
1

A Security Certification Scheme for
Information-Centric Networks

Marco Anisetti, Senior Member, IEEE, Claudio A. Ardagna, Senior Member, IEEE, Filippo Berto, Ernesto
Damiani, Senior Member, IEEE

Abstract—Information-Centric Networking is an emerging al-
ternative to host-centric networking designed for large-scale
content distribution and stricter privacy requirements. Recent
research on Information-Centric Networking focused on the
protection of the network from attacks targeting the content
delivery protocols, while assuming genuine content can always
be retrieved from trustworthy nodes. In this paper, we depart
from the assumption of the trustworthiness of network nodes
and propose a novel certification methodology for information-
centric networks that supports continuous security verification of
non-functional properties. Our methodology provides a complete
and detailed view of the network security status, increasing the
trustworthiness of the network and its services. The proposed
approach builds on an enhanced certification model capturing
the evolution of the system over time. It also defines certification
services that fully integrate with existing networks to collect evi-
dence on the target of certification and carry out the certification
process. It finally proposes two certification processes, centralized
and decentralized, balancing the impact on the network and the
system performance. Efficiency, performance, and soundness of
our approach are experimentally evaluated in a simulated Named
Data Networking (NDN) network targeting property availability.

Index Terms—Assurance; Certification; Information-Centric
Networking; Named Data Networking; Security.

I. INTRODUCTION

Information-Centric Networking (ICN) is a network
paradigm that addresses contents in the network using unique
URI-like names. ICN is increasingly adopted as a substitute
for the common TCP/IP network stack when in-protocol
content distribution and privacy features are paramount [1]–
[6]. The shift from the traditional host-based paradigm of the
TCP/IP stack removes the requirement of uniquely identifying
the network nodes involved in the communication through
network addresses and compresses the network, transport, and
application layers into a single hybrid layer. ICN networks are
also agnostic over the transmission means, allowing the same
stack to be adapted to different physical network layers, such
as Ethernet, WiFi, Bluetooth or other network protocols. The
main advantage of ICN-based networks is their in-protocol
distributed caching solution; this means that, while TCP/IP
based media sharing solutions are not scalable and require
Content Distribution Networks (CDNs) to satisfy large client

Marco Anisetti, Claudio A. Ardagna, Filippo Berto, and Ernesto Damiani
are with the Department of Computer Science, Università degli Studi di
Milano, Milan, Italy. Ernesto Damiani is also with Center for Cyber-Physical
Systems (C2PS), Khalifa University of Science and Technology, Abu Dhabi,
UAE.
E-mail: {firstname.lastname}@unimi.it,ernesto.damiani@ku.ac.ae

bases, ICN nodes can cache contents, immediately satisfying
multiple client requests and reducing the stress on the rest
of the network. ICN also reduces privacy concerns since its
packets do not carry user identifying information.

In the last decade, the research and development community
has made huge steps forward in the implementation of high
quality, high performance, and functionally robust ICN net-
works [6], [7]. Also security of ICN has been deeply analyzed
targeting specific attacks [8], [9] and countermeasures [10]–
[13]. Monitoring solutions monitor the network in depth using
software and hardware tools [14]–[18] that measure the state
of its nodes and their communication links (e.g., load, traffic
utilization, exposed services and uptime). Several protocols,
like SNMP and ICMP, monitor the network supporting easy
detection and configuration of network nodes and aggregation
of monitoring measurements.

Monitoring is not always enough to measure the security
status of a network. Security assurance has been widely
adopted to improve the security status of a target system,
providing justifiable confidence that it behaves as expected
despite failures and attacks. In this context, certification stands
out as a preferred assurance technique, collecting evidence
about a system to prove a specific property on it. The collected
evidence is used to award a certificate to the system proving
a specific (set of) property. Certification schemes have been
applied beyond traditional software (Common Criteria [19])
and targeted web and cloud services [20]–[23] and, more
recently, complex service compositions, where the collected
evidence is based on monitoring, testing, or formal proofs. The
peculiarities of recent certification schemes [20], [21], being
dynamic, continuous, lightweight, make them an opportunity
even for verifying properties of complex network protocols.
However, to the best of our knowledge, security assurance and
certification of ICN are still in their infancy. Transparency and
trustworthiness of information-centric networks become then
a major hurdle against their widespread adoption and can open
the door to persistent threats that affect the network behavior
to its foundation. In addition, weaknesses to poisoning attacks
and system malfunctioning can impair the entire network
operation [14], [17], [24].

In this paper, we present a certification methodology
for information-centric networks continuously certifying non-
functional properties of network nodes in operation. Our
methodology is based on an abstract certification model that
provides all building blocks for network certification, from
evidence collection based on metrics, to certification poli-
cies (non-functional properties, resp.) modeling the expected

2

evaluates

models

targets

executes

Accredited Lab

queries

Target Node

Metricsused by

attached to

refers to

Certificate

queries

requestsrequires verification of

Certification
Client

generates

Policy
Verification

Process

produces

Certification
Process

verified by

Non-Functional
Property

supports

Evidence collects

Measurement
Collection
Process

triggers

instrumentsCertification
Authority

Figure 1: Certification methodology.

behavior to be certified on a specific set of network nodes
(the whole system, resp.). Our certification methodology is
continuous, meaning that non-functional properties are verified
over time to capture any changes in the security status of the
system and corresponding nodes, and take corrective actions.
It can support an effective Quality of Service (QoS) approach,
where network functioning is adapted to evolving conditions,
increasing network trustworthiness and quality. It comple-
ments modern composite applications based on microservices,
paving the way to a new generation of certified compositions
tightly intertwined with networking technologies [4], [5], [25],
[26]. It also supports advanced auditing and monitoring of ICN
attacks such as cache poisoning and pollution thanks to the
continuous certification evidence.

This paper extends our network-level certification approach
in [27] and its contribution is threefold. It first provides an
enhanced certification model capturing the evolution of the
system over time (Section III), and new services provid-
ing certification functionalities (Section IV), which are fully
integrated with the original protocols. It then defines two
deployment models (Section V and Section VI), centralized
and decentralized, which fully integrate with ICNs improving
their trustworthiness. It finally proposes an implementation
of the proposed approach that is fully tested in an ICN
network (Section VII), providing a discussion on application
scenarios of interest for ISPs or cloud providers offering
certified services (Section VIII).

II. CERTIFICATION METHODOLOGY AND SYSTEM MODEL

Figure 1 shows our certification methodology. Dashed lines
refer to the certification roles, dotted lines refer to the
certification process, and black lines refer to the artifacts
of the certification methodology. The Certification Authority
(CA) is responsible for providing trusted and valid abstract
certification models (see Section III) describing the activities
to be carried out during the certification process to verify

ICN Network

ICN Router

ICN Consumer

ICN Producer

Certification

Implementation

Measurement
Collection
Process

Certificate
Release

Certification

Process

Certification

Client
Target

Node

Accredited

Lab

Policy
Verification

Process

Roles

Figure 2: A layer-based view of our System model.

a given security property. Being an offline entity, it dele-
gates (e.g., using the delegation in [28]) the Accredited Lab
(AL) to continuously execute the certification processes and
handle the certificates according to the collected evidence.
The Accredited Lab (AL) orchestrates and executes the en-
tire certification process comprising two sub-processes, the
Measurements Collection Process and the Policy Verification
Process. The Measurements Collection Process collects met-
rics to be evaluated by the Policy Verification Process. The
Policy Verification Process generates evidence based on the
metrics to possibly award a certificate that is attached to the
target nodes and retrieved by the certification clients. The AL
listens for certification requests from certification clients and
starts a certification process; once terminated, it returns a list
of certificate names, each of which is associated with one of
the target nodes. Depending on the network and configuration
scale, the ALs has a different view on the status of the whole
network. An in-depth analysis of the possible solutions is
presented in Sections V-A and VI-A. A Certification Client is
a network client using the results of the certification process.
Any devices in the network, including those that are not acting
as routers, can request a certification from one or multiple
ALs to verify properties across a set of target nodes. The
obtained information helps the client in its internal processes
by identifying nodes suitable for the deployment of a service,
suggesting a more efficient or secure routing path, improving
privacy by excluding untrusted nodes, to name but a few. A
target node is a network node whose status can be measured
by ALs via the Measurement Collection process, and can be
targeted by certification requests from certification clients.1

Figure 2 shows our complete system model as a traditional
ICN network extended with the certification methodology in
Figure 1.

In ICN, content consumers (ICN Consumer) request content
by sending interest packets to neighbor nodes only including
the content name and optional request configuration parame-
ters. Content producers (ICN Producer) register a set of pre-
fixes for which they can respond with data packets, containing
the content itself and a signature that guarantees the integrity

1Encryption can be adopted to preserve confidentiality over the shared
measurements.

3

produce

Metrics

Evidence

constraint

refers to Rules composed

by Policy

satisfies

Non-Functional
Property

refers to

contains supportsCertificate

Figure 3: Abstract certification model.

and non-repudiability of the data. Data packets shared through
the network can be cached by any node in the packet path:
each router (ICN Router) that receives an interest packet first
checks for a matching data packet in its Content Store (CS)
and alternatively forwards the request to its neighbors.

A given ICN node can play multiple roles; for instance, a
certification client can request a certification to an AL for its
own status or be an AL itself. A node can act as an AL for its
own status (self-certification), though the produced certificates
cannot be considered reliable by other clients. This decoupling
property is particularly interesting in a totally decentralized
certification model as we discuss in Section VI-A.

In the remainder of this paper, we describe our three main
building blocks: i) the abstract certification model (Section III),
ii) the certification services (Section IV), and iii) the different
incarnations of our certification process (Sections V and VI).
In the following, we consider NDN, the most common and
studied ICN protocol, as our reference protocol.

III. ABSTRACT CERTIFICATION MODEL

Figure 3 shows our abstract certification models defined
by the Certification Authority (CA). It drives the entire cer-
tification process and possibly results in the issuing of a
certificate. The certificate is retrieved according to a set of
Policies aimed at proving a specific behavior supporting a
given non-functional property. Each Policy is composed of
set of Rules that are based on Metrics captured on the system
under certification. Each metric produces the Evidence stored
in the certificate to support the given non-functional property.

Example III.1 (Abstract Certification Model). Let us consider
the non-functional property Confidentiality. The CA designs an
abstract certification model that consists of policies aimed at
collecting the evidence supporting the property Confidentiality.
The AL then implements the abstract certification model into
concrete policies and rules collecting metrics for a given
network. It behaves as a trusted Accredited Lab (AL) for the
CA evaluating the policies and building the certificate.

A. Metrics

A metric, as retrieved by the Measurement Collection
Process, is a function measuring i) the attributes of a single
node (e.g., the amount of available memory), or ii) the
interactions among multiple nodes (e.g., minimum network
bandwidth between any points). A metric function should be

compliant with key requirements that influence its accuracy
and correctness:

• each metric must focus on a single aspect of the system,
preventing unnecessary duplications;

• the computational effort necessary must be negligible,
compared to the descriptive value of the output;

• metrics must be calculated in parallel, minimizing the
total waiting time;

• metrics must show the temporal evolution of the system;
• metrics must not interfere with the system processes,

including the network protocol;
• metrics should be as much as possible scenario- and user-

independent.

Given the fact that the measurements used to compute
metrics span over a time frame, metrics are often significantly
affected by the interval of time considered during their evalua-
tion. For instance, a metric that calculates the average load in a
network node in a large time span may hide significant spikes
that a stricter evaluation could identify. Given a specific input-
time interval, a metric function produces a measurement of a
specific aspect of the system for that time interval. Formally,
we define a metric as follows.

Definition III.1. Given N a set of network nodes, T a time
interval and V the space of possible values that a metric can
assume, a metric M can be defined as:

M : N×T → V

We note that a metric m ∈M can be evaluated for any sets
of nodes n⊆N in an interval of time t∈T, denoted as m(n, t).
Each metric evaluates the state function on the target nodes
in several time points inside the chosen interval. We also note
that metric values V are bounded to specific data types and
values ensuring a finite and concrete representation. Metrics
evaluated on a target system produce a simplified vision of its
internal state, hiding unnecessary complexity while extracting
significant information.

We note that, evaluating the metric against a chosen subset
of nodes in N in a given time instant, we can map each node
to a partial order. This approach helps in efficiently exploring
network nodes during the evaluation of a set of policies by
defining appropriate heuristics.

B. Rules

Rules are Boolean functions based on one or more metrics
and a time interval. We formally define a rule as follows.

Definition III.2. Given N a set of network nodes, T a time
interval, and B= {true,false}, rule R is defined as:

R : N×T → B

Each rule is a Boolean expression grounded in the simplified
Backus-Naur Form (BNF) described in Definition III.3. For the
sake of simplicity, we skip some trivial non-terminals.

4

Definition III.3. Rules can be expressed using the following
simplified BNF.

D Value ::=⟨constant⟩ | ⟨metric evaluation⟩
D Acc ::=⟨D Value⟩[⟨constant⟩] |

⟨D Value⟩[⟨constant⟩ : ⟨constant⟩]
D Expr ::=⟨D Value⟩ | ⟨D Acc⟩ |

⟨D Expr⟩⟨D Op⟩⟨D Expr⟩ |
⟨D Trans f ⟩(⟨D Value⟩)

D Op ::= + | − | × |/
D Trans f ::= ∑ | ∏ |min |max |abs | len | . . .

D Cmp Op ::= < | ≤ | = | ≠ | ≥ | >
B Value ::= true | f alse | ⟨rule evaluation⟩ |

⟨D Expr⟩⟨D Cmp Op⟩⟨D Expr⟩
B Op ::= ∧ | ∨ | ≡ |⊕

B Expr ::=⟨B Value⟩ | !(⟨B Expr⟩) |
⟨B Expr⟩⟨B Op⟩⟨B Expr⟩

Rule ::=⟨rule name⟩(t1, t2) = ⟨B Expr⟩
In the BNF notation of Definition III.3, ⟨constant⟩ is a

value in V, ⟨metric evaluation⟩ is in the form mi(t′,n′), and
⟨rule name⟩ is a unique rule identifier in the form ri(t′,n′).
Following the abstraction notation, t, t′ ∈ T and n,n′ ∈ N.
Since several rules can share parts of a definition, we include
⟨rule evaluation⟩ in the BNF, allowing a rule evaluation to
be called from within another rule, even in a different time
interval. Metric and rule evaluation can only be applied within
the time interval and nodes of the original rule, such that
t′ ⊆ t and n′ ⊆ n, thus forbidding recursively defined rules
over shifting time intervals or node sets.

For each rule, we define a partial order (R,⪯r) that indicates
the strictness of the rule as follows.

ra ⪯r rb ⇐⇒∀n ∈ N, t ∈ T
rb(n, t)⇒ ra(n, t)

Example III.2 (Rules and Metrics). Let us consider Example
III.1. Three rules can be defined in the abstract certifica-
tion model to address the property of Confidentiality. Rules
ri(n, t) = m(n, t) ≥ 2048 and r j(n, t) = m(n, t) ≥ 4096 where
the metric m indicates the size of the RSA key used to encrypt
all communications between the nodes in n in the time interval
t. We note that r j is stricter than ri, denoted as ri ⪯r r j, since
all nodes with valid r j, also have valid ri. The third rule rk(n, t)
is true iff n uses a valid certificate for message encryption in
the time interval t.

C. Policy

A policy describes the expected behavior of a group of
nodes by indicating a set of rules that should be positively
evaluated. We define a policy as a subset in the powerset of
the space of all possible rules. More formally we define the
set of all policies as

P =℘(R)

with ∀ri ∈ R |ri ∈ R. Policies are evaluated by combining
the output of each of their rules: a policy is verified for a

given set of nodes n ∈ N in a time interval t ∈ T iff all
of its rules evaluated in n and t produce a positive output.
We note that a policy including pairs of conflicting rules, for
instance {m(n, t) = 1,m(n, t) = 2}, produces a negative output.
By contrast, the policy corresponding to the empty set of rules
produces a positive output by default, regardless of which set
of nodes and time intervals are given as input.

Due to the inherent compositional nature of rules in our
model, we can define a partial order (P,⪯p) as follows:

a ⪯p b ⇐⇒∀ra(na, ta) ∈ a∃rb, tb,nb

wherera ⪯r rb, ta ⊆ tb,na ⊆ nb |
rb(nb, tb) ∈ b

We note that a⪯p b iff b contains at least the same or stricter
rules than a and each rule in b is evaluated on a superset of
the time intervals and on a superset of the set of nodes of its
counterpart in a.

Since policies are defined as sets of rules, we can combine
multiple policies together in a single set. Exploiting the partial
order (P,⪯p), we can define a policy P as the Least Upper
Bound (LUB) of multiple policies, producing the equivalent of
concatenating the policy rules with the logical and operator.
This is more effective than a simple union as we can shrink
multiple versions of the same rules to a stricter one.

Policies can also be used as a selection mechanism for
identifying a subset of nodes within the network with peculiar
characteristics. Given a target policy p that we want to validate,
we can verify which subsets of network nodes in a set N
verify the policy. A policy-based filter can be generated by
the combination of multiple policies using the Greatest Lower
Bound (GLB) operator such that p = glb(P), where P is the
set of target policies. This is equivalent to concatenating the
policy rules with the logical or operator. A typical use case for
such an approach is the deployment of a service across a set
of nodes all ensuring a policy such as minimal data replication
or channel encryption.

D. Certificate

The certificate is the outcome of the certification process
and is composed of: i) the policies a certificate proves; ii) the
validation parameters, such as the target set of nodes and the
time interval; iii) the evidence supporting the certificate and
verified by the involved policies.

Definition III.4. We define a certificate as a tuple ⟨t,n,p,m⟩
where t is a time interval in T, n is a set of nodes in N, p is a
policy that has been verified in the interval t for all nodes in
n, and m is the set of evidence related to nodes in n evaluated
during the verification of policy p.

We note that m can be removed from the certificate to
minimize the release of sensitive information. A certificate
is awarded by an AL iff its policy p has been successfully
verified.

E. Non-Functional Property

A non-functional property is an abstract concept that iden-
tifies the expected status of a system. Our model treats

5

a property as a generalization of one or multiple verified
policies, meaning that a group of nodes n has a property p in
the interval t if a selected set of policies has been verified. For
instance, the property confidentiality is verified if all policies
ensuring an encrypted network traffic are verified. Properties
that describe the same concept can have several degrees of
satisfaction depending on which of the associated policies
have been verified. Following the Example III.2, a policy that
ensures all traffic is encrypted using an RSA key of length
2048 bits is weaker than a policy requiring a key length of
4096 bits.

Example III.3 (Policy, Certificate and Property). Let us
consider Example III.2. A policy p = {r j,rk} for property
Confidentiality can be defined considering a target network
using RSA key of length of 4096 bits (r j) and certificate
validity (rk). The AL evaluates the two rules included in the
policy against a given set of nodes n and a time interval t.
If successful, it issues a certificate including the policy, the
parameters of the evaluation, and the results obtained. Given
n= {a,b,c} and t= [12.3,35.6] as input for the verification of
p, if p(n, t) = true, the AL then produces a certificate c in the
form c = ⟨[12.3,35.6],{a,b,c},{r j,rk},m⟩ with m being the
set of evidence collected during the evaluation: m1({a}, t) =
4096, m1({b}, t) = 4096, m1({c}, t) = 4096, m2({a}, t) = true,
m2({b}, t) = true and m2({c}, t) = true.

We note that clients can combine property definitions using
different sets of policies, depending on their requirements and
use cases.

IV. CERTIFICATION SERVICES

The Measurements Collection Process and the Policy Verifi-
cation Process relies on two services, the measurement service
and the policy service, which are deployed on the target node
and on the ALs, respectively.

A. Measurement Service

The measurement collection service allows ALs to query
the internal state of any target nodes through their metrics.
There are three different ways to implement our measurement
collection service: i) pull, ii) push, and iii) hybrid. The pull
solution works as follows:

1) each target node executes a service that binds to a
known prefix listening for measurement requests in the
form /.../⟨node⟩/measure/⟨metric⟩/⟨params⟩,
where ⟨metric⟩ uniquely identifies the metric chosen
by the CA, while ⟨parameters⟩ indicates the metric
parameters such as the interval of time used to measure;

2) an AL can repeatedly send interest requests to a node
with the necessary fields to query its state;

3) when a target node receives a valid measurement re-
quest, it replies with a data packet containing the result
of the metric evaluation with the given parameters;

4) data packets can be cached, supporting the efficient
distribution of the measurements to the ALs that sent
a matching request;

5) the contents of the data packets can be encrypted to
preserve confidentiality.

This approach has the disadvantage of requiring the ALs
to know the prefix of a possibly large number of nodes, but
leaves total control on the ALs side over which metrics need
to be queried and when.

The push solution works as follows:
1) each AL executes a service that binds to a known

prefix listening for measurement updates in the
form /.../⟨node⟩/update/⟨measurements⟩, where
⟨measurements⟩ is an encoded list of measurements;

2) each target node hosts a service that periodically evalu-
ates all metrics using a fixed set of parameters;

3) after each iteration, the node sends the AL an update
based on the newly obtained measurements.

This solution moves the responsibility of maintaining syn-
chronization from the AL to the nodes and reduces syn-
chronization delays. Unfortunately, it also increases the total
amount of data sent, as even unnecessary measurements can
be contained in the packets. Moreover, the ICN caching
mechanism cannot be used for requests and the total network
traffic would increase significantly in the case of multiple ALs.
While this method is possible, it can experience efficiency and
scalability issues.

The hybrid solution combines the pull and push implemen-
tations. Depending on the amount of updated data to share and
the size of the network, it can improve the synchronization
with a limited increase in traffic. It works as follows:

1) when an update is ready, a node sends a small notifica-
tion request to the ALs;

2) the ALs can request the status of the node as in the pull
solution.

This addition helps in synchronizing the two parties, re-
ducing the idle time from when the information is ready
and when it is collected by the ALs, while maintaining the
advantages of the ICN caching mechanism. However, it also
introduces complexity and additional traffic compared to the
push solution.

Our model implements the pull solution and supports the
hybrid one, providing the best trade-off in complexity and
network usage. Each node in the network exposes a predefined
prefix in the form /.../⟨node⟩/measure/list, which
returns the list of available metrics and a prefix in the form
/.../⟨node⟩/measure/⟨metric⟩/[to]/[from] allow-
ing other nodes to query its metrics. Depending on the type
of metric, the two parameters to and from can be optional.

B. Policy Service

The Policy Service formalizes how clients can request
policy verification to ALs and in turn the certification. The
implementation of such service with the pull approach can be
summarized as follows:

1) each AL executes a service that binds to a known
prefix listening for certification requests in the
form /.../⟨node⟩/verify/⟨parameters⟩, where
⟨parameters⟩ indicates the certification parameters,

6

including which policy, time interval, and nodes subset
to use in the evaluation;

2) for each valid certification request, the AL service exe-
cutes a certification process, as described in Sections V
and VI, which produces a list of content names, each
pointing to a certificate;

3) once the certification process is terminated, the service
responds to the client request with the list of certificates
produced in the form of content names.

These responses can be cached, allowing other clients with
matching requests to be immediately satisfied.

V. CENTRALIZED CERTIFICATION PROCESS

Figure 4(a) shows the centralized certification process where
the Accredited Lab mediates all certification activities.

A. Network Model

Figure 4(a) presents a centralized network model at the basis
of a centralized certification process, where a single AL is
responsible for all certification activities and any nodes can be
both certification client and target. While this approach intro-
duces a single point of failure on the AL, which also becomes
a significant bottleneck in larger networks, it introduces some
major advantages as follows.

• Service discovery. The AL knows the prefixes exposed by
the target nodes to query their metrics. With a centralized
network a common approach to service discoverability is
to use a registration approach so that i) the AL prefix
is known to any nodes in the network and ii) each node
that connects to the network notifies its prefix to the AL
through a registration request. This solution is simple to
implement and does not rely on protocol-specific service
discovery features.

• Simpler certificate distribution. The AL distributes the
certificates it produces as contents of a self-owned prede-
fined prefix. The nodes that are awarded with a certificate
are notified by the AL. This solution allows any clients
in the network to query for a certificate knowing only the
AL’s base prefix, while exploiting the caching capabilities
of the network for an efficient distribution of common
data requested by multiple clients.

• Results caching. The AL is the only actor receiving
certification requests and producing corresponding certifi-
cates. Caching of previously verified policies is effective,
reducing the number of network requests necessary to
evaluate new requests.

B. Certification Process

Algorithm 1 presents the centralized certification process
and corresponding policy verification, where a is a certification
client, c an AL, b a subset of nodes, and t a time interval.
Figure 5 visually represents the communication flow of our
centralized certification process.

A policy verification request sent by a certification client
(line 22) is handled by an AL. The certification process starts
by checking whether the locally cached certificates already

Algorithm 1 Centralized certification process

1: function HANDLE REQUEST(policy: p(b, t))
2: V = /0
3: for all v ∈ cached certificates() do
4: for all rule r(b, t) ∈ p(b, t) do
5: if r(b, t)⪯p v then
6: V = GLB(V,v)
7: if p(b, t)⪯p V then
8: return V
9: for all rule r(b, t) ∈ p(b, t) do

10: if r(b, t) ̸⪯p V then
11: for all metric evaluation m(b′, t′) ∈ r(b, t) do
12: m res[m] = m(b′, t′)
13: p valid=

∧
r(b,t)∈p(b,t)

r(b, t)

14: if p valid then
15: cert= new certificate(p(b, t))
16: V = {cert}
17: else
18: V = /0
19: return V
20:
21: function REQUEST VERIFICATION(policy : p(b, t))
22: res= send request(policy)
23: certs= collect certs(res)

verify the target policy; an initially empty policy is expanded
by applying the GLB operator (line 2-6). If the target policy is
smaller in ⪯p than the obtained set, the target policy is verified
and the list of cached certificates returned as output (lines 7-
8). If the cached certificates are insufficient, the certification
process proceeds by evaluating each rule that is not verified
yet (lines 9-13). The certification process finally checks if all
the rules have been verified; if yes, it generates and returns
a certificate to the client, otherwise, it returns an empty list
(lines 14-19). Finally, the client receives the list of certificates
(line 23).

VI. DECENTRALIZED CERTIFICATION PROCESS

Figure 4(b) shows the decentralized certification process
where multiple Accredited Labs manage the certification ac-
tivities and their output can be independently combined.

A. Network Model

Figure 4(b) presents a decentralized network model at the
basis of a decentralized certification process, where every node
in the network can act as an AL making the certification
process completely decentralized. This approach eliminates the
single point of failure of the centralized network model and
allows clients to request certifications to several nodes in the
network. It also enables clients to selectively specify the AL
node on the basis of its trust level, possibly requiring the AL
to filter out those certificates produced by untrusted sources.
The decentralized approach provides additional advantages as
follows.

• Service discovery. The distributed network model extends
the previous one by including an automatic service dis-
covery mechanism, which allows each node to search for
ALs nodes in the proximity. As discussed in Section IV,

7

AL

CNTN

TN

TN

CN
CN

CN

CN

CN

CL

CL

CL

CL
CL

CL

CL

CL

CL

CL
CL

(a)

CN

ALTN

TN

TN

AL
CN

CN

AL

CN

CL

CL

CL

CL
CL

CL
CL

CL

CL

CL
CL

(b)

Figure 4: Abstract certification model instantiation: (a) centralized certification process, (b) decentralized certification process.
Clients (CL) request a policy verification on a set of target nodes (TNs) to ALs.

TN

6. Certificate coll. res.

2. Measure req.

3. Measure res.

5. Certificate coll. req.

4. Verification res.

1. Verification req.

Certification Client Accredited Lab Target Node

ALCL

Figure 5: Centralized certification process: Communication
flow.

each AL, as well as all nodes in the network, exposes
services on predefined prefixes. Depending on the capa-
bilities of the underlying ICN protocol, the clients can ei-
ther use in-protocol service discovery features to identify
nodes with such prefixes, like Named Data Link State
Routing (NLSR) in NDN, or send discovery requests
to each network interface in a multicast fashion with
an increasing maximum hop limit. This approach allows
clients to operate independently from a central authority
and to self-organize in spatially localized sub-networks.

• Decentralized certificate distribution. The tasks of stor-
ing and distributing the awarded certificates are out-
sourced from the AL to the target nodes. An AL
that successfully certified a node sends a registration
request submitting the signed certificate as a param-
eter of a predefined prefix of the target node in the
form /.../⟨node⟩/register/⟨certi f icate⟩. A node
that receives such a request stores the certificate in
a local storage using a unique identifier, exposes the
certificate as a content on a predefined prefix in the
form /.../⟨node⟩/certificate/⟨id⟩, and responds
to the registration request with the complete content
name. The AL can then collect the list of certificate
names, one for each target node, and answer to its
certification client. The target nodes also expose their

list of awarded certificates including the policy and
parameters used on a predefined prefix in the form
/.../⟨node⟩/certificates/[filter], allowing
ALs to easily query their storage for previous certificates
that can be used as a baseline for further verification. The
certificate distribution is then decoupled from the ALs
that produced them and rather controlled by the target
nodes, while maintaining the effectiveness of the caching
capabilities of ICN. The decentralized approach increases
the total number of requests necessary to produce a
certificate in small networks but strongly reduces traffic
originated by packets being forwarded in large networks,
with respect to what is expected in the centralized so-
lution. In other words, it prevents long paths from the
periphery of the network to the central AL and vice versa.

• Result caching. Caching of previous results is more effec-
tive than the one in the centralized model. Each AL can
store the certificates produced by itself and query other
ALs’ certificates directly to the target nodes. This ap-
proach enables a distributed and cooperative certification
service, where each verification can exploit previously
verified policies to produce new knowledge.

• Policy query service. The policy verification process in
our distributed network model employs an additional net-
work service to allow ALs to query target nodes for stored
certificates matching a minimum policy. These targets
listen for query requests on a predefined prefix in the form
/.../⟨node⟩/certificates/⟨ f ilter⟩, where filter is
an encoded policy definition. When a request is received
the node iterates over its certificates, checks which ones
pass the filter, collects their content name in a list and
returns it to the requester. This solution allows ALs
to rapidly collect information about previously verified
policies across their target nodes without requiring a
network-wide level of synchronization over the status of
certificates.

8

Algorithm 2 Decentralized certification process

1: function HANDLE REQUEST(policy: p(b, t))
2: V = /0
3: for all v ∈ cached certificates() do
4: for all rule r(b, t) ∈ p(b, t) do
5: if r(b, t)⪯p v then
6: V = GLB(V,v)
7: if p(b, t)⪯p V then
8: return V
9: for all rule r(b, t) ∈ p(b, t) do

10: cert names= query certs(r(b, t))
11: certs= collect certs(cert names)
12: for all v ∈ certs do
13: V = GLB(V,v)
14: if p(b, t)⪯p V then
15: return V
16: for all rule r(b, t) ∈ p(b, t) do
17: if r(b, t) ̸⪯p V then
18: for all rule r ∈ p′ do
19: for all metric evaluation m(b′, t′) ∈ r(b, t) do
20: m res[m] = m(b′, t′)
21: p valid=

∧
r(b,t)∈p(b,t)

r(b, t)

22: if p valid then
23: cert= new certificate(p(b, t))
24: V = {cert}
25: for all b ∈ b do
26: notify new certificate(b,cert)
27: else
28: V = /0
29: return V
30:
31: function REQUEST VERIFICATION(policy : p(b, t))
32: res= send request(policy)
33: certs= collect certs(res)

B. Certification Process

Algorithm 2 presents the decentralized certification process
and corresponding policy verification, where a is a certification
client, c an AL, b a subset of nodes, and t a time interval.
Figure 6 visually represents the communication flow of our
decentralized certification process.

A policy verification request sent by a certification client
(line 32) is handled by an AL. The certification process starts
by checking whether the locally cached certificates already
verify the target policy: an initially empty policy is expanded
by applying the GLB operator (line 2-6). If the target policy is
smaller in ⪯p than the obtained set, the target policy is verified
and the list of cached certificates returned as output (lines 7-
8). If the cached certificates are insufficient, the certification
process queries the neighbor nodes for certificates that satisfy
the inner rule evaluations and merges them to the previous
partial solution (lines 9-13). If the obtained solution is suffi-
cient, it returns the list of certificates (lines 14-15); otherwise,
the certification process proceeds by evaluating each inner
rule that is not verified yet (lines 16-21). The certification
process then checks if all the inner rule evaluations have been
verified; if yes, it generates and returns a certificate to the
client, otherwise, it returns an empty list (lines 22-29). Finally,
the client receives the list of certificates (line 33).

The evaluation of certificates stored locally or on neighbor

1. Verification req.

2. Certificate query req.

3. Certificate query res.

4. Certificate coll. req.

5. Certificate coll. res.

6. Measure req.

7. Measure res.

12. Certificate coll. res.

11. Certificate coll. req.

10. Verification res.

8. Certificate notification req.

9. Certificate notification res.

Certification Client Accredited Lab Certifiable Node Target Node

CL AL TNCN

Figure 6: Decentralized certification process: Communication
Flow.

nodes (lines 9-13) could be insufficient to verify the target
property. This means that at least one among the set of rules,
the set of nodes, or the time interval causes a failure in the
evaluation. Automatic and timely identification of the cause
of the failure permits to rapidly identify which inner rule
evaluations are missing to meet the policy requirements and,
in turn, request them from other nodes or manually verify
them. Example VI.1 presents scenarios where the evaluation
of certificates stored locally or on neighbor nodes allow the AL
to re-use already verified policies or, at least, partial results.

Example VI.1 (Reuse of Certificates). Let us consider a policy
that requires to check whether a rule r is valid for interval
t and nodes n. Let us assume that AL trusts the certificate
released by another AL. Let us also assume that the AL queries
for previous certificates on n and retrieves a certificate that
validates r for all nodes in n′, where n ⊆ n′ for the interval t′
with t⊆ t′. It follows that rule r has been already verified for t′
and n′, thus the relative evidence can be re-used for the given
policy. Let us now suppose, instead, that t′∩t ̸= /0. In this case,
the results of rule r can be reused in the time interval t′, but
have to be re-evaluated for the time interval t \ t′. Similarly,
considering rule r already verified on the subset n′, the AL
can just verify the unchecked nodes n\n′.

We note that the decentralized certification process proposes
a collaborative approach designed to exploit the caching
capabilities of information-centric networks and improve the
overall system performance. The decentralized approach out-
performs the performance of the standard centralized process
based on a CA managing the entire certification activity,
also improving its security and addressing the problem of a
single point of failure. The centralized approach has the main
benefit of being inline with current certification frameworks.
For this reason, our experiments in Section VII focus on the
decentralized certification process only.

VII. EXPERIMENTAL EVALUATION

We experimentally evaluated our certification methodology
in a simulated ICN for non-functional properties: CS availabil-
ity, host availability, and network availability. To evaluate the

9

performance of our certification process, we first defined the
certification policies for the target properties (Section VII-A);
we then evaluated the performance of the policy verification
process (Section VII-B) and the network bandwidth consumed
by the entire certification process execution (Section VII-C).
We executed our experiments using the Criterion framework
for the Rust programming language, repeating all tests at least
100 times and until the confidence on the measure is higher
than 95%. All tests have been run on Linux with kernel 5.10.78
using an AMD 5900x processor and 32GB of RAM.

A. Certification Policies

We defined a set of policies modelling the non-functional
properties of CS availability, host availability, and network
availability in an ICN network node as follows.
CS optimality. It verifies the correct configuration of the CS
and its operational status. It contains the following rules:

• CSMemoryusageUB checks whether the CS memory us-
age is lower than 60% to prevent starvation;

• CSPolicy checks whether the CS selected policy is Least
Recently Used (LRU);

• CSUsageLB checks whether the CS has at at least 1%
utilization to verify that it is enabled and operational.

Execution optimality. It verifies whether the network node
has enough resources to operate correctly and avoid starvation.
It contains the following rules:

• FreeMemory verifies whether the node has at least 200
MB of memory as a minimal system requirement;

• NodeLoadUB checks whether the node CPU delayed load
is higher than 90% as an indicator of over-utilization.

Regular network traffic. It analyzes the recent network traffic
looking for anomalies regarding the packet size and name
components. It contains the following rules:

• PITDataMinSizeLB defines a lower bound of 10B for the
forwarded data packets to detect possible pollution attacks
attempts;

• PITInterestMinComponentsLB and PITInterestMinCom-
ponentsUB identify a range of valid values between 3
and 12 for the average number of name components in
the forwarded interest packets;

• PITDataAvgComponentsLB and PITDataAvgCompo-
nentsUB define a range of valid values between 3 and
12 for the average number of name components in the
forwarded data packets;

• PITPendingInterestUB sets an upper bound of 100 pend-
ing interest packets stored in the Pending Interest Table
(PIT);

• PITInterestMinSizeLB defines a lower bound of 5B of the
minimum size of the forwarded interest packets.

Healthy node. It combines the three previous policies using
the LUB operator.

B. Policy Verification Process Performance

Given our implementation of the policy verification process,
its asymptotic complexity is estimated as O(n ·r) with n being

0 200 400 600 800 1000
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
ti

o
n
 t

im
e
 (

n
s)

1e8

CS optimality

Execution optimality

Healthy node

Regular network traffic

Figure 7: Execution time for the 4 policies varying the number
of verified nodes.

the number of nodes and r the number of rules included in the
policy. We empirically verified this behavior by measuring its
execution time varying the complexity of the target policy and
the number of target network nodes. To exclude any delay or
interference due to network interactions, we simulated local
executions only, providing pre-cached measurements for each
network node.

Figure 7 shows the execution time varying the number of
target network nodes from one to 1000 in the 4 policies . The
execution time grew linearly with the number of nodes for all
the policies. The healthy node policy has lowest performance
being a combination of the other three policies. The difference
between policies CS optimality, execution optimality and
regular network traffic depends on the performance of the
specific rules composing them.

We then measured the impact of the policy complexity
on the execution time in terms of rules by comparing the
results obtained with a fixed number of nodes and a given
time interval. We repeated the tests comparing the execution
time of the 4 policies using 500 target nodes. The average
execution time for the 4 policies are 16 ms for CS optimality,
27 ms for Execution optimality, 11 ms for Regular network
traffic. and 54 ms for Healthy node. Our results show that the
healthy node policy has an evaluation time close to the sum
of the execution time of the single policies. We observe that
the growth is linear with the number of evaluated rules, as
expected.

Although the asymptotic complexity seems to be reflected
in our experiments, it refers to the worst case, where i)
the measurements cannot be shared between one or multiple
rules, ii) no caching of the previously evaluated policies is
allowed. If we consider sharing and caching, the asymptotic
complexity is reduced to a logarithmic growth. Considering
the caching abilities of both the AL and the network, a more
fair asymptotic complexity estimation is O(log(n) · log(r)).2

2Additional improvements can be obtained by parallelizing the execution
of metric and rule evaluation, first inspecting their dependencies.

10

0 2000 4000 6000 8000 10000

104

105

106

107

108

N
e
tw

o
rk

 u
sa

g
e
 (

B
)

Number of metric requests per policy evaluation

CS optimality

Execution optimality

Healthy node

Regular network traffic

Figure 8: Number of metrics requests per policy evaluation.

C. Network Usage

We evaluated the network bandwidth used by the services
during the certification process. The maximum size of each
network packet is generally limited by the ICN protocol, 4KB
packets in NDN. We then used an upper bound on the number
of network requests to estimate the total traffic. We expect
the number of metric evaluation requests to complete a single
certification to be lower than O(n ·r ·m), where n is the number
of network nodes, r is the number of rules in the policy, and
m is the number of metrics. Assuming the total number of
metrics is limited and lower than the number of rules, with
rules reusing the same measurements, we can simplify the
previous asymptotic complexity to O(n ·m).

Figure 8 shows the relationship between the number of
evaluations and the number of metrics evaluation requests sent
during a certification process in the 4 policies in Section III-C.
Our results show a linear correlation between evaluations
and requests. The evaluation to requests ratio is specific to
the policy definition and varies from 2:1 ratio, with policy
Execution optimality, up to 10:1 ratio, with policy Healthy
node.

The policy verification service in the decentralized certifi-
cation process produces additional traffic in the form of policy
verification requests, policy query requests, and certificate
retrieval. While in the first two cases their number is constant,
the number of certificates retrieval requests grows linearly with
the number of nodes and rules. A single certificate contains
information about multiple nodes and multiple rules, therefore
the actual ratio follows a logarithmic growth.

Again, this experiment had been carried out in the worst
case scenario, where none of the requests are locally cached
in the AL. When caching at both AL and ICN network
nodes are considered, asymptotic complexity is reduced to
O(log(n) · log(m)). In a more efficient implementation, mea-
surements and rule evaluations can be retrieved once and
shared by multiple rules, resulting in a drastic decrease in
the total number of requests. We note that thanks to the ICN
network caching capabilities, these requests are more likely to

be resolved by the caches of one of the network nodes in the
request path before reaching their target node.

VIII. DISCUSSION

The certification methodology in this paper is fully compati-
ble with ICN and does not require changes at protocol level. It
can also substantially improve ICN functionalities in different
scenarios that are summarized in the rest of this section.

A. Network Adaptation

Modern networks have strong flexibility requirements, es-
pecially in mobile contexts, with devices entering and exiting
the network, or even moving inside it, large spikes of traffic,
and an ever increasing variety of network services. Effective
adaptation is a hard problem, especially in large scale networks
like national Internet Service Provider (ISP) networks, where
the number of connected devices easily exceeds millions.
The decentralized certification process in Section VI allows
clusters of devices to self-regulate based on inferred network
properties, while maintaining high levels of trust and privacy.

As an example, let us consider a scenario in which the net-
work is capable of detecting a malfunctioning or compromised
node, requiring that all the traffic is routed to an alternative
path. This approach is viable for large monitored network
nodes, like ISPs, cloud centers, and large firms ingress points,
where teams of experts are available and the computational
power is not a limiting factor. On the other hand, small scale
networks, like offices, districts switches, hospitals, and small
companies likely cannot afford a dedicated team. A network
adaptation solution based on our distributed certification pro-
cess permits the definition of automatic security measures to
respond to the emergency, while requiring far few resources
and less expertise.

B. Secure Service Deployment

The deployment of a service in a set of network of nodes
(e.g., in a public cloud, a multi-tenant environment, a cluster
of servers) raises security concerns. Which properties can the
host guarantee? What level of security can we expect from the
nodes? Would the nodes have the necessary resources to run
the service?

A certification process permits to verify policies and identify
whether a certain set of nodes is suitable for the deployment
of the chosen services. Our certification process can both
evaluate if a given set of nodes is suitable for the deployment
of the chosen services and filter from an arbitrary large set
of nodes the most suitable ones. This can be achieved by
first using a policy-based filtering over the whole network
and then a metric-based ordering on the remaining nodes. We
note that this approach can be integrated in service deployment
schedulers, to improve their effectiveness and enforce resource
or security constraints.

C. Attacks and misbehavior monitoring

While certification is not suitable to prevent attacks, it
can be used as a source of evidence that can be adopted

11

to plan adequate countermeasures. Ad-hoc policies can be
specified to monitor a target network with the goal of iden-
tifying misbehavior/attack instead of specific non-functional
properties. For instance, to counteract cache poisoning attacks
a policy that verifies whether a sample of the incoming content
has a valid certificate can be specified. The related evidence
on the abnormal presence of invalid signatures can be used
to trigger stricter checks on the incoming content, that is,
forcing all network nodes to check the content validity before
forwarding it. Similarly, a policy that monitors the popularity
of content across the network can be specified having the scope
to identify possible cache pollution attacks. The evidence
related to such malicious behavior can be used to re-balance
the content popularity internal representation or to filter out
requests for certain content.

IX. RELATED WORK

Certification methodologies have been successfully applied
in many contexts including software and services. Anisetti et
al. [20] proposed a formal certification scheme to validate
non-functional properties of cloud-based services. Ardagna et
al. [29] described a lightweight certification methodology for
cloud environments, supported by continuous monitoring of
infrastructures, platforms and services. Stephanow et al. [22]
described a test-based certificate solution to identify whether
a cloud service provider assured quality levels match the
real measurements to prevent fraudulent and opportunistic
behaviors. Felici et al. [23] proposed a multi-layer security
certification scheme based on testing and monitoring probes.
The notion of certification has been rarely applied in the past
to verify networking protocols and nodes. Wu et al. [30] and
Bossert et al. [31] applied certification to generic network
security evaluation. They based their paper on Common Cri-
teria certification model which has severe limits in dynamic
environment. Network monitoring is one of the prominent way
to keep control of the networking traffic and behavior and can
be used for obtaining evidence for Certification. Monitoring
in ICN networks has been extensively covered in literature,
with particular emphasis on security of the network. In [14],
[32] the authors proposed a monitoring plane for NDN with
the goal of identifying network traffic anomalies and prevent
content poisoning attacks. Another interesting solution is the
one proposed by Van Adrichem et al. [33], which presented
an implementation of an SDN layer for monitoring and traffic
shaping in NDN. More recently, research has focused on eval-
uating both networking nodes and protocols [34], [35]. Zhou
et al. [34] presented a network-behavior monitoring schema
aimed at identify congestion. Bialas et al. [35] presented a
monitoring technique focused on anomaly detection.

Even if monitoring of ICN and trust in general is receiving
an increasing attention by researchers, the certification in ICN
still a relatively unexplored topic. In this paper we extend our
previous work in [27] that from the best of our knowledge
constitutes the first attempt to apply a certification framework
for ICN nodes using a rule-based schema.

X. CONCLUSIONS

While current literature has already demonstrated the ef-
fectiveness of ICN networks in large and complex scenarios,
it does not include any unified solutions for monitoring and
certification of such networks. In this paper we presented
a certification methodology capable of efficiently verifying
complex policies to ensure the expected levels of QoS. Our so-
lution can be easily adapted for a large variety of applications,
from Service Level Agreements to misbehavior and attack
monitoring. We experimentally evaluated the performance
of our certification service confirming the feasibility of our
methodology. We believe this paper is an important step in the
evolution and diffusion of ICN based services in the field of
edge and cloud computing, as a more efficient and trustworthy
solution.

ACKNOWLEDGMENT

Research supported, in parts, by EC H2020 Project CON-
CORDIA GA 830927, Università degli Studi di Milano under
the program “Piano sostegno alla ricerca”. Filippo Berto
acknowledges support from TIM S.p.A. through the PhD
scholarship.

REFERENCES

[1] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, “Named
data networking: A survey,” Computer Science Review, vol. 19, pp. 15–
55, 2016.

[2] A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang,
“A brief introduction to named data networking,” in Proc. of MILCOM.
Los Angeles, CA: IEEE, 2018, pp. 1–6.

[3] H. Khelifi, S. Luo, B. Nour, H. Moungla, Y. Faheem, R. Hussain, and
A. Ksentini, “Named data networking in vehicular ad hoc networks:
State-of-the-art and challenges,” IEEE Communications Surveys Tutori-
als, vol. 22, no. 1, pp. 320–351, 2020.

[4] Z. Li, Y. Liu, Y. Chen, Y. Xu, and K. Liu, “Performance analysis
of a novel 5g architecture via content-centric networking,” Physical
Communication, vol. 25, pp. 328–331, 2017.

[5] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thomp-
son, J. Burke, B. Zhang, and L. Zhang, “Named data networking of
things (invited paper),” in Proc. of IEEE IoTDI, Berlin, Germany, 2016,
pp. 117–128.

[6] S. Lederer, C. Mueller, C. Timmerer, and H. Hellwagner, “Adaptive
multimedia streaming in information-centric networks,” IEEE Network,
vol. 28, no. 6, pp. 91–96, 2014.

[7] C. Tsilopoulos and G. Xylomenos, “Supporting diverse traffic types in
information centric networks,” in Proc. of ACM SIGCOMM workshop
on Information-centric networking, ser. ICN ’11. New York, NY, USA:
ACM, 2011, pp. 13–18.

[8] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “In-
terest flooding attack and countermeasures in named data networking,”
in Proc. of IFIP Networking Conference, Brooklyn, NY, USA, 2013, pp.
1–9.

[9] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in named
data networking,” in Proc. of 22nd ICCCN, Nassau, Bahamas, 2013, pp.
1–7.

[10] L. Yao, Y. Zeng, X. Wang, A. Chen, and G. Wu, “Detection and
defense of cache pollution based on popularity prediction in named data
networking,” IEEE TDSC, pp. 1–1, 2020.

[11] H. Salah, M. Alfatafta, S. SayedAhmed, and T. Strufe, “CoMon++:
Preventing cache pollution in NDN efficiently and effectively,” in Proc.
of 42nd IEEE LCN. Singapore: IEEE, 2017, pp. 43–51.

[12] A. Karami and M. Guerrero-Zapata, “An ANFIS-based cache replace-
ment method for mitigating cache pollution attacks in named data
networking,” Computer Networks, vol. 80, pp. 51–65, 2015.

[13] M. Conti, P. Gasti, and M. Teoli, “A lightweight mechanism for detec-
tion of cache pollution attacks in named data networking,” Computer
Networks, vol. 57, no. 16, pp. 3178–3191, 2013.

12

[14] T. Nguyen, H. Mai, G. Doyen, R. Cogranne, W. Mallouli, E. M. d. Oca,
and O. Festor, “A security monitoring plane for named data networking
deployment,” IEEE Communications Magazine, vol. 56, no. 11, pp. 88–
94, 2018.

[15] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with SwitchPointer,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 453–456.

[16] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network Monitor-
ing in Software-Defined Networking: A Review,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3958–3969, Dec. 2018.

[17] T. Nguyen, X. Marchal, G. Doyen, T. Cholez, and R. Cogranne, “Content
poisoning in named data networking: Comprehensive characterization of
real deployment,” in Proc. of IFIP/IEEE IM, Lisbon, Portugal, 2017, pp.
72–80.

[18] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and
future,” Computer Networks, vol. 65, pp. 84–98, Jun. 2014.

[19] H. C. A. van Tilborg and S. Jajodia, Eds., ISO 15408 CC – Common
Criteria. Boston, MA: Springer US, 2011, pp. 648–648.

[20] M. Anisetti, C. A. Ardagna, E. Damiani, and F. Gaudenzi, “A semi-
automatic and trustworthy scheme for continuous cloud service certifi-
cation,” IEEE TSC, vol. 13, no. 1, pp. 30–43, 2020.

[21] M. Anisetti, C. Ardagna, E. Damiani, and G. Polegri, “Test-Based
Security Certification of Composite Services,” ACM Transactions on
the Web, vol. 13, no. 1, pp. 3:1–3:43, Dec. 2018.

[22] P. Stephanow, G. Srivastava, and J. Schutte, “Test-Based Cloud Service
Certification of Opportunistic Providers,” in Proc. of 9th IEEE CLOUD.
San Francisco, CA, USA: IEEE, Jun. 2016, pp. 843–848.

[23] M. Egea, K. Mahbub, G. Spanoudakis, and M. R. Vieira, “A Certification
Framework for Cloud Security Properties: The Monitoring Path,” in
Accountability and Security in the Cloud, M. Felici and C. Fernández-
Gago, Eds. Cham: Springer International Publishing, 2015, vol. 8937,
pp. 63–77, series Title: Lecture Notes in Computer Science.

[24] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A Survey of
Security Attacks in Information-Centric Networking,” IEEE Communi-
cations Surveys & Tutorials, vol. 17, no. 3, pp. 1441–1454, 2015.

[25] T. Liang, J. Pan, M. A. Rahman, J. Shi, D. Pesavento, A. Afanasyev,
and B. Zhang, “Enabling named data networking forwarder to work out-
of-the-box at edge networks,” in Proc. of IEEE ICC Workshops, Dublin,
Ireland, 2020, pp. 1–6.

[26] M. Hussaini, S. A. Nor, H. Bello-Salau, H. J. Hadi, A. A. Gumel,
and K. A. Jahun, “Mobility support challenges for the integration
of 5g and IoT in named data networking,” in Proc. of 2nd IEEE
NigeriaComputConf, Zaria, Nigeria, 2019, pp. 1–7.

[27] M. Anisetti, C. A. Ardagna, F. Berto, and E. Damiani, “Security
Certification Scheme for Content-Centric Networks,” in Proc. of the 17th
IEEE SCC, Chicago, IL, USA, September 2021, p. 10.

[28] M. Anisetti, C. A. Ardagna, and E. Damiani, “A Certification-Based
Trust Model for Autonomic Cloud Computing Systems,” in Proc. of
IEEE ICCAC, Sep. 2014, pp. 212–219.

[29] C. A. Ardagna, R. Asal, E. Damiani, T. Dimitrakos, N. El Ioini, and
C. Pahl, “Certification-Based Cloud Adaptation,” IEEE TSC, pp. 1–1,
2018.

[30] X.-H. Wu, J.-P. Li, and W. Yao, “A network security evaluation model
based on common criteria,” in Proc. of IEEE ICACIA. IEEE, 2008, pp.
416–420.

[31] G. Bossert and F. Guihery, “Security evaluation of communication
protocols in common criteria,” in Proc. of IEEE ICC, 2012.

[32] H. L. Mai, T. Nguyen, G. Doyen, R. Cogranne, W. Mallouli, E. M.
de Oca, and O. Festor, “Towards a security monitoring plane for named
data networking and its application against content poisoning attack,” in
Proc. of IEEE/IFIP NOMS, Taipei, Taiwan, 2018, pp. 1–9.

[33] N. L. M. van Adrichem and F. A. Kuipers, “NDNFlow: Software-defined
Named Data Networking,” in Proc. of the 1st IEEE NetSoft, Apr. 2015,
pp. 1–5.

[34] Y. Zhou, J. Bi, T. Yang, K. Gao, J. Cao, D. Zhang, Y. Wang, and
C. Zhang, “HyperSight: Towards scalable, high-coverage, and dynamic
network monitoring queries,” IEEE J-SAC, vol. 38, no. 6, pp. 1147–
1160, 2020.

[35] A. Bialas, M. Michalak, and B. Flisiuk, “Anomaly detection in net-
work traffic security assurance,” in Proc. of DepCoS-RELCOMEX,
ser. Advances in Intelligent Systems and Computing, W. Zamojski,
J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Eds. Cham:
Springer International Publishing, 2020, pp. 46–56.

Marco Anisetti is an Associate Professor at the
Università degli Studi di Milano. His research in-
terests are in the area of computational intelligence,
and its application to the design and evaluation of
complex systems. He has been investigating innova-
tive solutions in the area of cloud security assurance
evaluation. In this area he defined a new scheme
for continuous and incremental security certification,
based on a distributed evaluation architecture. He
has published more than 120 research papers to
international journals and conference/workshop pro-

ceedings. He is associate editor for different international journals including
IEEE TCC, IEEE Access and Elsevier FGCS. He has been a recipient of the
Chester-Sall Award from IEEE IES.

Claudio A. Ardagna is Full Professor at the Uni-
versità degli Studi di Milano, the Director of the
CINI National Lab on Big Data, and co-founder of
Moon Cloud srl. His research interests are in the
area of cloud-edge security and assurance, and data
science. He has published more than 140 contribu-
tions in international journals, conference/workshop
proceedings, and chapters in international books. He
is associate editor for different international journals
including IEEE TCC and IEEE TSC. He has been
visiting researcher at Beijing University of Posts and

Telecommunications, Beijing, China, Khalifa University, Abu Dhabi, UAE,
George Mason University, VA, USA.

Filippo Berto is a Ph.D. student at the Università
degli Studi di Milano. His research interest are in the
areas of cybersecurity, edge computing, distributed
systems and static analysis. His current research
fields are security assurance, 5G and cloud-edge
network and Named Data Networking, focusing on
networks and services certification techniques.

Ernesto Damiani is a Full Professor at Università
degli Studi di Milano, Italy, Senior Director of the
Robotics and Intelligent Systems Institute, Director
of Center for Cyber-Physical Systems (C2PS) within
Khalifa University (UAE) and President of the Con-
sortium of Italian Computer Science Universities. He
has been a recipient of the Research and Innova-
tion Award from the IEEE Technical Committee on
Homeland Security, of the Stephen Yau Award from
the Service Society, of the Outstanding contributions
Award from IFIP TC2, of the Chester-Sall Award

from IEEE IES, of the IEEE TCHS Research and Innovation Award, and of
a doctorate honoris causa from INSA – Lyon (France) for his contribution to
Big Data teaching and research.

	Introduction
	Certification Methodology and System Model
	Abstract Certification Model
	Metrics
	Rules
	Policy
	Certificate
	Non-Functional Property

	Certification Services
	Measurement Service
	Policy Service

	Centralized Certification Process
	Network Model
	Certification Process

	Decentralized Certification Process
	Network Model
	Certification Process

	Experimental Evaluation
	Certification Policies
	Policy Verification Process Performance
	Network Usage

	Discussion
	Network Adaptation
	Secure Service Deployment
	Attacks and misbehavior monitoring

	Related Work
	Conclusions
	Acknowledgment
	References
	Biographies
	Marco Anisetti
	Claudio A. Ardagna
	Filippo Berto
	Ernesto Damiani

