ε) i.e. wγ ≤ r(1 − ε) ≤ (1 − ε)kε,δ corresponds to the event that Zi ≥ εr = εkε,δ

and
∑i
j=1 Pj ≤ (1− ε)kε,δ. Invoking Lemma 8 with z = εkε,δ and v = (1− ε)kε,δ:

Pr
[w
r
≤ γ(1− ε)

]
≤ exp

[
−

ε2k2
ε,δ

2(εkε,δ + (1− ε)kε,δ)

]
= exp

[
− ε2kε,δ

2

]
(5)

which is smaller than δ/3 since clearly kε,δ > 2
ε2 ln 3

δ . Consider instead the event that, when
SumApprox returns, wr ≥ γ(1 + ε) i.e. wγ ≥ r(1 + ε) = kε,δ(1 + ε). This is the event that
Zi ≤ −εkε,δ, or equivalently −Zi ≥ εkε,δ. Note that Lemma 8 still holds if we replace Zi
with −Zi, as (−Zi)i≥0 too is obviously a martingale with respect to the filter (Fi)i≥0, with
−Z0 = 0. Let then i0 ≤ i be the smallest time such that −Zi0 ≥ εkε,δ. Since |Zj −Zj−1| ≤ 1,
it must be −Zi0 < εkε,δ+1. Also, since

∑i
j=0 χj is nondecreasing with i, then

∑i0
j=0 χj ≤ kε,δ.

It follows that
∑i0
j=1 Pj = −Zi0 +

∑i0
j=0 χj ≤ εkε,δ + 1 + kε,δ = (1 + ε)kε,δ + 1. Invoking

again Lemma 8 with z = εkε,δ and v = (1 + ε)kε,δ + 1, we obtain:

Pr
[w
r
≥ γ(1 + ε)

]
≤ exp

[
−

ε2k2
ε,δ

2((1 + 2ε)kε,δ + 1)

]
(6)

Note that 1
kε,δ

< ε2

2+4.4ε < 0.2ε since ε ≤ 1; so 2((1 + 2ε) + 1
kε,δ

) < 2 + 4.4ε, and since
kε,δ ≥ 2+4.4ε

ε2 ln 3
δ the right-hand term is at most δ

3 . Finally, by a simple union bound the
probability that |γ̂ − γ| ≥ εγ is at most 2 δ3 , and the proof of Theorem 6 is complete. J

I Theorem 9. SumApprox(ε, δ) draws at most d45‖π‖−1ε−3(ln 3
δ )3/2e samples with probability

at least 1− δ
3 .

Proof. We show that the probability that s = d45‖π‖−1ε−3(ln 3
δ )3/2e draws yield less than

kε,δ repeats is less than δ
3 . Let p̄ = 5

18‖π‖ε(ln
3
δ )−1/2. We consider two cases.

Case 1: ∃u ∈ V with π(u) > p̄. Let then Csu be the random variable counting the
number of times u appears in s draws. Since if Csu > kε,δ then u causes at least kε,δ
repeats, the probability that SumApprox needs more than s draws is upper bounded by
Pr[Csu ≤ kε,δ]. Now E[Csu] = sπ(u) > sp̄ > 45 5

18
1
ε2 ln 3

δ = 12.5
ε2 ln 3

δ ≥ 1.7( 6.4
ε2 ln 3

δ + 1) ≥
1.7d 2+4.4ε

ε2 ln 3
δ e = 1.7kε,δ, therefore Csu ≤ kε,δ implies Csu < 1

1.7E[Csu] < (1 − 0.41)E[Csu].
Since Csu is a sum of independent binary random variables, the bounds of Appendix 5.1 give
Pr[Csu ≤ kε,δ] < exp

(
− 1

20.412E[Csu]
)
< exp

(
− 0.5 · 0.412 · 12.5

ε2 ln 3
δ

)
< exp

(
− 1.05 ln 3

δ

)
< δ

3 .
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Case 2: π(u) ≤ p̄ for all u ∈ V . Let then s̄ = dp̄−1e, let S̄ be the set of distinct elements in
the first s̄ draws, and let w(s̄) =

∑
u∈S̄ π(u). First we show that E[w(s̄)] ≥ 4

9 s̄‖π‖
2. Write

E[w(s̄)] =
∑
u∈V π(u)(1− (1− π(u))s̄). Since for all x ∈ [0, 1] and k ≥ 1 it holds (1− x)k ≤

(1 + kx)−1, by setting x = π(u) and k = s̄ we obtain 1− (1− π(u))s̄ ≥ 1− (1 + s̄π(u))−1 =
s̄π(u)(1 + s̄π(u))−1. Moreover note that p̄−1 ≥ 18

5 = 3.6 and thus dp̄−1e ≤ 5
4 p̄
−1. Therefore

s̄π(u) ≤ dp̄−1ep̄ ≤ 5
4 for all u, and thus s̄π(u)(1 + s̄π(u))−1 ≥ s̄π(u) 1

1+ 5
4

= 4
9 s̄π(u). Therefore

E[w(s̄)] ≥ 4
9 s̄
∑
u∈V π(u)2 = 4

9 s̄‖π‖
2. Now we consider two cases. First, suppose the event

w(s̄) ≥ 0.4E[w(s̄)] takes place. For i = s̄+ 1, . . . , s let χi be the indicator random variable of
the event that the i-th draw is an element of S̄, and let Cs =

∑s
i=s̄+1 χi. Clearly SumApprox

witnesses at least Cs repeats in the last s− s̄ draws, and thus overall. We shall then bound
Pr[Cs < kε,δ]. First, since by hypothesis the total mass of S̄ is w(s̄) ≥ 0.4E[w(s̄)], we also
have E[χi] ≥ 0.4E[w(s̄)] ≥ 1.6

9 s̄‖π‖
2. Therefore E[Cs] =

∑s
i=s̄+1 E[χi] ≥ 1.6

9 (s − s̄)s̄‖π‖2.
Now note that s − s̄ > 10s̄, therefore E[Cs] ≥ 16

9 s̄
2‖π‖2. Finally, since s̄ = dp̄−1e ≥

18
5 ‖π‖

−1ε−1(ln 3
δ )1/2, it holds E[Cs] ≥ ( 18

5 )2 16
9

1
ε2 ln 3

δ > 23 1
ε2 ln 3

δ > 3.14kε,δ. It follows that
the event Cs < kε,δ implies Cs < 1

3.14E[Cs] < (1− 0.68)E[Cs]. By the concentration bounds
of Appendix 5.1, the probability of the latter is Pr[Cs < kε,δ] ≤ exp

(
− 1

2 0.682 E[Cs]
)
<

exp
(
− 1

2 0.682 23 1
ε2 ln 3

δ

)
< exp

(
−5 ln 3

δ

)
< δ

243 . The second case corresponds to the event
w(s̄) < 0.4E[w(s̄)] = (1 − 0.6)E[w(s̄)], of which we shall bound the probability. Let χs̄u
be the indicator variable of the event u ∈ S̄, so w(s̄) =

∑
u∈V χ

s̄
u π(u). Since π(u) ≤ p̄

for all u, we can write w(s̄) = p̄
∑
u∈V χ

s̄
u p̄
−1π(u) so that the coefficients p̄−1π(u) are in

[0, 1]. Clearly, the χs̄u are non-positively correlated. We can thus apply the bounds of
Appendix 5.1 and get Pr[w(s̄) < 0.4E[w(s̄)]] ≤ exp

(
− 0.5 · 0.62 p̄−1E[w(s̄)]

)
. By replacing

the definitions and bounds for E[w(s̄)], s̄ and p̄−1 from above, we get Pr[w(s̄) < 0.4E[w(s̄)]] <
exp
(
− 2.88 ln ( 3

δ )
)
< δ

23 . Again by a union bound, the probability that SumApprox draws
more than s samples is less than δ

243 + δ
23 <

δ
3 . J

We remark that the previous existing algorithm for the sum estimation problem [17] needs
knowledge of n = |V | and uses O(

√
nε−7/2 log(n)(log 1

δ + log 1
ε + log logn)) samples. SumAp-

prox is simpler, oblivious to n, and gives more general bounds. It is also asymptotically
faster unless π is (essentially) the uniform distribution.

Finally, we show that SumApprox is essentially optimal, by proving Ω(‖π‖−1) samples are
in general necessary to estimate γ even if n is known in advance. This extends to arbitrary
distributions the Ω(

√
n) lower bound given by [17] for the uniform distribution.

I Theorem 10. For any function ν(n) ∈ Ω(n− 1
2 ) ∩ O(1) there exist vectors x = γπ =

(γ1, . . . , γn) with ‖π‖ = Θ(ν(n)) such that Ω(‖π‖−1) samples are necessary to estimate γ
within constant multiplicative factors with constant probability, even if n is known.

Proof. Let k ∈ Θ(ν(n)−2) with 1 ≤ k ≤ n
2 . Consider the two vectors x = (γ1, . . . , γn) and

x′ = (γ′1, . . . , γ′n) defined as follows:

γj = 1 : j ≤ k, γj =
√
k/n : j > k

γ′j = 1 : j ≤ 2k γ′j =
√
k/n : j > 2k

Now let γ =
∑n
i=1 γi and γ′ =

∑n
i=1 γ

′
i. One can check that γ ≤ 2k and |γ − γ′| ≥ k

2 . Hence,
to obtain an estimate γ̂ of γ with γ̂ ≤ 5

4γ, one must distinguish x from x′. Note that the
norm of π = x/γ is in Θ(1/

√
k) = Θ(ν(n)), as requested. Now, for each one of x and x′ in

turn, pick a permutation of {1, . . . , n} uniformly at random and apply it to the entries of
the vector. Suppose then we sample o(‖π‖−1) = o(

√
k) entries from x. We shall see that,

with probability 1− o(1), we cannot distinguish x from x′. First, note that the total mass
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of the entries with value
√
k/n is at most 1/

√
k. Hence the probability of drawing any of

those entries with o(
√
k) samples is o(1), and we can assume all draws yield entries having

value 1. Since there are O(k) such entries in total, the probability of witnessing any repeat
is also o(1), and we can assume no repeat is witnessed. Furthermore, because of the random
permutation, the indices of samples are distributed uniformly over {1, . . . , n} (recall that we
actually sample from the index set {1, . . . , n}, so we could use the distribution of the indices
to distinguish x from x′). The same argument applies to x′, so drawing o(

√
k) samples from

x′ yields exactly the same distribution and the two vectors are indistinguishable. To adapt
the construction to larger approximation factors, set γ′j = 1 : j ≤ ηk for η large enough. J

3 Approximating the stationary distribution

In this section we address the problem of approximating π(v). Such a problem can in fact be
reduced to the sum estimation problem of Section 2 by drawing states via random walks.
The crux is determining how long the walks must be in order for the samples to come from a
distribution close enough to π, so that the approximation guarantees of SumApprox transfer
directly to our estimate of π(v).

Consider a random walk of length t+ 1 that starts at v. Obviously we can simulate such a
walk by setting u0 = v and then invoking step(ui) to obtain the state ui+1, for i = 0, . . . , t−1.
Crucially, using the time-reversibility of the chain, for any visited state u we can obtain the
ratio γu between π(u) and π(v) using O(1) operations. Formally, let γv = π(v)/π(v) = 1,
and in general let γu = π(u)/π(v). Note that:

γui+1 = π(ui+1)
π(v) = π(ui+1)

π(ui)
· π(ui)
π(v) = π(ui+1)

π(ui)
· γui (7)

The time-reversibility of the chain (see Equation 2) implies π(ui+1)
π(ui) = pui,ui+1

pui+1,ui
= probe(ui,ui+1)

probe(ui+1,ui) ,
hence we can compute γui+1 with O(1) operations if we know γui . But then we can keep
track of γu for any u visited so far, starting with γu0 = 1 and computing γui+1 by Equation 7
the first time ui+1 is visited.

Suppose now to pick t large enough so that the chain reaches its stationary distribution,
i.e. ut ∼ π irrespective of v. One is then drawing state u, as well as its associate weight γu,
with probability π(u). Now if we let γ =

∑
u∈V γu, then π(u) = γuγ

−1 and in particular
π(v) = γ−1. Therefore approximating π(v) amounts to approximating γ; more formally, for
any ε ∈ (0, 1), if γ̂ is a (1± ε

2 )-approximation of γ then γ̂−1 is a (1± ε)-approximation of
π(v). We can therefore reduce to the sum approximation problem of Section 3: compute
with probability (1− δ) a (1± ε)-approximation of γ, assuming we can draw pairs (u, γu)
according to π. The only problem is that by simulating the chain we can only come close
to (but not exactly on) the stationary distribution π. We must then tie the approximation
guarantees of SumApprox to the length t of the random walks, or better to the distance
‖π′ − π‖TV between π and the distribution π′ from which ut is drawn. Formally, we show:

I Lemma 11. There exists some constant c > 0 such that the following holds. Choose
any δ, ε ∈ (0, 1), and suppose we draw the pairs (u, γu) from a distribution π′ such that
‖π − π′‖TV ≤

( ε‖π‖
ln(3/δ)

)c. Then SumApprox( ε2 , δ) with probability at least 1 − δ returns a
multiplicative (1± ε)-approximation of γ by taking at most d720‖π‖−1ε−3(ln 3

δ )3/2e samples.

Proof. Let us start with the bound on the number of samples. Recall the proof of Theorem 9,
and note that the whole argument depends on π but not on the values γu. Indeed, π alone
determines the probability of repeats and thus controls the distribution of the number of
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samples drawn by SumApprox. Hence, by Theorem 9 SumApprox( ε2 , δ) takes more than
d45‖π′‖−18ε−3(ln 3

δ )3/2e = d360‖π′‖−1ε−3(ln 3
δ )3/2e samples with probability less than δ

3 .
Now ‖π − π′‖ ≤ 2‖π − π′‖TV ≤ 2

( ε‖π‖
ln(3/δ)

)c ≤ ‖π‖2(ln 3)−c, which for c ≥ 15 is bounded by
1
2‖π‖. Then, since ‖π

′‖ ≥ ‖π‖− ‖π− π′‖, we have ‖π′‖−1 ≤ 2‖π‖−1 and the bound above is
in turn bounded by d720‖π‖−1ε−3(ln 3

δ )3/2e.
Let us now see the approximation guarantees. Recall the proof of Theorem 6. We want

to show again that Pr[|w(s)
r − γ| ≥

ε
2γ] ≤ 2δ

3 . However, now the samples are drawn according
to π′ instead of π. Let then P ′j =

∑
u∈∪j−1

h=0{Xh}
π′(u) and Z ′i =

∑i
j=0(χj − P ′j); in a nutshell,

P ′j and Z ′i are the analogous of Pj and Zi under π′. It is immediate to check that Lemma 8
holds with Z ′i and P ′j in place of Zi and Pj . Let now w′(i) = γ

∑i
j=1 P

′
j . Note that

∑i
j=1 P

′
j

and Z ′i are respectively the value of w
′(i)
γ and of r − w′(i)

γ just after line 9 has been executed
for the (i+ 1)-th time. Therefore, the argument following Lemma 8 holds if we put w′(i) in
place of the value taken by w after the (i+ 1)-th execution of line 9. Hence the same bounds
hold, and SumApprox( ε2 , δ) ensures Pr[|w

′(s)
r − γ| ≥ ε

2γ] ≤ δ
3 where s is the total number of

draws. Now note that SumApprox does not return w′(s)
r , but w(s)

r where w(i) = γ
∑i
j=1 Pj

is the value of w in SumApprox after line 9 has been executed for the (i+ 1)-th time. We
shall now make |w(s)

r −
w′(s)
r | ≤

ε
2γ; by the triangle inequality we will then be done. First of

all, by the definition of w(s) and w′(s) we have∣∣∣w(s)
r
− w′(s)

r

∣∣∣ = γr−1
∣∣∣ s∑
j=1

Pj −
s∑
j=1

P ′j

∣∣∣ ≤ γr−1
s∑
j=1

∣∣Pj − P ′j∣∣ (8)

Now note that |Pj −P ′j | ≤ ‖π − π′‖TV, since Pj and P ′j are the probability of the same event
under respectively π and π′. Therefore the right-hand side of Equation 8 is bounded by
γr−1s ‖π − π′‖TV. Now, when SumApprox( ε2 , δ) terminates r = k ε

2 ,δ
≥ 4 2+2.2ε

ε2 ln 3
δ , and by

hypothesis ‖π − π′‖TV ≤
( ε‖π‖

ln(3/δ)
)c. Therefore:∣∣∣w(s)

r
− w′(s)

r

∣∣∣ ≤ γs ε2

4(2 + 2.2ε) ln( 3
δ )

( ε‖π‖
ln( 3

δ )

)c
≤ γ s ‖π‖ ε3+c

8 ln( 3
δ )1+c (9)

Finally, recall from above that with probability 1− 3
δ we have s ≤ d720‖π‖−1ε−3(ln 3

δ )3/2e.
In this case the equation above yields |w(s)

r −
w′(s)
r | ≤ γ · 721εc ln( 3

δ )0.5−c, which is smaller
than ε

2γ for c ≥ 1
2 + ln 1442

ln ln 3 ≈ 78. A simple union bound completes the proof. J

We are now ready to prove Theorem 2. Pick t = τ c ln(‖π‖−1ε−1 ln 3
δ )/ ln 2, where c is the

constant of Lemma 11 and τ is the mixing time of the chain. Simulate the walk for t steps
starting from v, and let π′ be the distribution of the final state. By the properties of the
mixing time (see Section 1.1) it holds ‖π − π′‖TV ≤ 2−c ln(‖π‖−1ε−1 ln 3

δ )/ ln 2 ≤
( ε‖π‖

ln(3/δ)
)c and

therefore by Lemma 11 we obtain a (1± ε) approximation of γ. By choosing ε small enough
we can obtain a (1 ± ε′) approximation of π(v) for any desired ε′. The total number of
operations performed is clearly bounded by t = τ c ln(‖π‖−1ε−1 ln 3

δ )/ ln 2 times the number
of samples taken by SumApprox, and by substituting this value in the bound of Theorem 1
we obtain Theorem 2.

3.1 Reducing the footprint
In this section we describe FullMassApprox, the algorithm behind the bounds of Theorem 5.
FullMassApprox is derived from MassApprox as follows. First, instead of performing a new
walk of length t from v for each sample, the algorithm performs one long random walk of
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length T and takes one sample every t steps. The correctness guarantees do not change,
since although the samples do not come all from the same distribution, they are still drawn
from a distribution sufficiently close to π. Second, after checking if the current draw yields a
repeat, the algorithm includes in the set S not only the draw but also all other states visited
so far. Again, this does not affect the guarantees, since we do not need the set S to be built
on independent samples. However, this makes the mass of S grow potentially faster, so we
can hope to get more repeats and decrease the total number of samples.

The concentration hypothesis. Before continuing to the proof of Theorem 5, let us provide
some intuition behind the concentration hypothesis. Suppose the walk runs for T = kτ̄ steps
for some τ̄ = τ poly(log(‖π‖−1)). Such a process can be seen as a coupon collector over k
rounds, where a subset of at most τ̄ states is collected (i.e. visited) at each round. Now,
if we pick τ̄ ′ ≤ τ̄ with τ̄ ′ = τ poly(log(‖π‖−1)), then in each round the τ̄ − τ̄ ′ central steps
are essentially independent of other rounds (more formally, the correlation is O(poly(n)−1)).
Each round is then in large part independent of the others; the issue is that the states
visited within a single round are correlated. Such a correlation is responsible for the factor
τ̄ in the concentration hypothesis and amounts for the (intuitive) fact that conditioning
on the outcome of one step of the walk does not affect the distribution of those steps
that are more than τ̄ steps away. We note that the concentration bounds of [8] give
Pr[
∑T
i=1 fi /∈ (1± ε̄)E[

∑T
i=1 fi]] < 2 exp−Ω

(
ε̄2E[

∑T
i=1 fi]/τ

)
where fi ∈ [0, 1] is a function of

state Xi; however we could not use them to prove the concentration hypothesis of Theorem 4.
Let us now delve into the proof.

Proof. Observe the random walk performed by FullMassApprox. Clearly if τ̄ = Ω(n) then
the walk visits O(τ lnn+

√
τ̄n) distinct states, and the theorem holds unconditionally. Let

us then assume τ̄ = o(n). We disregard the first T0 = Θ(τ lnn) steps of the walk, which of
course yield at most T0 distinct states, and focus on the last T steps, which we denote by
X1, . . . , XT (one may thus plug T + T0 in place of T in the concentration hypothesis). Let
πi denote the distribution of state Xi, i = 1, . . . , T . Since T0 = Θ(τ lnn), then we can make
‖πi − π‖TV ≤ 1

poly(n) . One can adapt the proof of Lemma 11 to FullMassApprox, using the
hypothesis ‖π − πi‖TV ≤

( ε‖π‖
ln(3/δ)

)c for all i ≥ 1. This changes the bounds of the lemma
only by constant multiplicative factors. We can thus focus on proving the bound on the
number of states visited by the walk. In the analysis we assume Xi ∼ π, but again the same
asymptotic bounds hold if ‖πi − π‖TV ≤ 1

poly(n) . Let Sv,t = ∪ti=1{Xi}, let Nv,t = |Sv,t|, and
let Mv,t =

∑
u∈Sv,t π(u). For brevity we simply write St, Nt,Mt.

The crux is to show that Mt, the aggregate mass of St, grows basically as N2
t /t. Formally

we prove that, for any ε, δ, q > 0, if Pr[Nt ≥ q] ≥ 1 − δ then Pr[Mt ≥ q2 ε
4tn ] ≥ 1 − ε − δ.

First, for any λ > 0 let Vλ = {u ∈ V : π(u) < λ
n}. Clearly Pr[Xi ∈ Vλ] =

∑
u∈Vλ π(u) < λ.

Therefore the number of steps Jt(λ) the chain was on a state of Vλ satisfies E[Jt(λ)] < tλ. Now,
by Markov’s inequality Pr[Jt(λ) > q

2 ] < 2tλ
q , and setting λ = ε q2 t we obtain Pr[Jt(λ) > q

2 ] < ε.
Since by hypothesis Pr[Nt < q] < δ, by a union bound we get Pr[Nt ≥ q, Jt(λ) < q

2 ] ≥ 1−δ−ε.
But if Nt ≥ q and Jt(λ) < q

2 then St contains at least q
2 distinct states with individual mass

at least εq
2tn , and thus Mt ≥ q

2
εq

2tn = q2 ε
4tn .

Now choose t such that E[Nt] = Ω(
√
nτ̄); note that E[Nt] = Ω(τ̄) since τ̄ = o(n). By

plugging E[Nt] into the concentration bound for Nt we can then make Pr[Nt < (1− ε̄)E[Nt]]
arbitrarily small for any ε̄ > 0. Let then q = (1− ε̄)E[Nt]. By the bounds of the previous
paragraph, for any δ > 0 with probability 1− δ − ε̄ we have Mt ≥ q2 ε̄

4tn = Ω(nτ̄) ε̄
4tn = Ω( τ̄t ).

Conditioned on the event that Mt = Ω( τ̄t ), any sample drawn after t steps is a repeat with
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probability Ω( τ̄t ). If we then draw Θ( tτ̄ ) samples, which require Θ(t) steps, we witness an
expected Ω(1) samples, which can be made larger than kε,δ by appropriately increasing t.
Again by the concentration bounds on Nt, the total number of states visited can be made
O(2E[Qt]) = O(

√
nτ̄) = Õ(

√
nτ) with probability arbitrarily close to 1 by appropriately

increasing t. J

4 Conclusions

We have given improved, optimal algorithms for approximating the stationary probability of a
given state in a time-reversible Markov chain, and for approximating the sum of nonnegative
real vectors by weighted sampling. Although time-reversible chains are of clear relevance,
extending our results to other classes of Markov chains is an intriguing open question. We
have also shown that the footprint of our algorithms in terms of number of distinct states
visited is tied to the concentration of the number of distinct states visited by the chain;
investigating such a concentration is thus an obvious line of future research.
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5 Appendix

5.1 Probability bounds
This appendix provides Chernoff-type probability bounds that are repeatedly used in our
analysis; these bounds can be found in e.g. [2], and can be derived from [18].

Let X1, . . . , Xn be binary random variables. We say that X1, . . . , Xn are non-positively
correlated if for all I ⊆ {1, . . . , n} we have:

Pr[∀i ∈ I : Xi = 0] ≤
∏
i∈I

Pr[Xi = 0] (10)

Pr[∀i ∈ I : Xi = 1] ≤
∏
i∈I

Pr[Xi = 1] (11)

The following lemma holds:

I Lemma 12. Let X1, . . . , Xn be independent or, more generally, non-positively correlated
binary random variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any ε > 0,

we have:

Pr[X < (1− ε)E[X]] < e−
ε2
2 E[X] (12)

Pr[X > (1 + ε)E[X]] < e−
ε2

2+εE[X] (13)

Note that Lemma 12 applies if X1, . . . , Xn are indicator variables of mutually disjoint events,
or if they can be partitioned into independent families {X1, . . . , Xi1}, {Xi1+1, . . . , Xi2}, . . . of
such variables.

5.2 A lower bound for non-time-reversible Markov chains
I Lemma 13. For any functions τ(n) = ω(1) and p(n) = o( 1

n ) there exists a family of
ergodic non-time-reversible Markov chains on n states having mixing time τ = Θ(τ(n)), and
containing a state v with π(v) = Θ(p(n)) such that any algorithm needs Ω( τ

π(v) ) calls to
step() to estimate π(v) within constant multiplicative factors with constant probability.
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Proof. Consider a chain with state space {u} ∪ {u1, . . . , un−1} and the following transition
probabilities (we assume n large enough to set in [0, 1] any quantity where needed). For u,
set puu = 1− (n−1)p(n)

τ(n) , and puui = p(n)
τ(n) for all i = 1, . . . , n− 1. For all i = 1, . . . , n− 1, set

puiui = 1− 1
τ(n) and puiu = 1

τ(n) . The chain is clearly ergodic. Note that (n−1)p(n)
τ(n) = o( 1

τ(n) )
and therefore the expected time to leave u is asymptotically larger than the expected time to
leave any of the ui. One can then check that (i) π(ui) = Θ(p(n)), and (ii) the mixing time
is τ = Θ(τ(n)) (essentially, the expected time to leave the ui). Pick any ui as target state
v. Suppose now to alter the chain as follows: pick some uj 6= v and set pujv = 1. The new
stationary probability of v would then be roughly 2π(v). However one cannot distinguish
between the two chains with constant probability with less than Ω( τ

π(v) ) step() calls. Indeed,
to distinguish between them one must at least visit uj (and then perform e.g. probe(uj , v)).
Since u is the only state leading to uj with positive probability, one must invoke step(u)
until it returns uj . But puuj = p(n)

τ(n) , hence one needs Ω( τ(n)
p(n) ) = Ω( τ

π(v) ) calls in expectation.
The construction can be adapted to any constant approximation factor by adding more
transitions towards v. J


	Introduction
	Preliminaries
	Problem formulation
	Related work
	Our results

	Estimating sum by weighted sampling
	Approximating the stationary distribution
	Reducing the footprint

	Conclusions
	Appendix
	Probability bounds
	A lower bound for non-time-reversible Markov chains


