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Abstract

Let p be a positive prime integer. We construct p-adic families of de Rham cohomology
classes and therefore p-adic families of nearly overconvergent elliptic modular forms. As
an application we define triple product p-adic L-functions attached to three finite slope
families of modular forms satisfying certain assumptions.
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1 Introduction

The main theme of this article is that of p-adic variation of arithmetic objects. More precisely
we will point out a very general geometric construction, called vector bundles with marked
sections, which we claim, when applied to (certain) families of p-divisible groups produces p-adic
variations of certain modular sheaves naturally existing there. In fact this construction produces
all the known p-adic families and some which are new. So far this method has been tested on
modular curves and the results are recorded in this article but we think that the method, suitably
adapted, works universally.

The motivation for this study is twofold: on the one hand it comes from the desire and
need to find a general construction of p-adic L-functions attached to a triple of p-adic finite
slope families of modular forms. It has been known for a while, by work of H. Hida ([Hi88]),
M. Harris and J. Tilouine ([HaTi]), how to attach such a p-adic L-function to a triple of Hida
families (or ordinary p-adic families) and its special values have been investigated in work of
M. Harris and S. Kudla ([HaKu]) and more recently of A. Ichino ([I]) and T.C. Watson ([W]).
There have been essays in the literature to extend this construction to finite slope families but
so far they were not successful. For example in [Url4] a construction of a Rankin-Selberg p-adic
L-function (which is a particular case of the Garret-Rankin triple product p-adic L-function
constructed in this article) in the finite slope case is claimed, but the article had a fatal gap.



The gap is explained and fixed using the constructions and results of this article in section
§7 by E. Urban. We refer to [GS| and the refinements in [Hs|] for a construction of triple
product p-adic L-functions which interpolate special values in the balanced region, as opposite
to the unbalanced regions considered in this paper and in the references mentioned so far. See
also [Lo] for an approach using the Euler system of Beilinson-Flach elements, that provides a
construction of two dimensional “slices” of the sought for three variable p-adic L-function. The
second motivation for the study of p-adic variation of modular sheaves is connected to our long
term effort to provide crystalline Eichler-Shimura isomorphisms associated to overconvergent
eigenforms of finite slopes. This line of inquiry is not followed-up in this article but we hope to
report on such results soon.

Let us now be more precise and start by briefly reviewing the triple product p-adic L-functions
in the ordinary case following the exposition of H. Darmon and V. Rotger in [DR1]. We will
content ourselves to explain a particular case in the introduction in order to simplify notations
but see the articles quoted or Section §5.1 and Remark 5.14 of this article for the general case.

Let N > 5 be a square free integer and f, g, h classical, normalized, primitive cuspidal
eigenforms for I'y (V) of weights k, ¢, m respectively (and trivial characters) which are supposed
to be unbalanced, i.e., there is an integer t > 0 such that k = ¢ +m + 2t. Let p > 5 be a
prime integer such that (p, N) = 1 and we assume that f, g, h are all ordinary at p. Let f, g, h
be Hida families of modular forms for I';(N) interpolating in weights k, ¢, m the forms f, g, h
respectively. Here f, g, h are seen as g-expansions with coefficients in the finite flat extensions
of A :=Z,[Z;] denoted Ay, Ay, Ay respectively.

Before we start defining the p-adic L function attached to f, g, h let us make a short
revisit of g-expansions and their properties. If R is a finite flat extension of A we denote by
U, V: R[q] — R[q] the following R-linear operators: let a(q) = Y~ a,q" € R[q], then
U(a)(q) = > 0" g anpg™ and V(a)(q) = D07 ang”™. We immediately remark that U oV = Idgy
and define, for o € R[q] as above

o0

adg):i=Id=VolU)()g)= >  anq"

n>1,(p,n)=1

One sees that alPl(q) € R[q]Y=° and moreover that if 8(¢q) € R[q]V=" then BFl(q) = B(q), i..

R[q]V=° = (R[[q]])[p]. The operators U, V' defined above on g-expansions preserve the subspaces
of p-adic modular forms for various weights.

We define the differential operator d: R[q] — R][q] to be the R-derivation d := qdi. Let us
q

remark that if s: Z; — R* is a continuous homomorphism (it is called “an R-valued weight”)
it makes sense to define the operator d*: R[g]"=" — R[q]V=" by

o0 e}
d*( Z anq") = Z ans(n)q".
n=1,(n,p)=1 n=1,(n,p)=1

In particular for the universal weight Z; — A* = (Zp[[Z;]])* — R" sending t € Z; to the
image in R* of the grouplike element [t] € Z5 C A*, we denote (following [DR1]), by d* the



corresponding differential operator on g-expansions, i.e., the operator defined by

o0 o0

d*( Z anq") == Z an[n]q".

n=1,(n,p)=1 n=1,(p,n)=1

Let us now go back to our three Hida families f€ Af[q], g€ Ay[q], he Ap[q]. Following [DRI,
Def. 4.4] we define

(f,e(d*(gP!) x h))
(£, 1)

Ll(f, g h) = €N, @Ay ® Ay,

where A} denotes the total ring of fractions of A, ed := lim, ., U™ is Hida’s “ordinary projec-
tor” from p-adic families of nearly overconvergent forms as in [DR1], to ordinary modular forms
and the inner product ( , ) in the above formula is the Peterson inner product for ordinary
families of weight the weight of f. We refer to [DR1, §2.6] for details. Then the specialization of
this three variable p-adic L-function at a triple of unbalanced classical weights (z,y, z) (where
d*® is specialized at d', with x = y + 2 + 2t, t € Z>o) can be expressed as a square root of the
algebraic part of the classical central value of the triple product of fx, gy, h,.

Suppose now that f, g, h are classical normalized, primitive cuspidal eigenforms as above which
have finite slope instead of being ordinary at p. Then let us remark that the formula above
defining E;: (f, g, h) makes no sense as there is no finite slope idempotent analogous to e apart
from the ordinary one. The reason is that the operator U is not compact on g-expansions or
on p-adic modular forms. One has to work with finite slope families of modular forms seen as
overconvergent sections of the modular sheaves "/, w*s, ro*» where kg, kg, ki are the weights
of the families interpolating f, g, h respectively. Most importantly, instead of the operator d on
g-expansions we have to work with a connection Vj, on a certain de Rham sheaf of weight k.
This makes the whole construction geometric and before proceeding to the construction of the
p-adic L-function one has to define the new de Rham sheaves and study their properties.

More precisely, let X" denote the adic analytic space associated to the modular curve X;(N)q,
and for every integer r > 0 and interval I = [0,0], b € Z let X, ; denote the strict neighbourhood
of the ordinary locus in X x W; where the generalized elliptic curve has a canonical subgroup of
order 1 < n < r+b+1. Here W is the weight space, i.e., the adic analytic space of analytic points
attached to the formal scheme Spf(A) and W is a certain open subspace of weights containing
k, ¢, m (for details see Section §3.1).

Let now X, ; — X and 20; be precisely defined formal models of X, ; — X', and respectively
of Wi, for example X is the formal completion along its special fiber of the modular curve
Xi1(N)z,. Let m: E — X,; be the inverse image of the universal generalized elliptic curve on

X and define wg = . <Q}3/3€”(log(7r*1(cusps))> and Hg := Rlm, (Qb/x”(log(yrl(cusps))).

Then wg is a locally free modular sheaf of rank one and Hg is a locally free modular sheaf of
rank two, related by the Hodge filtration exact sequence on X, ;:

0 — wg — Hgp — wp, — 0.
Moreover the Gauss-Manin connection defines a logarithmic connection

V:Hp — Hgp ®o, | Q;&,z/ﬂﬁz (log(cusps)).
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On X, ; we have a family of line bundles (w%m)meN and a family of locally free Oy, ;-modules

with connections and Hodge filtrations (Symm(HE), Fil,, o, Vm)m y and the main tasks before
us is to p-adically interpolate these two families by using weights in ;.

Let us recall that the first family has already been interpolated in various degrees of generality
in [AIPHS], [AIS2] and [AIPS].

More precisely if a € W; is any weight there is a sheaf 0® on X, ; such that if o € Z then
v and w$ coincide on the analytic space X, ; and such that the elements of HO(%n 1,0%) are
(integral models of) the overconvergent modular forms or families of weight o and tame level N.

In particular, returning for a moment to our construction of the p-adic L-function, given
f, g, h we have modular sheaves t*/, s, r*» and (integral) families w; € HO(X, [, w"r),
w, € HO(X,. 1, w"), w), € HY(X, 1, ™) interpolating f, g, h respectively in weights k, £, m.

The integral p-adic interpolation of the families (Symm(H E), Filne, Vm)m <y in this article
is new and it follows from using the formal vector bundle with marked sections attached to a
sheaf like Hg and a section of it coming from a generator of the Cartier dual of the canonical
subgroup of E via the map dlog. Our first result is the following, where we summarize Theorem
3.11, Theorem 3.18, Section 3.6 and Theorem 4.3:

Theorem 1.1. For every weight o € Wy there exists a formal sheaf W, on X, with mero-
morphic connection V,, and filtration File(W,) which define on the adic analytic fiber X,.1 a
sheaf of Banach modules W2 with a connection V,, and filtration File(Wa") satisfying Griffith’s
transversality.

Moreover if a € Z>( then (Syma(HE), Fil, ., Va) is canonically a submodule (with connection
and filtration) of the sheaf defined by (WZ“, Fil, (Wan), Va) on X1 and their global sections of
slopes < B, for B < a—1 are equal.

Finally we show that there is b > r such that for every w € H(X,;, Wi V=0 and for
every weight v € Wy satisfying the conditions of Assumption (4.1), there is a section V] (w) €
HO(X, 1, Wah 5. ) whose q-expansion is d"(w(q)).

The Assumption (4.1) on a and v for the existence of V) (w) amounts to demand that «
and v are p-adically close to classical weights. In view of Remark 3.39 it seems difficult to
weaken these assumptions, namely one does not have a formula for V) (w) valid for a and ~
varying over the whole weight space. As these are the technical tools needed to construct the
p-adic L-function in the finite slope case in Definition 5.5 we get an interpolation property over
this type of regions of weight space. As in loc. cit., though, one needs to take overconvergent
projections of forms of the type V7 (w) times an overconvergent form, it might still be possible
that an interpolation for the triple product L-function exists more generally as hinted in [Lo]
and in §7.5.

We'd like to point out that Zheng Liu has defined a sheaf similar to the adic analytic sheaf
W2 and a connection V, on it in [L] but this is not sufficient to define the triple product p-
adic L-functions in the finite slope case. The ¢-expansions of sections of the sheaves W, of the
Theorem are called nearly overconvergent modular forms; see Definition 3.22 and the Remark
3.23 for connections with previous work of Harron-Xiao [HX], Darmon-Rotger [DR1] and Urban
[Url4].

We now describe the structure of the article. In Chapter §2 we introduce one of the main players
of this article, the formal vector bundles with marked sections, and study their main proper-
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ties. In other words we present a geometric construction associating to every formal scheme §
(which has an invertible ideal of definition Z) and data (€, sy, ..., sq) consisting of a locally free
Og-module of rank n > 1 and “marked global sections” sq,...,s; of £/ZE (satisfying certain
properties) a formal scheme 7: Vo(E, s1,...,84) — S whose sheaf of functions is “interpolable”.

We show that if (£, s1,...,s4) has extra structure e.g. a connection, a filtration, a group
action then the sheaf ., (OV0(5,51,...,s d)) has an induced extra structure of a similar nature.

In Chapter §3 we apply the above construction to modular curves and locally free sheaves
which are modifications of wg and respectively Hg. The marked section will be the image of a
generator of the Cartier dual of the canonical subgroup via the map dlog, and therefore we have
to place ourselves on a partial formal blow-up of a formal modular curve where such a canonical
subgroup exists. The sheaves wg and respectively Hg have to be modified in order for the section
coming from the dual canonical subgroup to satisfy the required property of a “marked section”.

This way we associate to every weight o € W; a sheaf to® and a triple (Wa, Va, Fil.(Wa)),

consisting of a sheaf W,, a meromorphic connection V, on W, and an increasing filtration
of W, such that Fily(W,) = ro®. Furthermore we prove in Theorem 3.11 that, forgetting the

connection, the sheaves (Wa, Fil, (Wa)> can be extended to the whole interval I = [0, co] and

we provide in Theorem 3.17 an explicit description of these sheaves at the points at infinity.

On the global sections of ® and of W, as well as on the de Rham cohomology groups
with coefficients in (W,, V,) we have natural, linear actions of Hecke operators such that U is
compact.

In Chapter 84, which is the main technical chapter of the article, we show that if «, ~
are weights satisfying certain conditions (see (4.7) and w is a global section of WY such that
U(w) = 0, then there is a canonical section denoted V7 (w) of the sheaf W9, over a “smaller
strict neighbourhood of the ordinary locus” whose g-expansion is d”(w(q)).

Having thus defined all the technical tools needed, in Chapter §5 we review the construction
of the triple product p-adic L-function in the ordinary case in all its generality and construct
the triple product p-adic L-functions attached to finite slope p-adic families of modular forms.

In Appendix I we show how given a general p-divisible group G, over a formal scheme, “which
is not too supersingular”, one can attach to its sheaves wg and Hg (in fact to modifications of
them) and a basis of the points of the Cartier dual of its canonical subgroup, canonical formal
vector bundles with marked sections. We think that if this construction is applied to certain
Shimura varieties of PEL type (for example to Hilbert modular varieties) it would be possible
to define triple product p-adic L-functions in that setting. It should be clear though that we do
not perform that construction here.

Finally Appendix II, written by E. Urban contains a corrigendum to the article [Url4]: the
author (of [Url4] and this appendix) explains and fixes the gap in the cited article using the
results of the previous sections of this paper.
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2 Formal vector bundles with marked sections.

In this chapter we present a general construction which associates to every formal scheme S with
ideal of definition Z which is supposed to be invertible and data (&, s1, Sa, . . ., S;,) consisting of
a locally free sheaf £ of Og-modules of rank n > m on S and global sections sy, $s,...,Sm
of €& := £/IE which generate a locally free direct summand of rank m of &, a formal scheme
7w :Vo(E, 81,82, ...,8,) — S called vector bundle with marked sections, with the property
that HO(Vo(&, 51,82, 5m), Ovg(e.51,59,..5m)) CaN be seen as the ring of R := H(S, Og)-valued
analytic functions on the set

Ey:={v:H%S,E) — R | vis R linear and v(mod I)(s;) = 1,5 =1,2,...,m}.

The construction is functorial in (€, s, S2,...,S,) and if £ has additional structure compat-
ible with (s, $2,...,8m), such as a filtration, a connection, a group action, then the sheaf
T, (OVO(&SLSQ,”_?SM)) has an induced extra structure of a similar nature.

2.1 Formal vector bundles.

Consider as above a formal scheme S with invertible ideal of definition Z C Og. Denote by S
the scheme with structure sheaf defined by Og/Z.

In this section all formal schemes considered will be formal schemes f: T — S over S, with
ideal of definition f*(Z) C Op which is an invertible ideal, i.e., locally on T it is generated by
an element that is not a zero divisor.

Definition 2.1. A formal vector bundle of rank n over S is a formal vector group scheme
J: X — S over S, locally on S isomorphic to the n-fold product of the additive group Gy, g.
Equivalently it is a formal scheme f: X — S such that there exist an affine open covering
{Ui}ier of S and for every i € I an isomorphism v;: X|y, = f~'(U;) = Ap,, where Af, is
the formal n-dimensional affine space over U;, such that for every i, j € [ and every affine
open formal subscheme U C U; N Uj, the automorphism induced by t; o 1; ! on A% is a linear
automorphism.

If f: X —» Sand f': Y — S are two vector bundles over S of rank n and n’ respectively,
a morphism (resp. isomorphism) g: X — Y of formal vector bundles over S is a morphism
(resp. an isomorphism) as formal vector group schemes.

If we have charts ({Ui}ig, {1/]7;}7;6[) and ({U‘;}jej, {¢}}jeJ) of X and Y respectively, a mor-
phism (resp. isomorphism) g: X — Y of formal vector bundles over S is a morphism (resp. an
isomorphism) of formal schemes over S such that for every i € I, every j € J and every affine



open formal subscheme U C U; N U; the induced map

v glu ¥j /
A — Xy — Yy — A}
is a linear map.

Lemma 2.2. Let £ be a locally free Og-module of rank n over S. Then there exists a unique
formal vector bundle V(&) of rank n over S representing the functor that associates to any formal
scheme t: T — S the H(T, Or)-module Homo, (t*(€), Or) of homomorphisms t*(€) — Or as
Or-modules.

This contravariant functor V defines an equivalence of categories between the category of
locally free Og-modules of constant rank and the category of formal vector bundle of finite rank
over S and this equivalence preserves the notion of rank.

Proof. Let £ be a locally free Og-module of rank n over S. Define f: V(£) — S to be the
formal scheme over S defined by the Z-adic completion S/y?ns(f,' ) of the Og-symmetric algebra
Symg(€) = @ienSymp, (€) associated to €. Consider any affine covering {U; }ses of S such that
Elu, is a free Opy,-module of rank n. If ey ;,ea,,...,€,; is a basis of €|y, as Op,-module, then
we have natural isomorphisms of Op,-algebras ¢;: Symg(E)|y, = Op, (X1, Xo, ..., X,) sending
ej; — X;. One readily checks that (V(E), f, {U;}ier, {ti}ier) is a vector bundle of rank n over
S. For any formal scheme ¢: T"— S the T-valued points of V(&) (over t), correspond bijectively
and functorially in T’ and in ¢ with the Op-linear homomorphisms ¢*(Symg, (£)) = t*(€) — Or.
This provides the claimed representability.

We exhibit an inverse to this functor. Let f: X — S be a formal vector bundle of rank n over
S. Define £ to be the presheaf of sets that associates to any open formal subscheme U C S the
set of sections of X over U. We leave it to the reader to show that £(U) has a natural structure
of HY(U, Oy )-module that makes £ a locally free Og-module of rank n. We then associate to X
the Og-module £Y. This is the sought for inverse.

]

2.2 Formal vector bundles with marked sections.

For a locally free Os-module & of rank n we denote by & the associated Og-module. Let
S1,...,8m, with m < n, be sections in H°(S,€) such that the induced map &;2,05 — &,
sending » . a; — >, a;s;, identifies OF with a locally direct summand of .

Definition 2.3. Define V( (€, s1, Sa, ..., Sm) as the sub-functor of V(&) that associates to any
formal scheme ¢: T — S the subset of sections p € V(E)(T) = H*(T, ¢*(€)") whose reduction
p = p modulo 7 satisfies p(t*(s;))) = 1 for every i = 1,...,m.

Notice that this construction is functorial with respect to the tuples (&€, s, ..., S;,). Namely
given a homomorphism ¢: & — & of locally free Og-modules of finite rank and sections

Siy.o.., 8l € & and S1,...,5m € &, satisfying the requirements above and such that g(s}) = s;

r m

for every ¢ = 1,..., m, we obtain a commutative diagram

Vo(E,sl,...,sm) — V((C:)

\J 1
Vo(E',sY,...,8) — V(&).

r m
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Lemma 2.4. The morphism Vo(E,s1,...,8n) — V(&) is represented by an open formal sub-
scheme of a formal Z-admissible blow up of V(E).

Proof. The sections s1, ..., sy, define a subsheat of Og-modules Og C & with quotient Q which

is a locally free sheaf of Og-modules of rank n — m. There is a a quotient map Sym*(€) :=
EBieNSym’bg(g) — @ieNSym’b?(Q) whose kernel is the ideal (s; — 1,...,s, — 1). Taking the
induced map of spectra, relative to S, such quotient map defines a closed subscheme C' in
V(&) := Spec(Sym*(€)). Let J := (s1 — 1,..., s, — 1) be the corresponding ideal sheaf and
let J C S/yr\ns(é' ) be its inverse image. Consider the Z-adic completion B of the open formal
subscheme of the blow up of V(&) with respect to the ideal 7, open defined by the requirement
that the ideal generated by the inverse image of J coincides with the ideal generated by the
inverse image of Z.

In local coordinates if U = Spf(R) C S is an open formal subscheme such that Z is generated
by a € R, E|y, is free of rank m with basis ey, ..., e, such that ¢; = s; modulo « for i =
1,...,m and eny1,...,6, modulo « define a basis of @, then V(E)|y is the formal scheme
associated to R(Xj,...,X,) and J|y is the ideal (oz7X1 —1,..., X, — 1). In particular B|y =
R(Zy,.... Zm, Xins1, - - -, X)) with morphism B|y — V(E)|y defined by sending X; — X; for
t=m+1,....,nand X; > 14+ aZ; fori=1,...,m.

For every formal scheme T over U a section p € V(E)(T) is defined by the images ay,...,a,
of Xi,..., X, that we can identify via the identification V(£)(T') = Homo, (t*(£), Or) with the
images of t*(e1), ..., t*(e,) via p. Then p lies in Vo(E, s1,..., s,,)(T) if and only if p(t*(e;)) =
a; = 1 modulo « for i = 1,...,m. Hence p uniquely lifts to a T-valued point of B|; given by
sending X; — a; fort=m+1,...,nand Z; — a’a—_l fori=1,...,m (which is well defined as «
is not a zero divisor in Or). Viceversa any T-valued point of B|; defines a section p € V(E)(T),
by the formula above, that in fact lies in V(& s1,. .., $,)(T) by construction.

One verifies that the isomorphisms B|y, = Vo(E€, s1, ..., S )|v, one obtains in this way varying
U; glue and provide the sought for isomorphism B = V,(&, sq,...,s,) as formal schemes over
V().

The functoriality is immediately checked.
O

2.3 Filtrations on the sheaf of functions of a formal vector bundle
with marked sections

Let £ be a locally free Og-module of rank n and assume that there exists an Og-submodule
F C &, locally free as Og-module of rank m, which is a locally direct summand in £. Equivalently
E/F is also locally free as Og-module of rank n — m. Assume also that the global sections
S1,...,8m of € as in §2.2 define an Og-basis of F. By the functoriality property in Definition
2.3 we obtain a commutative diagram

V()(S,Sl,...,sm) — V((C/’)

\ \
VQ(J—",Sl,...,Sm> — V(.F)

Denote by f: V() — S and fo: Vo(€,s1,...,8,) — S the structural morphisms. Notice
that the morphism V(&) — V(F) is a principal homogeneous space under the action of the
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formal vector group scheme V(E€/F) (the action is provided by the inclusion of formal vector
group schemes V(E/F) C V(&) and the group scheme structure on V(E); the fact that it is a
principal homogeneous space follows as locally on S one can choose a splitting of the projection

& — &£/F which identifies V(&) with the product V(F) xg V(E/F)).

Lemma 2.5. The diagram above is cartesian. In particular, the vertical morphisms are principal
homogenous spaces under the formal vector group scheme V(E/F).

Proof. Let U = Spf(R) be an affine formal subscheme of S such that Z|y is generated by
a € R and F, £ over U are free with basis ey, ..., ey, resp. e1,...,€m, f1,---, fnm and e; = s;
modulo « for ¢« = 1,...,m and fi,..., f,_m define the complementary direct summand of
F in E. Then V(F)|y = Spf(R(X1,..., X)), V(E)|r = Spf(R(X1,.... X, Y1, ... Yom)),
Vo(F,s1,-- - 8m)|lv =SPE(R(Z1, ..., Zn)), Vo(E, 81, $m)|lv = SPHR(Z1, . .., Zin, Y, .., Yoiim))
where X; =1+ aZ; for i = 1,...,m. The statement follows.

]

Corollary 2.6. With the notations above, fo.Oy,(e s,
tion Filg fo,«Ovy(e.s1,....m) With graded pieces

sm) 18 endowed with an increasing filtra-

-----

-----

Grhfo,*OVO(g,sl ..... Sm) g fO,*OVO(}—,Sl ..... Sm) ®OS Symh(g/f)

The filtration is characterized by the following local description. If U = Spf(R) C S is an
open formal affine subscheme such that F, £ over U are free with basis ey, ..., e, respectively
€1y Cms f1y-- oy fnom SO that

V0<JT_‘7517 cee 75m>’U = Spf(R<Zl7 . '7Zm>)7V0(87317 - '7Sm)‘U = Spf(R<Zh cee 7Zma}/17 s 7Yn7m>)7

then Fily fo«Ovy (e s1,....sm) (U) consists of the polynomials of degree < h in the variables Y1, ..., Yo
with coefficients in R{Zy,..., Zp).

Proof. We use the fact that Vo(&,s1,...,8n) — Vo(F,s1,...,8,) is a principal homogenous
spaces under V(E/F) to prove that the local definition of Fil, fo Oy, e s, y is well defined
and glues for varying U’s.

If U = Spf(R) C S is an open formal affine, any other choice of bases defines new coordinates
X1, X0 Y] oo Y that are related to Xy,...,X,,,Y1,..., Y, by an R-linear transfor-

? n—m

----- Sm

mation. In particular the induced map R(X1,..., X, Y1, ..., Yom) = R(X{, ..., X, Y], ..., Y )
sends each Y; to an R-linear combination of the X7,..., X] Y/, ..., Y, and is then an affine
transformation relative to R(X7],..., X] ) = R(Xi,..., X,,). The second claim follows as well.

0

The construction of the filtration is clearly functorial. Namely given a homomorphism
g: & — & of locally free Og-modules of finite rank, F' C £ and F C &, locally free as Og-

modules of rank d and locally direct summands such that g(F') C F, and sections si, ..., s,, € g
and s1,...,8, € &, satisfying the requirements above and such that g(s;) = s; for every
1 =1,...,m, we obtain

Corollary 2.7. Let fo: Vo(E,s1,...,5m) = S and f}: Vo(E',s),...,s),) — S be the structural
morphism. The morphism g: fé’*OVO(5/7S/1 ..... s ) = JoOvo(e,51,8m) defined by g (see Definition
23) S@’I’Lds Fﬂhféy*ovo(g/,s/l7__.75%/) to Filhf07*ovo(g7sl ..... sm)'
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2.4 Connections on the sheaf of functions of a formal vector bundle
with marked sections

Suppose that we have fixed a Z,-algebra Ay and an element 7 € Aj such that Ay is T-adically
complete and separated. Let S be a formal scheme locally of finite type over Spf(Ag) such that
the topology of S is the 7-adic topology, i.e. Z = 70g. We let QE@/AO be the Og-module of
continuous Khaler differentials.

Consider a locally free Og-module £ endowed with an integrable connection V: & — £ ®o4
Qg e Assume that we have fixed sections si,..., 5, € &€ as in §2.2 which are horizontal for
the reduction of V modulo Z. Let fo: Vo(E, s1,...,8m) — S be the structural morphism. We
explain how V defines an integrable connection

VO: fO,*OVO(S,sl ..... Sm) — fO,*OVO(E,sl ..... sm)®Q,19/AO~

Grothendieck’s description of integrable connections: First of all recall Grothendieck’s ap-
proach to connections (see for example [BO] section §2). Let Pg 4, := Sx 4,5 and let A: .S — Pg

be the diagonal embedding. It is a locally closed immersion and we let Pélz% be the first in-
finitesimal neighborhood of A: if locally on S x4, S the morphism A is the closed immersion

defined by an ideal 7, then Pél/)AO C S X4, S is defined by J? We have the two projections
(1)

J1, Jo: PS/AO — S. Then, to give an integrable connection V: M — M ®¢, Q}SY/AO on a locally
free Og-module M of finite rank, is equivalent to giving an isomorphism of O,u) -modules

S/A¢
e: ja(M) := OPS/)AO Ry M = ji (M) := M @0, Opél/)A such that A*(e) = Id on M and e satisfies

0
a suitable cocycle condition with respect to the three possible pull-backs of € to S x 4, S x4, S.
In fact the relationship between € and V is given by the following formula, for every x € M

e(l®z) =2®1+ V(z), where V(z) € M ®o, (T/T?) = M R0, Q}s/Ao‘

Remark 2.8. Let us remark that with notations as above, even if M is an arbitrary quasi-
coherent Og-module (i.e. not necessarily locally free of finite rank) and e: j3(M) = j5(M) is

an (97)(1) -linear isomorphism such that A*(e¢) = Id,,, then € defines a connection V: M —
S/Ag

M®0sQ5),, by the formula: V(z) =e(l®@z) -z ® 1.

Consider now the given locally free Og-module £ with integrable connection V: & — £ ®o4

Q}g/ 4, and with sections sq,..., s, € € horizontal for the reduction of V modulo Z. This
means that the associated isomorphism e: j3(£) — j7(€) has the property that its reduction €
modulo Z satisfies €(j3(s;)) = ji(s;) for every i = 1,...,m. We deduce from the functoriality of

Definition 2.3 that € defines compatible isomorphisms of formal schemes over S:

Pél/)AO XSVO((C:’SIP‘.’Sm) i> V0(87517"'75m) X,S'Pél/z‘lo
¢ !
PO, s VE) D VE)xsPY,

such that A*(¢y) = Id and A*(e) = Id. Passing to functions we obtain compatible isomorphisms

11



!

73 (fOv(e)) = 75 (f-Ove))
1 1

.75 (fO,*OVo(E,sl,...,sm)) i .]ik (fO,*OVo(E,sl,...,sm))

such that A*(e}) = Id and A*(¢**) = Id. By construction ¢* coincides with the isomorphism
€, once restricted to the Og-submodule £ C f.Oy), and is uniquely characterized by this
property as f,Oy(g) is the Z-adic completion of the symmetric algebra defined by £. Since
the vertical maps are obtained via a blowup by Lemma 2.4 the commutativity of the diagram
above uniquely characterizes €. In particular it satisfies the cocyle condition as €™ does since
¢ does. Via Grothendieck’s correspondence this defines the sought for, compatible, integrable
connections:

5 L g ®OS Q,ls/Ao
!

£.Owe) N FOvey®0s Q2 4,
1 \

V() ~ 1
JosOvo(es1psm) — JosOvg(es1,m) @05 8254,

As remarked above both V' and V, are the unique connections that make the diagram above
commutative, i.e., compatible with V.

Assume that we are in the hypothesis of §2.3 with locally free Og-module and direct summand
F C &. Consider the filtrations Fil, f.Ov(e) and Fil, fo,.Ov, (e s;.....5,,) 0f Corollary 2.6.

ySm

Lemma 2.9. The connection V satisfies Griffith’s transversality property with respect to the
filtration Filg fo,.Ovy(g,s,....5:m), namely for every integer h we have

v(Fﬂth,*OVo(E,sl,...,Sm)) C Fﬂh-{—lfo,*OVg(E,sl,...,sm)Q@OSQ}S'/AO-
Furthermore the induced map
grh(Vo): Grth,*OVO(S,sl,...,sm) — Grh+1fo,*OVO(g,sl,...,sm)(/55(959}9/,40

is an Og-linear map and, via the identification GrefiOvye s,sm) = foxOVo(Fosyosm) DO
Sym*(E/F) of Corollary 2.6, the morphism gr,(Vy) is Sym®(E/F)-linear.

Proof. The statement can be checked locally. Assume that U = Spf(R) C S is an open formal
affine subscheme such that Z|y is generated by a € R, the sheaves F, £ over U are free with
basis €1, ..., €m, €SP. €1,. .., m, f1,- -+ fn_m, SO that

V(F)|lv = Spf(R(Xl, . ,Xm>), V(E)|v = Spf(R(Xl, o X, Y1, ,Yn,m>)
and

Vo(f,sl, ce 7Sm)|U = Spf(R(Zl, .. .7Zm>), VO(E,sl, .. '7Sm)|U = Spf(R<Zl, ceey Zm;YL ce aYn—m>)~

12



By construction V'(X;) = > aX; ® ws; + Z;:lm aY; ® fBs; where the elements w;; and f; ;
are uniquely characterized by the fact that V(e;) = 1% ae; @ wy; + Y72  af; ® B (vecall
that V(es) =0 modulo « for s = 1,...,m). Similarly V'(V;) = > 212 Xi @ v + 327" Y @ g
where V(fy) =370 € @Y + 22520 [ @ b j-

Since X; = 1 + aZ; then Vo(aZ;) = V'(X;) and we deduce that Vo(Z,) = > X; ®
Wsi + Z;:{nY] ® Bs; — Z; @ do. Recall from Corollary 2.6 that Fil, fo.Ov,e)(U) consists of
the polynomials of degree < h in the variables Y1, ..., Y, _,, with coefficients in R(Zy,..., Z,).
The fact that Griffith’s transversality holds for Fil, fo . Ovg e s1.....s,) (U) follows from the explicit
expression of V and Leibniz’ rule.

]

3 Applications to modular curves.

In this chapter we present applications of the main constructions in Section 2, that is to say
given a weight k we present a new construction of the modular sheaves to* already defined
and studied in [AIPHS]| and the construction of a modular sheaf Wy, interpolating the integral
symmetric powers of the sheaf of relative de Rham cohomology of the universal elliptic curve
over the appropriate modification of a modular curve.

The sheaf W, has a natural filtration whose graded quotients are well understood, an in-
tegrable connection Vj which satisfies the Griffith transversality property with respect to the
filtration and a natural action of the Hecke algebra on its global sections such that the operator
U is compact. Moreover, the global sections of W;, have natural g-expansions which allows one,
as in the case of p-adic modualr forms, to define nearly overconvergent p-adic modular
forms as formal g-expansions arising from sections of W,.

3.1 The sheaves tv;.

Convention. In what follows we will denote by X, Y, Z, ... (algebraic) schemes, by X,9), 3, ...
formal schemes and by X, ), Z, ... analytic, adic spaces.

In this section we follow the constructions of [AIPHS]. Let N > 4 be an integer and p a
prime which does not divide N. Let Y := X;(NN) be the smooth, proper modular curve over
Z,, which classifies generalized elliptic curves with I'y(NV)-level structure and let ) denote the
formal completion of Y along its special fiber. We write E — Y for the universal semiabelian
scheme and wg for its invariant differentials; away from the cusps F is the universal elliptic
curve. We denote by Hdgy, the ideal of Oy defined locally by: if U = Spf(R) is an open affine of
9 such that wg|y is a free R-module of rank 1, then Hdg|y is generated by p and by the value
ﬁé(E /R,w) of a lift Ha of the Hasse invariant modulo p, where w is any R-generator of wg|y.
Note that for p > 5 one can take Ha = E,_1, the Eisenstein series of weight p — 1.

The weight space: Set A to be the Iwasawa algebra Z,[Z3] = Z,[(Z/qZ)*][T], where ¢ = p

£
n!

n

if p > 3 and ¢ = 4 if p = 2 and the isomorphism is defined by sending exp(q) := Z € 1+q7,
n=0
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to 14+ T. Consider the complete local ring A° = Z,[T] C A.
Let 20 := Spf(A), respectively 20° := Spf(A%), where the ideal of definition of these formal

an

schemes is m := (p,T) and let us denote by W := (Spa(A,A)) (and similarly for W°) the
associated analytic adic weight space. Here the superscript “an” stands for analytic, i.e., W is
the adic subspace consisting of the analytic points of the adic space associated to the formal
scheme 2U. For every closed interval I := [p®, p°] C [0, 00], with a € NU{—o0c} and b € NU{cc},

we denote by b
Wi={zeW | |pl. <|T"|.#0and |T”|, < |p|l. # O}

These are rational open subsets and we have two notable cases:
WWr={zeW | |T"], <|pls # 0} with I = [0, p"] and b # oo;
Q)W ={zeW | |pl. <|T"|, #0 and |T*"|, < |p|s # 0} if a # —oco and a < b.

In the first case , ,
T 11 TP
Wi = Spa</\<7> [5],/\(7»
and in the second

W1:Spa<A< d T—pb>H,A< b T—pb>).

v p LT v p
Let us remark that for every I C [0,00) as above Wy is an open adic subspace of Wiy ooy = Wris
For each I = [p% p%] as above we let k;: Ly, —> (ij\,])* denote the universal character

associated to Wy. Let now X :=9) Xgpz,) 2°. We define X; =) Xgpez,) Spf((’);rv?).

T
We consider pairs (A;,«) where A; := A(—) and a := p € Ay if I is in case (1) and

p
T
b yand a ;=T € Ay if I is in case (2).

A] = A<W’ 7

Formal admissible partial blow-ups of modular curves: We continue using the notations above
and for every integer r > 1 we define X, ; to be the formal scheme over X; which represents the
functor associating to every A%algebra a-adically complete R the set of equivalence classes of

airs (f,n), where f: Sp — Xy , 2" suc a
pairs (f,n), where f: Spf(R) — X; and n € HO(Spf(R), f*(w*~»7""")) such that

Npr+1

n-Ha = a( mod p?).

Here Ha denotes any lift of the Hasse invariant. One sees that the definition is well posed, i.e., it
does not depend on the choice of the lift. Moreover the ideal of R denoted Hdgy, at the beginning
of this section becomes invertible. See section §3.1 of [AIPHS] for the proof of this fact and for
the definition of the equivalence relation. By abuse of notation we often write Hdg for a (local)
generator of this ideal as well.

Let us remark that if I is in the case (1), i.e. I = [0,p"] then # € Oy, , and if [ is

g
in case (2), i.e., I = [p%,p’] with 0 < a < b < oo then P T e O
P Y — — Hdgpa+r+1 Tpa Hdgpa+'r+1 xr’[‘

Therefore if we denote by n any integer with 1 <n <rif [ isin the case (1) and 1 <n <a+r
if I is in the case (2), then the semiabelian scheme £ — X, ; has a canonical subgroup H,
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of order p™. This is a subgroup scheme of order p" lifting the kernel of the n-th power of the

Frobenius isogeny modulo —2=— (see [AIPHS, Cor. A.1 & A.2] for the construction). Over
Hdg? ™'
the ordinary locus H,, is the connected part of the p”-th torsion of E.

Partial Igusa tower: For every r, I, n as above we denote by A&, ; the adic generic fiber of
the formal scheme X, ; and let ZG,, ,; — A1 denote the adic space of trivializations of the
group scheme H)) — A, ;, the Cartier dual of H,. Then ZG,,; — X, is a finite étale and
Galois morphism of adic spaces with Galois group (Z/p"Z)*. We define by 3&,,,.; — X, the
normalization of X, ; in Z§G,, , ;, which is well defined. Moreover the morphism 38,,,; — X, 1
is finite and is endowed with an action of (Z/p"Z)*.

The construction of the torsor §, 1 In [AIPHS, §5.2] we define the formal scheme f,,: §pn..; —
J3&,,,.1. It represents the functor from the category of affine formal schemes Spf(R) — J3&,,, 1,
with R an a-adically complete and separated Z,-algebra without a-torsion, to the category of
sets

St (B) = {(w, P) € wp(R) x (HY(R) — HY[p" (R)) | w = dlog(P) inwp/p"Hdg™ 57 }.

We also denote by hy,: §n,r — X, the composition g, o f,. We have a natural action
of Z;, (1 + p”Hdgf%GQ on §nrr given by: if A € Zy and r € (1 + p”Hdgf%Ga» then
(Az)(w, P) = ((Ax)w, AP). This action is well defined and the action of Z lifts the Galois action
of (Z/p"Z)* on 3&,,, ;. In fact §,,; admits an action of Z;(l + p”Hdg_%GQ (in the étale
topology) over X, ; with quotient X, ;. Furthermore if n >b+2forp#2orn>b+4if p=2
then k; extends to a character Z; (1 + p"Hdg_%GG) — G,,.

In conclusion, given r, I, n as above we have (see [AIPHS]) a sequence of formal schemes

and morphisms

fn o~ gn
gn,'r,[ — Jqsn,r,l — %'I’,I)

which leads to the following definition. We summarize the various assumptions on I, n and r in
the following two cases:

(1) I=10,1],r>2ifp#2o0rr>4if p=2and n is an integer n satisfying 1 <n <r.
(2) I =[p*p’]witha,beN,r>1landr+a>b+2ifp#2orr>2andr+a>b+4if
p =2 and n is an integer such that 1 <n <a+r.

Definition 3.1. Let k; ; be the character given by the restriction of the character k to (Z/qZ)* C
Z3. Define w*1/ to be the coherent Ox, ,-module (g;.(Ose,,,) @a0 A) [k; ;] (see [AIPHS, §6.8]).
Here i =1 for p odd and ¢+ = 2 for p = 2.

Let k9 = kkp - Zy — (A9)*. Set w0 = (900 fu)«(O,,0) ) [(E)) 7Y, Le., the sheaf on X,
which transform under the action of Z;(l + p”Hdg_ppi:llGa) via the inverse

; 0 ki oK) k
of the universal character k7. Define o’ ; =t ; R0y, , 0.

of sections of O;,

Overconvergent modular forms: It is proved in section [AIPHS, §5.3.2] that, under the

assumptions in Definition 3.1, mflf;ol is an invertible sheaf on X, ; with the following property:
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for every interval I as above, there exist r;, n; such that for all » > r;, n > n; (satisfying
the relations at the beginning of this section) ¢y (mk’ 0 ) >~ pphr0

o nrg a8 Ox, -modules, where
Orrp o Xy —> Xy, 1 is the natural projection.
k7,0 k.
nIIﬂ'IJ and mnI{TI,I
sheaves. Note that 1o}’ defines an invertible sheaf, denoted w# in [AIPHS], on the adic space

X, 1, whose global sections are the overconvergent p-adic families of modular forms over W;.

kr,0

Therefore we denote to by 105 and 1o}’ respectively and call them modular

3.1.1 Some properties of J&,, , ;.

Consider the natural morphisms of formal schemes
n: 3B ps —= IB . p — Xpp — Xf — X,

Denote by j: .’f‘}rd — X, the a-adic open formal sub-scheme of X, ; defined by the ordinary
locus. Let ¢: 36, C 36,,,.; be the inverse image of X9"Y. We recall the following:

5Ty

Remark 3.2. Fix a local lift Ha of the Hasse invariant over an open formal subscheme U =
Spf(R) of 3&;, ;. For p > 5 one can take a global lift, namely E, ;. There exists a unique
section of wg over R denoted A such that its g-expansion has constant coefficient 1 modulo p
and AP~! = Ha; see [AIPHS, Prop. A.3]. We define the ideal § of O, ., to be the ideal sheaf
which is generated locally by the functions 6z := A(E/R,w)’s, where w is an R-basis of wg/p.

It coincides with the ideal Hdgﬁ, where Hdg is the ideal of §6.1.

We have the following result:

Lemma 3.3. The induced map n* (Q%e/z ) — Qzlmj /A0 has kernel and cokernel annihilated by
P n,T, I

a power of § and in particular by a power of a, depending on n.

Proof. The morphism X, ; — X is an isomorphism over the ordinary locus. The morphism
36;’;5}’ ; — X9 is the Igusa tower classifying trivializations of the étale group scheme HY. In
particular, it is étale and Galois with group (Z/p™Z)*. Thus the induced map on differentials
is an isomorphism. The ordinary locus is defined, modulo «, by inverting §. This implies the
lemma for the differentials modulo . As Q5 /2, and Qé@n,r,z /a9 are coherent O36,.,.,/a0-modules

and « € ¢, the claim follows. O
We next prove the following:

Lemma 3.4. For every h € N the kernel of the map Ox, ,/a"Ox, , = j.(Oxoa/a"Oxora) is
r+1

annihilated by Hdg"'"" . Similarly, the kernel of Os6,,., /" Oss, ., — Lu (Ojﬁo@[/ah(’)%ord_[) is

g™ (p=1)+p"—p - h

n,r, I

annihilated by

Proof. We prove the first statement. We'll work locally so let U = Spf(R') C X := X;(N)
be an affine open such that wg|y is free of rank one and we choose a basis w of wg|y. If we

denote = := HNa(E J/R',w) € R, then Z,(x) C R is an étale extension after possibly shrinking
U, i.e., in a small enough neighborhood of the supersingular points, as Igusa proved that x has
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simple zeroes on R'/pR’' exactly at the supersingular points in U. Now let U; = Spf(R) with
R = R'®z, A} the inverse image of U in X; and let V = Spf(A) be the inverse image of U via
the morphsim X, ; — X. As X, ; is the open of the blow-up of X; along the ideal (p, :BPTH)
where this ideal is generated by 27", we have A = R(y>/(a:pr+ly —a).

We have that Ugd = Spf(R) and Vo4 = Spf(A°d) where R = R(1/z) and A =
A®gzR(1/z). For every h the morphism R/a"R — R4/a"R° is injective since the special
fiber of X;(N) at p is irreducible.

We claim that the kernel of A/a"A — A% /o™ A is annihilated by 2. This is equivalent
to proving the first statement of the Lemma. Notice that, as Z,(x) C R’ is étale, then A, :=
AUX, Y)Y/ (XYY —a) — A sending X + x ad Y + y is étale. In particular it is flat and,
hence, it suffices to prove the statement replacing A with Ay and A°d with A%(X, X~1). The
kernel I, of the map

r+1

Ag/al Ay = AV "NV X, Y]/ (XY — a) — AY/a"AJ[X, X 7]

is I, = (Y" oY ... a"7'Y) which is principal and generated by Y" since o = Y X7 so
that a/Y?7 = YA X" for every 1 < j < h. Since X" "'Y" = o, the claim follows.

We consider now the morphism J&; ,.; — X, ; and let Spf(C') be the inverse image of V. Since
x admits a p — 1-th root in C' (see Remark 3.2) then C is the normalization of A[z]/(2P~! — x).
Since x has simple poles modulo p then R” = R[z]/(2*~! — z) is normal and A[z]/(2P! — z) =
R”(y>/(2”r+1y — a) is already normal (cf. [AIPHS, Lemme 3.4]) and, hence, equal to C. We
conclude that C' is flat over A and the second statement of the Lemma for n = 1 follows.

From the proof of Proposition 3.5 of [AIPHS] it follows that there is a natural morphism
38,1 — H) and that J&,,,; is the normalization of ’305;17,,7[ = H)) xgv 3®;, . Note that
38, ,; — 3G, is flat so that the kernel of OJ@;,T,I/ahOj@;MJ — Ly (Ow%ryil/ah(’)%%r’%) is anni-
hilated by 8" "=V Again from [AIPHS, Prop. 3.5] we know that the different ideal D(HY /HY)
of HY over HY is such that 0*"? ¢ D(HY/H)). We conclude that the same must be true for
the different ideal D(J&/, /I, ) of I&,  , over I&., , ie., 0" 7 C DI, /I&, ).
Since J&,,,.; — J&),  ; is defined by taking the normalization, it is finite and we conclude that
5" p Os6,.,; C Ose, ,, and the second statement of the Lemma for n > 2 follows.

]

3.2 A new definition of ",

We’d now like to use the theory of Section 2, i.e., the vector bundles with marked sections in
order to give a new definition of the sheaves to* defined in [AIPHS] and recalled in Section 3.1
of this article.

We choose I, r, n satisfying the assumptions of Definition 3.1 and k = kr: Z; — A the
universal character and k§ = kiky ;: Zy — (A])* its “restriction” to A}. There exists a unique
clement u = u; € p' A such that t* := k(t) = exp(ulog(t)) for all ¢ € 1+ p"Z;. Let
E — 3&,,, 1 be the semiabelian scheme over the level n-th Igusa curve.

It would be natural to use as a pair (&, s) consisting of a locally free sheaf £ of rank one and
marked section s, the Osp,, , ,-module wp and s = dlog(F;,) seen as a section of wg/B wr via
the following diagram (see the Section 6.1). B
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1
HX % WH,, (1)
l
wE/gnwE

Here, Bn = p"Hdg(E)_% and P, is the universal generator of H,' over J®,,;. Un-
fortunately the pair (wg,dlog(P,)) does not satisfy the conditions of Section 2.2 because the
cokernel of the inclusion dlog(P,) ((’)3@,“7 ./ ﬁn) — wg/ ﬁnwE is precisely annihilated by the ideal
0. Therefore one of wg or dlog(P,) must be modified.

Definition 3.5. We denote by g the Ojg, , ,-submodule of wg generated by all the lifts of
dlog(P,).

Recall the following properties (see Section 6.1):

a) Qg is a locally free Oy, , -module of rank 1.

b) The map dlog defines an isomorphism:
HY(38,,1) ®z Os6,.,./8, = QE/B Q5.

In particular it follows that the pair (g, s) = dlog(P,)) is a locally free sheaf with a marked
section. Concerning (a) we have Qg = dwp (with the notation of Remark 3.2). In particular for
p > 5 the sheaf QO is a free Oy, , ,-module of rank one (instead of only a locally free one). We
now apply the theory of Section 2.2 to the pair (g, s) and we have the morphisms of formal
schemes

Vo(Qp, 8) —= T, = X,

and we denote by fo := h, om: Vo(Qg, s) — X,.1.

Denote by T C %' the formal groups over X, ; defined on points by: if p: S — X, is a
morphism of formal schemes, we let (S) := 1 + p*(8),Os C T*(S) := Zs(1 + p*(én)OS) C

Gy,s. We only need to remark that Bn = p"Hdgpp%ll, which was so far used as an ideal of Oz
is in fact an ideal of O, ;. B

We have natural actions of ¥ and respectively T on V(Q2g, s) over I8, ,. ; and respectively
X, 1, defined on points as follows:

n,r,I

(1) Let p: S — 3®,,,.; be a morphism of formal schemes and let ¢ be an element of T(5)
and v a point in Vy(Qg, s)(S). Let us recall that v: p*(Qg) — Og is an Og-linear map
such that if denote by v := v(mod p*(@nQE)), then T(s) = 1. We define the action of ¥(S) on
Vo(Q2E, s)(S) by t*v := tv. This is functorial and so it defines an action of T on on the morphism
Vo(Qp,s) — IB,,,.1.

(2) Let now u: S — X, 1 be a formal scheme. Then a point of V(Qg, s)(S) is a pair (p,v)
consisting of a lift p: S — J&,,,.; of u: S — X, ; and an Og-linear map v: p*(Qg) — Og
such that v(p*(s)) = 1.
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Take A € Z; and let X be its image in (Z/p"Z)*, seen as the Galois group of the adic generic
fiber IG,, . of J&, ,; and let us denote by A 36,1 = 36, the automorphism over X, ;
that it defines. Associated to A there is a natural isomorphism vy: Qp = X*(Q r) characterized
by the relation: 7, (dlog(P,)) = X\ (dlog(P,)) = ()~ - dlog(P,). Now if (p,v) is a point of
Vo(Qg, 5)(S) and A € Z; we define A (p,v) := (Ao p,vo7;"). One easily shows that with this
definition ¢ * (p,v) € Vo(Qg, s)(S5).

Definition 3.6. We define the sheaf 0"V := f;  (Oyyq,.) k7], i-e., w50 is the sheaf on
X,.; on whose sections z, the sections t of T act by ¢ * x = k() - .

We first have

Lemma 3.7. We have a natural isomorphism of formal schemes a: §nr1 —> Vo(Qp, s) over
X, 1, wich behaves as follows with respect to the T*-action: if o,x are section of T=* and
respectively of Fnr1, then a(o xx) = o~ *x a(x).

Proof. We will define the morphism a on S-points, where s: § — X, is a morphism of
formal schemes. A point of §,,;(S) is a pair (p,w) where p = pp is a lift of s to a morphism
p: S — J6,,.;, P =p(P,) is a generator of HY(S) and w € H°(S, p*(QE)) is such that
w = dlog(P). We define ag(p,w) := (p,w"), i.e. if w = dlog(P) and P is a generator of H,(S),
then w is an Og(S)-basis of HY(S, p*(2g)) and we denote by w" the unique Og-linear map
w”: p*(Qgp) — Og such that w"(w) = 1.

It is obvious that (p,w") € V(Qg, s)(S) and we leave it to the reader to check that all the
properties claimed in the lemma follow easily. O

Lemma 3.7 implies the following

nmmki]gétnkﬁ

Corollary 3.8. We have an isomorphism of Ox, ,-modules 1o on X, .

3.2.1 Local description of tp"eV:x0,

Let p: S = Spf(R) — J&,,,.; be a morphism of formal schemes, where S does not have

a-torsion and such that p*(wg) is a free R-module. We choose an R-basis w of p*(wg) and
p"—1

denote 3, := p”/(ﬁé(E/R, w)) 7=, 0 := A(E/R, P,w) generators of p*(8 ) and respectively
p*(8). Let e denote an R-basis of p*(Qg) such that e(mod $,R) = p*(dlog(P,)). Then we
have: Vo(Qg,s)(S) = {v: p*(Qr) — R, R — linear, such that v(s) = 1} = (1 + 5,R)e", where
e¥ is the dual basis to e. As described in Section 2.2, p*(Ovypu.s)) = R(Z), where the point
v = (14 Bur)eY € Vo(Qg,s)(S) corresponds to the R-algebra homomorphism R(Z) — R
sending Z — r = % We define the action of T(S) on R(Z) by:

t x Z is the element of R(Z) such that (¢t *v)(Z) =v(t x Z) for all v € Vo(Qg, s)(S),t € T(S9).

More precisely, suppose that t = 1 4+ 8,b € T(S) and v = (1 + Sra)e’. Let us denote
txZ =3 a,Z" with a,, € R and a,, — 0 as n — oco. Then we have: v(t* Z) =3 > a,a"
and (t * v)(Z) = a + b+ Bnab. Therefore we obtain: b+ (1+ B,b)a =Y a,a™ for all a € R.

It follows that for ¢ € T(S), the action of ¢ on R(Z) id given by:

t—1
t* /=

+tz.

n
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Let us denote by n'* := T, (OVO(QE’S)) [k;], where the action is the action of T. Here n'* is a
sheaf on J&,,, ; which can be described locally by the following lemma.

Lemma 3.9. a) p*(0'"*) = R(Z)[k] = R- (14 8,Z)" = R- k(1 + B,Z).

b) w'k is a locally free Oye, ,-module of rank one.

n,r, I

Proof. b) is a consequence of a) so let us prove a).
Let us first see that because of the analyticity properties of k, we have (1 + 8,2)* :=
k(14 B,Z) € R(Z)*. Moreover if t € T(S) we have:

tx(1+B,2Z)=t-(1+ B,Z) which implies t * (1 + 8,2)* = k(t)(1 + B,2)F,

e, R(1+ B,Z2)F C R(Z)[k]. To show the inverse inclusion it would be enough to see that
R(Z)*®) = R. Let g(Z) = >.°° ya, 2" € R(Z)*®). Then if t € T(S) we have

= st—1
917) =teglZ) =3 a (5 +12)
for Z = 0 the above relation implies: for all uw € R, "> | a,u™ = 0 which implies that a, = 0
for all n > 1. Therefore g(Z) € R. O
new,k

If we wish to describe 1o
from /J@n,r,f to .’fr’[.

Suppose first n = 1. In that case Qp = AOse,,, and if p : § = Spf(R) — TGy, is a
morphism of formal schemes lifting s : S — X, ;, and w, 31,0 are as above, we can choose
a basis e of p*(Q2g) to be: e = dw = A. We then know that e(mod 51 R) = dlog(P;) and

V= ¢§"'wV. If A € Z; and denote by X its image in (Z/pZ)*, then we have X x e” = w(—\)e",

where w : (Z/pZ)* — pp—1 is the Teichmiiller map.

Therefore if we denote by Z the function on Vy(Qg, s)g corresponding to this choice of basis
we have: if A € Z; then

. . . 7
we need to consider the residual Z;—acmon on to* and descend

A% 7 = )\——w(/\) + )2,
p
1+ pZ)k. Therefore s*(r'*) = R(Z)[k] for the

and so A (1 4+ pZ)" = k(\)(1 + ) :k:( )(
"y = R-(1+pZ)k. In particular 0" is a locally free

action of the big torus T(9), i.e., s*(to
Ox, ,-module of rank 1.

If n > 2 then such explicit actions of Z; on to"* cannot be found and so in order to descend to
X, one has to use traces as in [AIPHS].

3.3 The sheaf W,.

We fix a closed interval I C [0,00) as in Section §3.1 and denote by n, r integers compatible
with this choice of interval as in Definition 3.1. Let us also denote by (A}, @) a pair as in Section
§3.1 and denote by Qg the subsheaf of wg given in Definition 3.5.
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Let Hg denote the contravariant Dieudonné-module attached to the p-divisible group of the
universal elliptic curve of the complement of the cusps in X = X;(N). It is a locally free coherent
sheaf on this complement with an integrable connection V and a Hodge filtration. The sheaf
Hg extends naturally to a locally free Ox-module over the whole X, denoted also Hg with:

a) a logarithmic connection V: Hg — Hp ®0, Qﬁ(/zp (log(C)), where C'is the divisor of the
cusps.

b) a Hodge filtration

0 — wp — Hp — wi! — 0.

Having fixed I, r, n we have natural formal schemes with morphisms 3&,,,; — X, — )
(the formal scheme associated to X;(/V)) and we can base-change the triple (Hg, V, Fil*) over
J3&,,,.; where we denote it by the same symbols: (Hg, V, Fil®).

The data I, r, n also fixes a universal weight k: Z; — A7. Let us denote by (see Section

6.1) Hg = Qg+ 0"Hp. As ¢ is a locally free Osg, , ,-module of rank 1, then HﬁE is a locally free
Oss,,,.,-module of rank 2, with Hodge filtration given by the exact sequence

0 — Qp — HY — 8wzt — 0.

Therefore if we consider the ideal § = p" / Hdg% of Oy, , and we denote by s := dlog(F,) €
Qp/B Qp — HﬁE/énHQE, then the pair (H%,s) is a pair consisting of a locally free sheaf and a
marked section. We therefore have the sequence of formal schemes and morphisms of formal
schemes VO(HuE, 5) — I6, .1 Siny X1

We denote by Hgy the dual of HﬁE and by fo: VO(HﬁE, s) — X, the structure morphism,
ie. fo:=h,om.

3.3.1 Actions of formal tori on VO(HﬁE, s).

Let us recall that we have denoted by T C T the formal groups over X, ; defined by: if
p: S — X,.ris a morphism of formal schemes, then T(S) 1= 1+ p*(8 )05 C T(S) =
Zy (14 p*(8,)0s) C Gys.

As in Section 3.2, we have natural actions of ¥ and respectively T on VO(H%, s) over J&,, , |
and respectively X, ;. Let us quickly recall how this action is defined on points:

(1) Let p: S — 38,1 be a morphism of formal schemes and let ¢ be an element of T(.5)
and v a point in Vo(H%, 5)(S). We define the action of T(S) on Vo(H%, 5)(S) by t v := tv. This
is functorial and so it defines an action of ¥ on VO(HﬁE, s) over J&,, ;.

(2) Let now u: S —s X,.; be a formal scheme. Then a point of Vo(H%, 5)(S) is a pair (p,v)
consisting of a lift p : § — J&,,,.; of u: S — X, ; and an Og-linear map v: p*(HﬁE) — Og
such that v(p*(s)) = 1.

Let now A € Z} and let A be its image in (Z/p"Z)*, seen as the Galois group of the adic
generic fiber IG,, ;1 of 38, ; and let us denote by A 36,1 = I, 1 the automorphism over
X, 1 that it defines.

Associated to A there is a natural isomorphism -, : HﬁE = X*(HﬂE) characterized by: 7, (dlog(Pn)) =
X (dlog(P,)) = (X)~ - dlog(P,).
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Therefore if (p,v) is a point of Vo(H%, s)(S) and A € 73 we define A« (p,v) := (Aop,v07y ).
As in Section 3.2 one can show that with this definition ¢ % (p, v) € Vo(H%, 5)(9).

Let us recall that we have a universal weight associated to our choices of r, I, n and that the
analyticity properties of this weight imply that if ¢ € T=¢(S) for some formal scheme S — X, ;
then we can evaluate k(t) and we get a section of OF.

Definition 3.10. Fix r, n and a closed interval I := [p®,p°] C [0,00) as in Definition 3.1. We
define the sheaf Wy  := fo.(Oy, g ) [K], i.e. W], is the sheaf on X, ; on whose sections z, the
) E> ’

sections t of T act by t x x = k(t) - z.
For r > 3if p >3 and r > 5 for p =2 and I = [p, o0 we define Wy, ; = lim,>1 W} 0 oiay.
We let WkJ = W%I ®O3€r1 mkf.

Let us point out that the inclusion Qp C H% gives a filtration of locally free sheaves with
marked sections (Qp, s) — (H%, s), therefore the sheaf fy, (O has a canonical filtration

Fil, <f0,* (Ouqt 75))) = fou(FILOy g ).

Theorem 3.11. The action T on f .. (OVO(H”E,S)) preserves the filtration fo . (Fil.OVO(H%,s))

defined in Corollary 2.6. For every h define Fil, W9, := fo. (FilhOVO(Hn S))[k:]. for r, n and
) E

I C [0,00) as in Definition 3.1 and, for r > 3 if p > 3 and r > 5 for p = 2, as Fith%I =

lim,, >4 Filhwg,[pmpnﬂ] for I =[p,00]|. Then,

VQ(HﬁE,S))

1. Fith%I is a locally free O, ,-module for the Zariski topology on X;
i. W} ; is the a-adic completions of limy, Fil, WY ;.

iii. FilgW9 , = wi® and Gr, WY, = wi’ ®0,  Hdg"wy™.

xT
Define Fil, Wy, 1 := Filhwgd—@(%T ks, It defines an increasing filtration {Fil, Wy, 1}, by direct
summands such that the analogous Claims (ii) and (iii) hold (replacing w® with wk ).
The sheaves W), ;, Wy 1 and their filtrations glue to sheaves Wy, Wy, {Fil,W}y,, {Fil, Wy},
over X, j0.00) (resp. Xy jo00)) tf 7> 1 (resp. v >3) if p>3 andr >3 (resp. v >5) for p=2.

Finally if k € N is a classical weight then we have a canonical identification
Sym" (Hg)[1/a] = Fily(Wy)[1/a]

as sheaves on X, 1, compatibly with the filtrations considering on Sym” (HE) the natural Hodge
filtration.

Proof. The proof of Claims (i), (ii) and (iii) of the theorem for r, n and a closed interval
I C [0,00) as in Definition 3.1 for W9 will be given in Section 3.3.3. As Fil,W{ C WY is
locally a direct summand by (i) and (ii), then the analogous statements for W, follow. Since
the construction of VO(HﬁE, s) does not depend on I and is functorial in n and since *? arises
from an invertible sheaf on the whole X, ooy by [AIPHS, Thm. 5.1], then Claims (ii) and (iii)
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imply that W% 1> Wy r and their filtrations do not depend on n and glue for varying intervals /
to sheaves W9, Wy, on X, 9,)-

We deduce from this the theorem for I = [p, oc0| assuming that » > 3 if p > 3 and r > 5
for p = 2. Claim (i) holds for Filowg’ ;= m];’oz it is free X, ;-module over every affine formal
subscheme of X on which wg is free and it coincides with the limit lim,>, mz:&nmnﬂ] due to
[AIPHS, Rmk. 6.2]. Then the same statements hold true for the sheaves Fil, W} ; thanks
to claims (i) and (iii) for Filhwgw’pnﬂ] and their functoriality in the interval [p™, p"t!]. As
;" = lim,1 g by [AIPHS, Thm. 6.4] and Ox,, = limys, Ox, .., by [AIPHS,
Lemme 6.5] claims (ii) and (iii) hold also for I = [p, o0]. o

For the last part of the Theorem for integral weights k, recall that we have an inclusion
HﬁE C Hg of sheaves over J&,, , ;, compatible with the filtrations, which is an isomorphism after
inverting «. By Definition 2.3 and Lemma 2.2 this provides natural morphisms VO(HﬁE, s) —
V(HY) < V(Hg)|5s, ., of formal vector bundles (with section) over J&,, ;. Notice that structure
sheaf of V(HY), resp. V(Hg) is identified with the a-adic completion of the symmetric algebra
of H%, resp. Hp (see the proof of Lemma 2.2). Tt follows from the local description of Fil, W9
in Lemma 3.13 that these morphisms map Sym"* (HﬁE) — Fil, WY and clearly Sym” (Hgﬂ) —
Sym” (HE) and that these are isomorphisms of sheaves over J®,, ,; after inverting . This
provides the claimed identification over J&,,, ;. It follows directly from the definition of the
filtration in §2.3 that this isomorphism is compatible with the filtrations.

n,r, I

]

3.3.2 Local description of V| (HuE, s)

Let p: S = Spf(R) — J®,,,.; be a morphism of formal schemes over AY (without a-torsion)
such that p*(wg) is a free R-module of rank one. Let as usual w, (3,,d denote an R-basis of
p*(wg), the appropriate generator of p* (Bn) and an appropriate generator of p*(d). We fix an

R-basis (f,e) of p*(H%) such that f(mod 8,R) = p*(dlog(P,)), where, let us recall, P, is the
universal generator of HY over J3&,,, ;. We denote by (f,e") the dual R-basis of Hg;. Since
() =1 = fY(p(dlog(P,)) and e"(f) = 0 = e"(dlog(P,))) modulo S3,R, it follows from
Definition 2.3 that

Vo (HY%,5)(S) = {af’ +be" | a €1+ B,R and y € R}

and thanks to Lemma 2.4 we have that V (HﬁE) X36,,, S = Spf(R(Z,Y)). A point x =
af’ + be¥ € Vo(H%)(S) corresponds to the R-algebra homomorphism R(Z,Y) —s R sending

Zl—>aﬂ—;1ande—>b.

Remark 3.12. We have an interesting interpretation of the sections of the sheaf p* ((9
Let us first remark that Vo(H%)(S) can be naturally identified with

Hpo(S) ={u € p* (HEﬁ) | u(mod B,R)p" (dlog(Pn)) =1}

VQ(HuE,S))'

Recall that Hpy is the dual of H% and the expression u(mod S,R)p* (dlog(P,)) stands for

the pairing of u, modulo 3,, and dlog(P,). Therefore the sections of p* (OVO(H” S)) can be
E
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seen as functions v: Hgo(S) — R which are analytic in the sense that there is ¢(Z,Y) €
p* (OVO(H%S)) = R(Z,Y) such that for all z, y € R we have v((1 + 8,2)f¥ +ye") = g(z,y). We
recall that (fY,e") is the basis of p*(Hgy) which is R-dual to (f,e).

Let v € Vo(H%)(S), then v: p*(Hy) — Og is Og-linear and T(s) = 1, i.e. v € Hgo(S). Take
t € T(S) C T(S) and v: Hg(S) — R an analytic function, we have (t7! % 7)(v) = (tv). If
v=af"+be" € Hgo(S) then (t 7' xv)(af¥ +be") =y (taf¥ +tbe) = g(ta,tb), where g(Z,Y) €

R(Z)Y) = p* (OVO(Hﬁ )) is the section associated to . Then (t7!x ¢)(Z,Y) = g< +1Z, tY)
E
e, thent* (14 3,2)=t"Y(1+B,Z) and t xY ="'V

Let us recall that we denoted : VO(HﬂE, s) — J®,,, 1 the structure morphism and that we
have an action of ¥ on this morphism.

Lemma 3.13.
0 (7 (O, M) = R {flm 1+ 0,2 s )

where a,, € R for all m > 0 such that a,, — 0 as m — oo. Similarly =, (Fil,W))[k] =

m

Y
{Z A (1 + 6nz)k(1+TZ)m’ where a,, € R for allm =0,...,h}.

Proof. Clearly (1 + B,Z)Fmy™ € POy ) = B(ZY) and if a € T(S5), then a x (1 +
B Z)FmY™ = k(a)((1 4 8,2)F™mY™) for every m > 0.

In order to prove the converse let us first prove: (R(Z, Y))T(S) = R(V), where we denoted
by V= 5 +Y6n ~ € R(Z,Y). It is obvious that R(V) C (R(Z. v))*

Let us notice that every element f(Z,Y) = 7% _(aimZY™ € R(Z,Y) can be written
uniquely as f(Z,Y) = g(Z,V) = > 0 ¢ bunZ"V? by writing Y™ = V™(1 + 8,Z)™, where
buy = 0asu+v— oo. Thenif a € 1+ ,R = T(5), we have that a* g(Z,V) = ¢g(Z,V) if and

only if:
wa 5 1—|—aZ waZ“V’”

u,v=0 n u,v=0

Regarding the above equality as an equality in R(Z)[[V]] for every v > 0 we must have:

Yoo bw(“ﬁ;nl +aZ)" = 32 b, 2% For Z = 0 this gives Y oo by, (‘%—;1) = 0, for every

a € 1+ ,R. The Weierstrass preparation theorem implies that for every v > 0, b,, = 0 for
uw>1,1e g(Z,V)=>1"gbo,V" € R(V), which proves the claim.
Now obviously R(Z,Y)[k| is naturally an R(V)-module and if f(Z,Y) € R(Z,Y)[k] then

7Y
D5 € Rz )™ = ROY)
therefore f(T,Y) = (1 + 3,Z)*R(V) which proves the lemma. O
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3.3.3 The proof of theorem 3.11.

Let us recall the sequence of formal schemes and morphisms:
VO(HﬁE, ) —= B, .1 LN X, 1 we denoted by fy := h, om.

We have denoted by WY := f,,.(O Vo (H, ))[k:], where the action is that of T** and by Wg =
. (OVO(H% ) [&], for the action of T. Then we obviously have W} = h,, . (Wg) k], for the action
of Zy.

Let us remark that lemma 3.13 implies that the filtration of @’Y)k defined as Filh(wk) =
Ty (Filh(OVO(H% 75)) [k] is a locally free Oje, , ,-module of rank A + 1 and Wg is the a-adic com-

pletion of limy, Filh(wg). Moreover we have Griwg ~ (w')* @ (Hdgjwz?), where let us recall
that (/)" = 7, (Ov,y(ap.s) ) [k] for the action of <.

Let U = Spf(R) be an open affine subscheme of X, ; such that wg|y is free and let w be an
R-basis of wg(U). Let us denote by V = Spf(R,,) := h,,'(U) C 38,,..1.

It is shown in Lemma 5.3 of [AIPHS] that the map Vy(Qg,s) — I8, induces an -
equivariant isomorphism R, /qR, = (w')%(V)/q(r’)*(V) (using Definition 3.6 and Corollary 3.8
to identify (w’)* as a subsheaf of the structure sheaf of Vo(Qpg, s)). For every i > 0 choose an
element

5; € ((0)*(V) @ Hdgpwi™ (V)/(9) (V) = (Ra/qRy) ® (Hdgpwi™ (V)/ (@) (V),

mapping to the class of Hdghw=2". In particular 5; is an R, /pR,-generator of (Griwg/q(}riwg) (V)
such that for every ¢ € T>4(V) we have t x5, = 5; as Hdghw 2 is invariant for the T-action.
Let s; € Fil; (WO)(V) be such that s;(mod pFil; (WO)) = 5, for every ¢ > 0. We denote by

h = ﬁa/g(E/R, w). By Corollary 3.1 of [AIPHS], there is an element ¢, € h~ %1 R, such that
we have Tr(c,) = 1, where Tr denotes the trace of R,, over R.
Let us denote for every ¢ > 0, by

G e (s) = k:(&)(o(cnsi))eHO(U,hn,*(Wg)).
c€(Z/p"7)*

Here o € Z; is a lift of 0. We have
Lemma 3.14. 35; € H° (U, P (Fllz(Wg)D and 5 R = Gr' (W) (U) = 0*(U) @ w2 (U)

Proof. Let us first remark that the elements 3; belong to HO(U, W?). We write s; = h'w ™' + pf;
where f; € H*(V, WY?). Therefore

5 = ( S k6o (cn))hz Piip Y k@)oleaf):
oe(Z/pZL)* oe(Z/pZL)*
Let us observe that if we denote by R° the ideal of R of its topologically nilpotent elements,
then following the arguments of Lemma 5.4 of [AIPHS] we have: (Zae(Z/p”Z)* k‘((r)a(cn)> €
1+ R*Ry, and p)_,c(z)pmz) K(0)o(cnfi) € ROy, HY ) (fo_l(U)). Again the arguments in the

proof of Lemma 5.4 of [AIPHS] imply that s; € Fil; (WO)(U) and its image in Gr'(WQ)(U) =
w*0(U) @r (R'wz*(U)) generates this R-module. O
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Lemma 3.14 proves the part related to the filtration in the statement of Theorem 3.11.
To prove the rest of Theorem 3.11 let us also remark that we have (using the arguments in
the proof of Lemma 5.4 of [ATPHS] and the notation of Lemma 3.14) that:

Si—si= Y k(@) (olews) —si) = DY k(6)(0(casi) — o(en)si) =

o€(Z/pZ)* o€(Z/p"Z)*

= Z (o(ca)(o(s:) — s:) € RFil, (WY).

o€(Z/p"Z)*

It follows that (3;)", is an R,-basis of Filh(wg) and also an R-basis of Fil,(W?). Therefore
WY (U) is the a-adic completion of the R-module lim,Fil;, (WY?).

For future applications it is also useful to denote by W° := fq . ((9 ) It is a sheaf of

Vo(HZ,5)
Ox, ,-algebras on X,.; containing all WY, for various weights k. We have

Lemma 3.15. Suppose that o = p and let i > 0. Then W°/p"W° is a locally free Ox, , /p'Ox, -
module.

Proof. Let us remark that if we denote by W° := 7, (OVO(H?S

this sheaf in Section 3.3.2 implies immediately that Wo / piWO is a locally free Oy, ., /p'Ose,.., ;-
Now if @ = p then X, X, 7,38, are all base changes to Spf(A9) of p-adic formal schemes X,
X,, 38, , which have absolute dimension 2 and such that X, is regular and J&,,, — X, is finite
and normal, therefore this morphism is finite and flat. As a consequence Osg, ., /' Ose is a

n,r, I
locally free O, , /p'Ox, ., module, which proves the lemma. O

)), then the local description of

I

3.3.4 An alternative construction of Wy, .

In this section we provide a purely characteristic p construction of Wy _ and W;, .. We work
with the pair (Ag, @) with Ag := AY/pA® 2 F,[T] and o =T

Fix an integer r > 2 if p is odd and r > 3 if p = 2. As in Section 3.1 let X, be the T-adic
formal scheme X, := Yr, ® Ag and let X, be the T-adic formal scheme over X, representing
the functor associating to every Ag-algebra T-adically complete R the set of equivalence classes
of pairs (f,n), where f: Spf(R) — Xo and n € HO(Spf(R), f*(w~77"")) such that

n- Hdg”r+1 = a.

Thanks to [AIPHS, §4.3] for every n we have a natural formal scheme J&,, . ., — X, » given
as the normalization of the Igusa tower of level n over the adic fiber of X, . By loc. cit. we
have a canonical subgroup H,, over 38, , -, and a section 1, : Z/p"Z — H, of its Cartier dual,
which is an isomorphism over the ordinary locus of X, .

Let J& ;o be the projective limit lim,, J&,, , ., in the category of T-adic formal schemes.
Thanks to [AIPHS, Prop. 4.2] we have a canonical section ¢: Q,/Z, — colimH,’. Proceeding

as in Section 3.2 we have a sheaf H% and an exact sequence
0 — Qp — Ty — Pwit — 0.

with Qg an invertible sheaf over J& ,, ~, endowed with a canonical generator 7y of (25 defined as
the image of 1 via the map Z, — lim,, HY provided by v, the limit of the maps dlog: H,) — wp,
and the isomorphism wg — lim,, wy, defined by the inclusions H,, C E using (1)..
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Definition 3.16. We define the formal scheme

71 Vo(hy, ) — Vo(Qp, 8) — TG oo — Koo,

requiring that for every formal scheme p: S — T, the S-valued points of Vo(HtjE,fy)

(resp. Vo(Qp, 7)) over p are the Og-linear homomorphisms v: p* (ﬁ%) — Og (resp. v: p*(QE) —
Og) such that v(y) = 1.

Notice that in this case the map Vy(Q2g,7) — IS o0 is an isomorphism as v is a generator
of Qg. Denote by f the morphism from these formal schemes to X, . As in Definition 3.6 we
set

mlgéo = i (OVO(QE7S)) [ko]’
where k is the universal weight and k° := kk;l. As Vi (Qp,7v) =2 TG, this coincides with the
sheaf defined in [AIPHS, Thm. 4.1] in terms of the structure sheaf of J& ;. .. Twisting by the

sheaf mﬁg as in Definition 3.1, which is invertible by [AIPHS, §4.4.2], we get an invertible sheaf
m’;o over X, .

Proceeding as in Section 3.3 we have an action of Z; on VO(HﬁE, ) and one defines sheaves
ng and Wy o, as in Definition 3.10 with filtrations Fil.ngoo and FilgWj, . We will see in
§3.5 that if we invert 7', or equivalently if we restrict to the ordinary locus, the filtration is
canonically split.

Theorem 3.17. The following hold

i. Fil, W9 _ and Fil, Wy, o are locally free Oy, . -modules;

k,00

1. Wg and Wy, are the a-adic completions of limy, Filhwgm, respectively limy, Fil, Wy, o .
iii. FilgW} , =2 wh? and Gr, W} = wk® @0, Hdghwy™.
w. FilgWj, o = ok and Grp Wy, o = ok R0y, Hdg%wg%.

v. The sheaves WY,  and Fil, W] _ are the base changes to X, of the sheaves Wg’[pm} and
Filhng[pm] over X, [p] 0f Theorem 5.11, respectively.

Proof. Let p: S = Spf(R) — X, be an affine open formal subscheme such that p*(wg) is a
free R-module with R-basis element w. Let S, := Spf(R) the corresponding open of IJB ;

over S. Write p* (HﬂE) = Roos ® Rxe (here s is the canonical section of 25 over S defined above
and e is a generator of dwy' over Spf(Ry)). In this case p* <7r* (Ovo(ﬁﬁ 7))> = R (Y), with Y
E>»

is the dual of the generator e of $’wy'|s. In particular if we let S; := Spf(R;) be the inverse
image of S in 3B, , o, and we choose e the generator dPwt of é”wgl over S1, then we have the
following analogue of Lemma 3.13:

WL oe(S) = 0 (7. Oy ) K7) = sH15REY)
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where s* is the generator of w%?|s defined by s via [AIPHS, Thm. 4.1] and Y’ = X with u € R,
such that Axu = AT*éu for every A € (Z/pZ)*. The filtration Fil, W} _(S) is the Y’-adic filtration.
Using this local description Claims (i)-(iv) of the Theorem follow.

We next sketch the proof of Claim (v). Write I := [p, o0]. One introduces auxiliary objects;
consider the anticanonical tower h,: X1 — X, 1 and the Igusa tower IO o [poc] =+ Xoo,r as
T-adic formal schemes. Over J& « p) the pull-back of {2z admits a canonical generator
HT"", see [AIPHS, §6.5]. This allows to define Vi°(H%, HT™) over JB ,00,[p,0] a5 in Definition
3.16 and hence sheaves WP poo]

Wperf 0 | is endowed with a filtration Fil, Wperf’o by locally free sheaves such that Grthe[;ffo] =

mperf ®an HdngEQh Here w20 = f, (Oyoo apurm ) [(k°)—1] can be identified with i (1)
by [AIPHS Prop 6.6].

Note that for every closed interval J C [p,o0) and every integer n adapted to J we have a
natural commutative diagram

over X, 7. Arguing as in [AIPHS, Prop. 6.4] one gets that

Veo(HE, HT™) —  Vo(H%, s)

l l

jﬁoo,oo,J — jﬁn,r,]
T
xoo,J — %T‘,I

where Vo(H%, s) is as in Section 3.3. This defines a morphism A (Wg 5) — Wg?}f’o that respects
filtrations and induces the isomorphism

h:<mk,0) ®Oxoo Hdng_Qh ~ mperfﬂ R0 Hdng_Zh

Xoo, T

on graded pieces and, hence, it is an isomorphism, also on the filtrations. Arguing as in the end
of the proof of [AIPHS, Thm. 6.4] one concludes that the sheaf Wge[;ﬁfo] descends to the sheaf

Wg’[ppo] over X, [p ] defined in Definition 3.10 (for r > 3if pis odd and r > 5 if p = 2).

By construction we also have a commutative diagram

Voo (HE, HT™) e — V(T 7)

jqjoo,oo,oo — quoo,r,oo
h
X oo 00 — X

where Vgo(H%L, HT"™), is the restriction of V& (H%, HT™) to TG, 0000 and VO(HuE,y) is as
defined in 3.16. Note that h*(r0}”) = " by [AIPHS, Prop. 6.8].

This commutative diagram provides a morphism from h* (ng) to the restriction Wrert:0
of W,ﬂ’e[j ’fo} to Xoo,00, that respects the filtrations and induces an isomorphism on graded pieces

thanks to the cited result of [AIPHS]. Hence it is an isomorphism. On the other hand we know
that Wperfo descends to the restriction of W ke p,oc] to X, . By the uniqueness of the descent —

in this case defined by taking Z;-invariant — the claim follows.
O
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3.4 The Gauss-Manin connection on W,.

Let r, n, I, (A%, ) be as in the previous sections (see Definition 3.1) with the property that
n>2and I C [0,00). The restriction of k to 1 + p"Z, is analytic so there is u; € p'~"AY such
that tF .= k(t) = exp(u; log(t)) for all t € 1 + p"Z,,.

Consider the morphism of adic spaces G, ,; — ZG,, defined by the trivializations
Ep")Y = (Z/p"Z)* compatible with the trivializations HY = Z/p"Z. Let 3&, . — G, be
the normalization as in §3.1 and let h,,: 3&,,, 1 — X, ; be the natural morphism. It then follows
from Proposition 6.3 and from Lemma 2.9 that over J&; ., the sheaf W} admits an integrable

connection relatively to A} for which Fil, WY satisfies Griffiths’ tranversality.

Theorem 3.18. The connection on the pull-back of W}, over 3®,  ; descends to an integrable
connection

Vi hZ (Wg) - h: (Wg)@)@ﬁ@nm[ Qé@ﬂ,,'l‘,]/A?[l/&]

over J&,, , 1 for which h} (F il.Wg) satisfies Griffiths’ tranversality. In particular it induces a
connection
Vi: Wg — Wg@Oxhl ler,l/l\(} [1/@]

such that the induced Oy, -linear map on th h graded piece

Gry(Vi): Gra(WR)[1/a] — Grpea (W) ® Qi nol1/0]

is an isomorphism times uy — h and, in particular, it is an isomorphism if and only if uy — h is
invertible in A%[1/al].

It also induces a connection Vi: Wi[l/a] — Wk@)o%]Q;”M?[l/a] that satisfies Griffiths’
tranversality and such that the induced map on the h gmded piec’e 18 an isomorphism times uy—h.

If k € N is an integral weight, the identification Sym*(Hg)[1/al|x,, = Fili(Wy)[1/a] of
Theorem 3.11 is compatible with the connections, considering on Sym” (HE) the Gauss-Manin
connection.

Proof. The proof of the first part is local on X, ; and will follow from the computations of
§3.4.1. The statement for the descent to X, ; after inverting « follows from Lemma 3.3 taking
(Z/p"Z)*-invariants.

For the second part of the Theorem recall from Definition 3.10 that W, = W? Rox, | s and
w0 = (g;(Ose,,.,) @ro A) [kl_ﬂ by Definition 3.1. As Q§®i,r,1/xr,l is annihilated by a power of
a, the universal derivation g; . ((’)g@m , ®p0 A) — i (Qé@ﬂ /A0 & p0 A) defines a connection on

r*7[1/a]. This connection and the connection on W¢ induce a connection on the tensor product
For the third part the local expression of the connections is described in §3.4.1 and directly

implies that the given identification is compatible with the connections.
O

The multiplication structure on 7, (OVo(H‘?E )) induces a multiplication WY ®oy, W§ — W,
Since FilgW) = Q% we have a morphism WY¢ ®0x,, 0% — WY, , which is easily checked,
using Lemma 3.13, to be an isomorphism, preserving the filtrations. We have an identification
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Q; /A0 >~ %? via Kodaira-Spencer. Thanks to Lemma 3.3 we also have a positive integer c,,
I

depending on n, such that Hdg® annihilates Q%anml Jxo L HdgC"QzlwnM /A9 is contained in the

pull-back of Q; /A0 to J&,,,, ;. In conclusion replacing ¢, with ¢, + 3 + ¢;, with ¢ = 1 for p odd
I

and ¢ = 2 for p = 2 and using the explict formula for the connection over J&,, ,.; provided in

(2), we can write the Gauss-Manin connections as morphisms:

1
Wy — (]decn) Wi

and

1
W (—) Wiy,
k— p”*lHdgC" k+2

here the factor p'=" comes from the fact that u € p'="A9.

Remark 3.19. One could refine Theorem 3.18 in order to control the denominators ¢, of Hdg,
and hence of a, appearing in the connection of W9 over X, ; in terms of the integer n, adapted
to I. Unfortunately due to Lemma 3.3 and the more detailed analysis of the inverse different
of 38, ,; — X, in Lemma 3.4 such powers grow as p". In particular if we take the limit over
intervals [p, p"| for h — oo we find a connection with unbounded denominators in o = 7.

The conclusion is that the connection V can not be iterated over the whole weight space,
including oo, using the methods of Section 4.

3.4.1 Explicit, local calculation of the connection V,.

Let p: S = Spf(R) — J&;, ,.; be a morphism of formal schemes over Spf(A?). Assume that
the composite of p with the projection to the modular curve X factors through some open affine
neighborhood of X over which Hg is free with bases {w,n} where w spans wg. Let 6 be the
generator A(E/R,w) of p*(8) of Remark 3.2. By definition of H%, the R-modules p* (Hg) and
p* (H%) are free of rank 2 with bases {p*(w), p*(n)} and {f,e|f := dw, e := 6Pn} respectively. We
also deduce that p*(ﬁn) is a principal ideal of R with generator 3, and that the given R-basis

{f,e} of p* (HﬁE) satisfies f(mod f,R) = p* (dlog(Pn)).
Let P](;/)AO C Spf(R® aol?) be the closed immersion defined by the square of the ideal I(A)

I
associated to the diagonal embedding A: S < S'x A0 S. Thanks to Proposition 6.3 the R-module

p* (H%) admits an integrable connection V* that can be expressed via Grothendieck’s formalism
(see in §2.4) as an isomorphism €*: j3 (p*(H%E)) = gy (p*(HﬁE)) Let

b
A= ( . ) € GLy(Py)x0)

be the inverse of the matrix of ¢* with respect to the basis {f ® 1,e ® 1} of j3 (p*(H%)) and
{1®f,1®e} of ji (p"(HE)).
Lemma 3.20. We have

a) a:1+a0,d:1+d0 withao,b,C,dOEI(A) andsoag:bQZCQZd%:Oinpg/)Ao.
I
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b) interpreting ag, b, ¢, dy € 1(A)/I(A)? = Q}%/A? we have that ag, b, ¢, dy € H—ég - p* (Q%e/zp)
and —Hdg-c is the Kodaira-Spencer differential KS(w, n) associated to the local basis {w,n}
Of HE .

Proof. For a) as A( mod I(A)) = Id we have that ag = a — 1,b,¢,dy = d — 1 € I(A). Moreover
. 1

[(A)? =0in PI(%/)A?.
For b) recall that the connection V* is uniquely determined by the Gauss-Manin connection

V on p*(Hg) via the inclusions H% C Hg. Also f = dp*(w) and e = §Pp*(n) with w a generator
of wg over some open affine subscheme U C X and 7 a generator of the quotient Hg/wp = w};

over U. In particular ! = Ha(E/R,w) = p*(u) for a section u € H°(U, Oy) so that
dp*(u) = do"~" = (p — 1)6"72ds = (p — 1)6" ' dlog(6) = (p — 1)p" (u)dlog(s).
Hence, dlog(é) = (p — 1)~ 'dlog(p*(u)) € HLdg - p* (Q;/Zp). The Kodaira-Spencer isomorphism
KS: wg = Wi ®ox /7,

obtained by restricting V to wg C Hp and then taking the projection onto (HE/wE) R0y Q%e/zp
provides a basis element © := KS(w,n) of Qj /2, OVer U characterized by the property that
KS(w) = n ® KS(w,n). Write the connection

Viw) = mw®0 + n6
Vin) = qw®O + rmee

with m, q, r € HO(U, Ox). Therefore we have, omitting p* for simplicity:

VHf) = V(w) = V(W) +owedlogd) = (m+5%5)f00 + Sre®0
Vile) = V(6Pn) = PV(n) + pdPn @ dlog(s) = P lgf ® O + (r+ppf)e®O.
This proves the first statement and shows that —§?~1c = © = KS(w, n), implying also the second

statement.
O

Proof of Theorem 3.18. Let now k: Z; — A5, W? Vi be as in the previous section.
Recall from Lemma 3.13 that

. o . Y
(g © p)* (W0 = {ganv (1+ 3. 2) | an € R with an — 0 and V = 1+ﬂnZ}'

Moreover

j;‘(p*(Wg)) _ {Zamvm(l + Bu2) | am € 5(R) = P}(%l/)A? for each m > 0, with a,, — O}

m=0

a b

for i = 1, 2. Therefore ¢, is given by the action of the matrix A = ( e d > on V™(1+ B,2)*,

for m > 0. More precisely

b+ dV
a-+cV

(V" (14 5u2)) = A~ (V™(1+ B, 2)) = (a+ V) )m(1 + B2 =
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= (a+ V)™ +dV)™(1 + B.2)".

Let us recall that given k there is a positive integer n and an element u € p*~™AY such that
t* == k(t) = exp(ulog(t)) for all t € 1 + p"Z}. Using Lemma 3.20 we can write: (a + cV)"™ =

exp((u —m)log(1+ (ag+ cV))) = (u—m)(ap+cV). On the other hand we have (b+dV)" =
(V+0+d)V)" =V™+mV™ b+ dyV), and therefore

(V™14 B,2)%) = <(1 + mdy + (u — m)ag) V™ + mbV"™ ! + (u — m)cvm“> (14 B.2)".

Thus we have

= (mvm Rdo+ (u—m)V"®@ay+mV™ @b+ (u—m)V™ @ c) (1+8.2)® 1)k €
€P' (L4 BuZ) R(V) @1 Qg po = P10 (WR) @R Q0. o
2
Here the factor p' ™" comes from the fact that u € p'~"A9. In particular V, (V™ (14 3,2)%) =
(u—m)V™ (1 + 5,Z)* @ c modulo Y™. Since the map p*(Q/, ) — Q0 p0 i an isomorphism
P 7
after inverting a due to by Lemma 3.3, the second claim of Theorem 3.18 is proven as Hdgc is
a generator of p* (Q;e/zp) due to Lemma 3.20.

3.5 g¢-Expansions of sections of W; and nearly overconvergent mod-
ular forms.

Given a formal scheme & — X we will denote &4 C & to be the open formal subscheme
defined by the inverse image of the ordinary locus of X. In particular 3@5%‘}, ; is the n-th layer of
the Tgusa tower of X°'4. Over 3@?;‘} we have Hy, = Hp = wp ®wy! as the Hodge filtration splits
canonically, via the so called unit root decomposition: one has a lift of Frobenius on X°*¢ and
the universal semiabelian scheme E defined by taking the quotient by the canonical subgroup
H; and wgl is identified with the submodule of Hg on which such isogeny is an isomorphism.

In particular we have a morphism Vj (HﬁE, )4 — V(w3)° by §2.3 and the induced morphism
VO(HﬂE, 5) — V, (wE, s) X 5gord V(wgl)

is an isomorphism of formal schemes. Recall that we have divided the universal weight k: Z; —
A* into the product k° - ky where kj is the finite part and £°: Z — (A°)*.

Note that over ’J@Zfi ; the image fo the universal section of H, defines via the map dlog a
basis element s of wg/p"wg. In particular, as we are assuming that k restricted to 1 + p"Z,

or

is analytic, and if : V(a}E, s) 4 5 xod i5 the canonical projection, then the global sections

of wf;xord = T, ((’)V ( )ord) [ko] over X° coincide with Katz’s p-adic modular forms of weight
’ WEgE,S
kK. The space of Katz’s p-adic modular forms of weight k is then obtained by taking the

global sections of the tensor product wf, yo.q == wg)xord R0, o F7.7 | yora (see Definition 3.1 for

d . .
w*.7). Denote by Wy?, resp. W' the space W9 gora, resp. Wy|xora. We obtain a canonical
decomposition
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WY | gora =2 wg)’%ord(@oxm 4 Sym(wf), Wi|gora = ngord@)%m Sym (wﬁ), (3)

where Sym (w;) is the symmetric algebra and ® is the a-adic completed tensor product. In
particular we get morphisms
0 P rd0 @ kO
Wk — WZ — WE’xord;
and upon twisting with ro*7.s
Wk» — Wzrd — wg’xord

which provide a splitting of the first step of the filtration FilyW?, resp. FilyW* and that, upon
taking global sections, defines a projection from the global sections of W, to the weight k p-adic
modular forms of Katz.

Definition 3.21. Using the g-expansion map for Katz p-adic modular forms at a given unrami-
fied cusp we obtain the “g-expansion map” which is the composition of the following morphisms:

HO(X,.7, W,,) —H (X, W) — H (X, W) yora) — Ar((q)).
We can now give the definition of nearly overconvergent modular forms of weight k.

Definition 3.22. Let g be a Katz p-adic modular form of weight k. We say that g is nearly
overconvergent if there exists an r compatible with the interval I determined by k such that
g is in the image of H° (%r, I Wk) or equivalently if its g-expansion in A;[q] is the g-expansion
of an element of H (X, ;, Wy,).

Remark 3.23. Several authors have already introduced the notion of nearly overconvergent
modular forms of finite degree, notably [HX], [DR1] and especially [Url4] and [L]. Their defi-
nitions provide alternative sheaf theoretic constructions of the sheaves Fil,W}, over &’ o ) but
neither did they work with the whole of W, formally (i.e. integrally) nor did they define the con-
nection on it. As it will become clear later, cf. Theorem 4.3 and Proposition 4.13, the definition
of the whole Wy, is necessary if one wants to p-adically interpolate powers of the Gauss-Manin
connection. This is necessary in order to define triple product L-functions.

We make the g-expansion map more explicit by working with the Tate curve. Consider the
Tate curve £ = Tate(q") over Spf(R) with R = A9((¢)) and fix basis (Wean, ean = V(9)(Wean))

d d
of Hg, where 0 is the derivation dual to KS(w?,) = —q, ie., d:= 9o Let us remark that the
q q

canonical subgroup Hg, of order p of £ is isomorphic to p,» and therefore its dual is isomorphic
to Z/p"Z, i.e., 36, ,.; over Spf(R) is isomorphic to Spf(R). Hence if we denote by W{(q) the
module WY for the Tate curve, we have a description of this R-module using the given basis as
described in Section §3.4.1: WY(q) = R(V)(1+pZ)¥ and, if we set Vi, ,(q) := Y™ (1+pZ)*~", then
Fil,W(q) = Z?:o RV}.i(q). The g-expansion map corresponds to the projection W2(q) — R
sending >, a;Vi.i(q) — ao and similarly twisting with to*7./.
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3.6 The U-operator

Considering the morphisms pi, p2: X,41;1 — X, defined on the universal elliptic curve by
E+— FEand E — E' := E/H;. Over 36, we have the isogeny \: E' — E, dual to the
projection £ — E'.

Proposition 3.24. The isogeny A defines morphisms of Ox, ;-modules

U p2api (W) = Do (WR)

and
U p2.upi (Wi) = p2aps(We)

which commute with the Gauss-Manin connections V. of Theorem 3.18 and preserve the fil-
trations defined in Theorem 3.11. Futhermore the induced map on the m-graded pieces of the
filtration is 0 modulo o™/P) with o = p if I C [0,1] and o = T if I C [1,00] and where [m/p]
the integral part of m/p.

Proof. Assume first that I C [0,00). Consider the morphisms pi, pa: I&,41 010 — IS, 1
defined as above on the universal elliptic curve by F — E and F — E' := E/H, respectively.
Over J&,,11 11,7 the isogeny A\: E' — E induces a morphism of the canonical subgroups of level
n of £’ and F, which is an isomorphism on analytic fibers. It follows from Lemma 6.4 that the
map induced by A on de Rham cohomology induces a morphism \*: HﬁE — Hﬁg, which provides
an isomorphism f*: Qp = Qp and identifies marked sections. Thanks to Proposition 6.5, we
get a morphism
u: p2,>|<p;< (Wg) — p2,*p§ (Wg)

over J®,,11 .41 1, preserving the filtration and commuting with Gauss-Manin connections.

Let 7 := p/Hdgli' = p/s% ' It follows from Lemma 6.4 that the map \: Hf, —s H?,
gives an isomorphism \*: Qg = Qg and identifies HﬁE/QE = Hdg(E)p%lw]V; with 7 - HﬁE,/QE/ =
7 - Hdg(E' )ﬁw}\g,. Using the description of the map on graded pieces provided in Proposition
6.5 we conclude that U on the m-graded piece of Fil,2W? defines a map Gr, U/ which is zero
modulo 7™. By construction o/ Hdgg ™ is a well defined section of X,+1r and p/a € A;. Since
r > 1 by assumption, then 7P™ C (oz/Hngf;)pm C am(a/Hdgg)m we conclude that 77 is in the
ideal generated by a™.

The descent Theorem 3.11 provides the descent of U for Wg to J®;,; with the claimed
properties. By twisting W9 and its filtration with the sheaf ro*/./ as in Definition 3.10 we get
W, and its filtration and the claim for W, follows as well, considering the U corespondence for
r”.7. The construction of U extends also to the case that co € I by passing to limits as in
Theorem 3.11 and we get a morphism preserving the filtration, which is zero on the m-graded

piece modulo al"/?!,
m

As the morphism py: X,41 1 — X, s is finite and flat of degree p by [AIPHS, Prop. 3.3] there
is a well defined trace map with respect to Ox, , — pa« (O;g and we get the definition of the
operator U on global sections of Wy.

'r+1,I)

op* lTrp
U H (X0, W) T8 HO(%,.1, paopy (Wi)) 5 HO (X0, W) [p):
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Proposition 3.25. Assume that I C [0,1] and o« = p or that I C [1,00] and o = T. Then
U(HO(%T,I,W;C) C éHO (%M,Wk) and U induces a map on H° (%T,I,Wk/Film(Wk)) which is 0
modulo o™/PI=1 for m > p.

Moreover if k € N is an integral weight, the identification Sym” (HE) [l = File(Wi)[p~"]
of Theorem 3.11 is compatible with the U operators defined on the global sections H*(X, 1, — )
of the two sheaves.

Proof. The first part follows directly from Proposition 3.24 for I C [0,1] and @ = p. In the
case that I C [1,00] and a = T it follows from loc. cit. and the result ]%)Trp2 (p2,+(0x,,,,)) C

#O0x,, proven in [AIPHS, lemme 6.1 & Cor. 6.2]. The last claim of the proposition is clear as

the U-operator on H° (%T, 7, Sym” (H E)) is defined in the same way using the universal isogeny
AN B — E.
O

Using the proposition we get the following result on slope decompositions with respect to
the U-operator (in the sense of [AS, §4]) and passing to the analytic adic space X,.; of X,.; we
have:

Corollary 3.26. The operator U on H° (Xn],Wk) admits a Fredholm determinant P;(k, X) €
A;[X] and for every non-negative rational h the group H° <XT,I, Wk> admits a slope h-decomposition.

For everyn € N also the groups H® (X,,J, Fiank> admits a Fredholm determinant P}'(k, X) €
Ar[X] and a slope h-decomposition. The series Pp(k,X) is the product

n

=0

where Pr(k —2i, X) is the Fredholm determinant of U on H° <XT7I, mk*%). Finally, the inclusion

<

h <h
H° (XTJ, Fiank> c H® (XT’I’Wk> 15 an equality for n large enough.

Proof. Since Fil,,(W},) is coherent and U is compact, the usual discussion on slope decompositions
applies to the groups H° (Xn I Filn(Wk)), i.e., given a finite slope h > 0 we have, locally on the
weight space, a slope h decomposition

HO (X, 7, Fil,,(Wy)) = HO (X, /, Fil,(W,))=" & HO (X, ;, Fil, (W) ™",

Thanks to Proposition 3.25 the U operator on the quotient H° (%M,Wk /Flln(Wk)) is di-
visible by p"™ for n large enough. It follows that H°(X;, ;, W, /Fil,(W})) also admits a slope
h-decomposition and in fact H°(X,,;, W/ Fﬂn(Wk))Sh — 0. Finally notice that Gr;W, = r*=2
thanks to Theorem 3.11. The claimed factorization P}(k, X) := [[;_, Pr(k — 2i, p'X) follows as
in [Url4, §3.4.2]. O
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3.7 The V operator and p-depletion on overconvergent modular forms

In section §2 of [Coll] R. Coleman defines the V' operator on overconvergent modular forms of
integer weight and the goal of this paragraph is to recall his definition in our setting and so make
it work on integral, overconvergent modular forms of arbitrary weight.

Let, in the notations of the beginning of this section, F be an elliptic curve defining a point of
X,11s. In particular, E has a canonical subgroup H,,.; of order p"*! and we let 7: E — E' :=
E/H; denote the natural isogeny. We remark that £’ defines a point on X, ; and has a canonical
subgroub H| = H,.;/H;. This morphism ®: X, ;; — X, naturally lifts to a morphism
®: T8, 41,4110 — TG, .1 as a generic trivialization of H,; provides a generic trivialization of
H!. Let m¥: B/ — FE be the dual isogeny; then 7 defines a morphism Hp,, — Hpg,, which
is an isomorphism if we invert a. We are in the setting of §6.2 and therefore (7V)* induces a
morphism HﬁE — HﬁE, = O* (HﬁE) which defines an isomorphism (7V)*: Qp — Qg = ®* (QE)
over J®,,11,41,7. By Corollary 6.5 this gives a morphism W, — & (Wk) over X,;1 that
provides an isomorphism (7V)*: w* — ®* (mk) . Define the operator

Vi HYX, ;0" — HY(X, 40 7, 0%), V(y) = (x))™ (®*(7)).

Its expression on ¢-expansions is:

o0 o0

V(Z anq") = Z ang™™.

n=0 n—0

It follows that U o V' = Idyox, ; wk), as this is so on g-expansions.

Definition 3.27. Let f € H(X,, 1, 0"). We denote by flPl := f — V(U(f)) € H*(X,11.1, 0F)
and call ! the p-depletion of f.

Remark 3.28. 1) If f € H*(X,,, 7, w¥), then U(fP)) = 0.
2) If the g-expansion of f is f(q) = Zanq" then the g-expansion of its p-depletion is
n=0
)= > ang™
neN,(n,p)=1
3.8 Twists by finite characters

Let n be a positive integer and fix a primitive n-th root of unity ¢ € @p. Let x: (Z/p"Z)* —
(A7[¢])” be a character. The aim of this section is to prove the following:

Proposition 3.29. There exists a unique morphism, called the twist by x and denoted 6% or
vX:
0X: HO(X,,1, Wi) — H° (X101, Wiy ),

that preserves the filtration FilsWy and the Gauss-Manin connection and such that the induced
map on q-expansions Wi(q), using the notation of Section 3.5, is

(Y (Vi) = 3 (o) Vermess 05 end") = 3 )
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The requirement on g-expansions provides the uniqueness. We need to prove that such an
operator exists. We first construct it on J®s,, ;1 ;. Consider the morphism

t: Ian,r,I — Ign,r,[a

defined as follows (remark that we first work on the adic spaces, i.e. « is inverted). We send
the universal generalized elliptic curve F to E' := E/H,, where H, C FE is the canonical
subgroup of level n. Notice that, denoting H,, C E[p*'] the canonical subgroup of level 2n,
then H) := H,,/H, C E’is the canonical subgroup of level n of E’'. Furthermore if v is the
universal section of Hy, then +/ := p™y defines a section of H;Y = Hy [p"] C Hy, that generates
H¥. The morphism ¢ sends (F,7) + (E',~') with the T';(N)-level structure on E’ defined via
the projection 7: £ — FE'.

Let \: B/ — E be the dual isogeny. Then A defines an isomorphism of canoical subgroups
H! = H,. If we set H)! := Ker(\), the p"-torsion of E’ decomposes as

E'lp" = H, x H!",

as group schemes over ZG,,, , 1, and the Weil pairing induces an isomorphism H], := (H;,f)v. The
universal section 7/ defines isomorphisms of group schemes

s: Z/p"Z — HY, s': H), =

over ZGsy,, 1 (the second morphism is obtained by duality). Assume that K contains a primitive
p™-th root of unity (. The choice of { identifies Hom(Z/p"Z, upn) = Z/p"Z: an element j €
Z./p"7Z corresponds to the homomorphism Z/p"Z — pi,» sending 1 — (/. We then get a bijection

n: Hom(H,, H},) — Hom(Z/p"Z, pyn) 2 Z/p"Z, g+ s’ ogos

Lemma 3.30. Given « € (Z/p"Z)*, if we let [a]s be the multiplication of s by «, the induced
map [o|n: Hom(H]!, H)) — Z/p"Z is on.

Proof. For every g € Hom(H;L’, H;l), we have ([a]s)Y o go ([a]s) =a?sVogos.
]

Thanks to the Lemma 3.30 for every j € Z/p"Z we get a map p;: H! — H), inducing the
morphism Z/p"Z — pym given by sending 1 — (7 (identifying Z/p"Z = H]! via s and H], = pin
via s¥). We then let

H,, = (p; x 1d)(H") C H, x H! = E'[p"]

be the closed subgroup scheme given by the image of p; x Id. Define
tj : Ig2n,r+n,[ — Ign,r,],

the map given as follows. Notice that the image of H] via the projection map \;: B/ —
B’ = E'/H,, defines the canonical subgroup H), ; C E’[p"] of order n so that the trivialization
v': Z/p"Z — (H),)" defines a trivialization v;: Z/p"Z — (H,, ;)¥. Then t;(E,~) = (Ej},~}) with
[y (IV)-level structure on £’ induced by the one on E'. We let

L: j®2n,r+n,l — jQSn,r,I tj: ij2n,7"—|—n,l — jﬁn,r,[
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to be the morphisms defined by ¢ and ¢;, upon taking normalizations. Over J®q,, ;4,1 we have
the isogenies

A.
E& B L E,
where E is the universal ellitpic curve over 3&,,, 1, 1. Moroever by construction A and A; map
the canonical subgroup of E’ to the canonical subgroups of E and E respectively, compatibly
with the universal sections ', v and ~;. It follows from Lemma 6.4 that A and A; induce

morphisms
u A
H:, 25 HY, < HE,
J
with the same image. In particular, we get isomorphsms f;: HﬁE,_ — H% as submodules of H%,.
J

Using Proposition 6.5 we finally get morphisms

J

over J®s,, 1, 1 that preserves the filtration Fil, W}, defined in Theorem 3.11 and the Gauss-Manin
connection V of Theorem 3.18.

Lemma 3.31. Let gy := > ic(z/m2)- X(5)¢7 be the Gauss sum associated to x. The map

ox = Zg)_z : < Z X(])_lf; © t;) : HO (%T‘,I7Wk)) — HO (xT-ﬁ-TL,I)Wk-l-QX)
Je(Z/pn2)*

has the properties claimed in Proposition 3.29.

Proof. We first check the assertion on the weights, i.e., that 0% goes from W; to W;,,. Take
o € Zr. Given s € H(X,,;, W)) we have [a]t?(s) = k(a)t:(s) by definition. Thanks to Lemma
3.30 we also have [a]f; = fa2j. Then

[O‘](-E(Z;Z)* X)) = E(Z;Z)*X<j)_1([a](fm>(s>) =
o ;(;;Z)*X(j)1k(04)f22j(t32j<5))
_ ;;Z)*Wﬁ1X<a>2k<a>f;;2j< 1ay(5)) =
:J(k; +p2X)(a)( D X)) eyt (s) =

JE(Z/p™L)*

=(k+200)( > xU) ' fEs).

je(z/pmL)*

The compatibility with filtrations and Gauss-Manin connection is clear. The assertion on g¢-
expansions of modular forms follows from the proof of [Ko, Prop. II1.3.17(b)]. See also [Lo,
Lemma 3.3].

m
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3.9 De Rham cohomology with coefficients in W, and the overcon-
vergent projection.

Let r, I C [0,00) and the universal weight be as in the previous sections. As we will use the
universal weight and classical weights as well, at least for this section we write k for the universal

weight to avoid confusion. Let us regard W}, : Wy LN Wy.2 as a de Rham complex of sheaves
on the adic space X, ; and denote by Hiy (Xr, I Wl’{) the i-th hypercohomology group of the de
Rham complex W§. We observe that because p is a unit in Oy, ;, the connection Vi does not
have poles so that Wy, and Hip (X, ;, Wy) are well defined.

Let us recall that the sheaf Wy has a natural filtration preserved by Vy therefore we have
the following commutative diagram of sheaves on &, ; with exact rows:

1 Vg 1 Vi 1 Vi
0 — Fﬂn—H (Wk+2) — Wk+2 — Wk+2/Filn+1 (Wk+2) — 0

We denote by Fil} (Wy) and respectively by (Wk/ Fil(Wk)> the first, respectively the last,
column of the above diagram.
With these notations we have an exact sequence of de Rham complexes on X, ;:

0 —s Fil® (W) — W — (Wk/Fﬂ(Wk))' o0, (4)

which gives a long exact sequence of hypercohomology groups

0 — HOp (Ayr, il (W) — H (X, WE) — Hy (XTJ, (Wk/Filn(Wk)>') (5

— Hl (1, Fill (W) — Hig (1, W) — Hig (X, (Wag/Fil(Wi)) ) — ..

Moreover, let us recall that the sheaves Fil,,,(Wy) for m = n, n + 1 are coherent and as X ;
is a Stein adic space (an affinoid in this case) the hypercohomology of the complex Fil} (Wy) is
simply calculated as the cohomology of the complex of global sections, i.e. for all ¢ > 0 we have

Hi (X7, Fil? (W) = H (HO (X1, Fil, (W) 25 HO(X,.;, Filn+1(Wk+2))>. (6)

Lemma 3.32. We have an exact sequence, with morphisms equivariant for the action of U,

0 — H (X, /1, 0"2) — Hip (X, 1, Fils (W) — @ H (X, s, Ji (wi) ) — 0,

where w5*2 s the universal sheaf of Definition 3.1, the first arrow is induced by the inclusion

k2 = Filg(Wyio) C Wiy, Ji is the closed immersion X, xw, Q, C X.1 defined by the
Qp-valued point k = i of Wy, wg is the sheaf of invariant differentials of the universal elliptic
curve over X, 1 xw, Q, and the action of U on HO (Xn],ji’* (wE)_i) is divided by p"™t. Moreover,
the Ar-torsion of H}iR(XT’[,Fil;(Wk)) is identified with HY (Xu,ji’* (E)O) and if we denote by
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Hig (XTJ, Fil:l(Wk))tf the torsion free part, we have an exact sequence, with morphisms equiv-
artant for the action of U,

0 — B (X1, 042) — Hig (X r, Fils (W) — @0 (B (X1, i (w6) ) ) — 0,

where 7 HO (X, 1, jix (wp) _i) — H( X1, i (wE)Hz) is the theta operator defined in [Coll,
Prop. 4.83] and we consider on H° (X,n71,j,~7* (wE) ﬂ) the action of U divided by p**'.

Proof. Theorem 3.18 and the identification Gr;; Wy = w*=2=2 of Theorem 3.11 imply that
Vi: Fil,(Wy) — Fil,, 11 (Wyo) induces an isomorphism times the multiplication by k — n map

mkiZn = Grn(Wk) — Grn+1<Wk+2) = mk72n'

This map is injective and the cokernel is identified with w*=2"/(k — n)r*=2" = " The
first claim then follows proceeding by induction on n, using for n = 0 the identification t* =
Filg(Wy).

Since H%(X, ;, 0*"2) is torsion free and H(X,., ji; .« (wk) 71) is annihilated by multiplication
by k — 4, it follows from the first part of the lemma that the torsion part of H(liR(Xn I, Fil;(Wk))
is the sum of the kernels of multiplication by k — ¢ for ¢ = 0,...,n. Fix such an i. Consider the
following diagram with exact rows:

0 — HO(X., Fil,(Wi)) % H(X., Filypy(Wips)) — Hig (X, FiS(Wy) — 0
(ki) (ki) (ki)
0 — HO(X., Fil,(Wy)) % H(X,,Filyyy(Wips)) — Hig (X, FiL(Wy) — 0

The rows are exact as H! (X,.,[,Filn(Wk)) = 0: indeed A, ; is affinoid and Fil,(Wy) is a
coherent Oy, ;-module. Since multiplication by k —i is injective on Fil} (Wy) and Fil} ,; (Wyy»)
and hence on their global sections, using the snake lemma we see that the kernel of multiplication
by k — i on H(liR(XT, I Fﬂ;(Wk)) is identified with the kernel of the complex

V: H (X, 1, Fil, (W) /(k — 7)) — H° (X1, Filpt1 (W) /(k — 7).

Using that V induces an isomorphism on graded pieces except for Fil;(Wy)/(k —1), this complex
is quasi-isomorphic (i.e., the homology groups of the two complexes are isomorphic) to the sub-
complex

Vv:H (X,,J, Fil;(Wy)/(k — 7,)) — H° (XTJ, Fil; 1 (Wy o) /(k — z))
and, similarly, it is quasi-isomorphic to the quotient complex
V: H° (XT,I,Gri(Wk)/(k—i)) — H° (XT,I,Fil,-H(WkH)/(k—i))/VHO (XT,I,Fili,l(Wk)/(k—i)).

As V induces an isomorphism V: H° (/'\?TJ, Fil; 1 (Wy)/(k— z)) HO( e (Fﬂ (WkH)/Fllo(WkH))/(k—
i)) and the image of HO(X,,;, Fil;(Wy)/(k — ©)) lies in H° (X, ;, Fil;(Wy42)/(k — 7)), using the
identification j; . (wE)ﬂ = Gr;(Wy)/(k — ¢) and j;. (wE)l+2 = Fily(Wyi2)/(k — i), we may
identify the kernel of such quotient complex with the kernel of the induced map

H (X1, e (wp) 72’) — H(X,.1, ji o (wp) HQ) :
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This is identified with @', by the results of Coleman and it is injective, as it is injective
on g-expansions, except for 7 = 0 in which case the kernel coincides with H° (XT, s Jix (wE)O).
See [Coll, Prop. 4.3]. The twisted action of U in the statement comes from the equality
U o 0! = pt19*+1 6 § proven in loc. cit. The claim follows.

O

If C* denotes any one of the complexes in the exact sequence (4), the discussion in Section
3.6 implies that we have compact U-operators on each one of the groups Hig (Xn I C'), for7 > 0.

Lemma 3.33. For h > 0 and n € N the groups Hip (XM, Filn(Wk)') and Hig (X1, Wy) have

slope h-decompositions for every i (in the sense of [AS, §4]). Moreover, for n large enough, the
exact sequence (4) induces an isomorphism

i (X, FilS (W) ) =" = He (X, W) =",
for all i > 0.

Proof. Corollary 3.26 implies that the groups Hiy (Xn I Fil;(Wk)) have slope decompositions,
i.e., given a finite slope h > 0, locally on the weight space (i.e., we might have to change the
interval I but our notations will not mark this change) we have the slope decomposition:

Hig (X1, FilS (W) = Hig (X, 7, File (W) ) =" @ Hig (X1, Fils (W) ™",

Arguing as in Corollary 3.26 again we also have that the groups H’y (Xr, I, <Wk /Fil, (Wk)> .)
have slope h-decompositions for all 2 > 0 and in fact

HQR<XM, (Wk/Fﬂn(Wk))') =0

Therefore the long exact sequence (5) and the considerations above imply the claim.

We summarize the results of Lemma 3.32 and of Lemma 3.33 in the following
Theorem 3.34. Given a finite slope h > 0, locally on the weight space, the groups Hig (XT,[, Wl'()

have slope h-decompositions. Moreover for n large enough we get exact sequences:

0 — HY (XT,I, mk+2)Sh — Hig (XTJ’ Wi) <h o 1O (an’ji,* (w) —i)gpi’jrl 0

and

<h,tf

0 — H (&, ") =" s Hig (7, Wi) =" — @0 (HO (Xr, Jie (@) _i)>§h — 0.

In particular, take a rank 1 point p: Spa(K, Ox) — W; and denote by X, g, % the base
change of X, 7, w* respectively. We immediately get:
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Corollary 3.35. If p corresponds to a weight different from the classical weights 0, ..., n we
have that

o (H}lR(XTJ, WL)§h> = HO (X, g, wF2) <"

If p corresponds to the weight k =1 for some 0 < i < n then we have an exact sequence

)" <h

(HO Xy, wit?
e o — " (Bl (X, W) =) — (01O (X wp)) T 0

0—

<h

(91+1H0 (XT‘,Ky wE—i))

Proof. Base change X, 1, o*, W} to K. Then p is defined by the quotient AI@)ZPK/U\I@ZPK =
K where t is a regular element of A1<§>ZPK . Since multiplication by ¢ is injective on w* and on
Wr and taking slope decomposition is an exact operation, the Corollary follows applying the
snake lemma to the multiplication by ¢ to the sequences in Theorem 3.34.

0
We also have the following Definition inspired by [Url4, §3.5]:

Definition 3.36. With the notation above, we denote by

n n

H);Z H(liR(Xn], Fll;(wk)) ®AI A[ [H(uk — Z')il} = H0 (XT’[, mk+2) ®AI A] [H(uk - i)il}

=0 1=0

the isomorphism induced by the inclusion H° (X, 7, w**2?) — H}p (X7, Fil Wy ) of Lemma 3.32.
Similarly we define

n np
HT: HéR(Xr,b WL)S}L ®AI A[ [H(uk — Z')il} = HO (XﬁI? mk+2)gh ®AI A[ [H(uk — ’i)il]
1=0 1=0

as the isomorphism provided via Theorem 3.34 (here the integer n;, depends on h). We call such
maps the overconvergent projections in families.

Note that for every p: Spa(K, Ok) — Wy as above such that the image of uy — ¢ is non-zero
in K fori =0,...,n, the maps p* (Hjl) and p* (H T) are well defined and provide the isomorphism

of Corollary 3.35 upon identifying H°(X, g, w¥'?) = p* <H0 (X1, mk+2)> (and similarly if one

considers (< h)-slope decompositions).

3.10 The overconvergent projection and the Gauss-Manin connec-
tion on g-expansions.

Let us recall that we have fixed a pair I, r consisting of a closed interval I C [0,00) and an
integer r > 0 adapted to I. Consider the Tate curve E = Tate(¢") over Spf(R) with R = A%(q))
and fix a basis (wcan,ncan = V(0) (wcan)) of Hg as in §3.5. Using this basis the matrix of the
connection V on Hg is given by

0 0

dq o |-

q
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Write W9(q) = R(V)(1 + pZ)* and set Vj,, := Y"(1 + pZ)*~™ as in loc. cit. We have

Vi(aViy) = 0(a)Vison + alug — h)Vigo nia Vh >0, (7)

where let us recall that uy € p'~*AY is such that k(t) = exp(uglog(t)) for all ¢t € 1+ p*Z, for
s> 0. One immediately gets the following:

Proposition 3.37. Consider an element y € H° (X, 1, Fil,11 (WY, ,)) with class [v] € Hig (X1, Fil} (W}))
via (6). Let v(q) = 3.7 7i(q)Viyas be its evaluation at the Tate curve. Then the q-expansion
n+1 .
: 9"i(9)
of H! 18 .

1=0

We also have the following formula describing the iterations of V. For simplicity we omit
the subscript £ and write simply V for the connection.

Lemma 3.38. Let g(q) € R and N > 1 and write V¥ (g(q)Vip) := Z;V:o an e O™ (9(0)) Viran 4,
with aykn; € R. We then we have aypno =1 and for j > 1 we have

o N (uk—h—l—N—l)(uk—h—i-l)(uk—h) . N = . IR
‘”“’“’h““(j)<uk—h+N—1—j>-~~<uk—h+1><uk—h>‘(J >H< e

In particular, if u, € pAY, then angn; € A for all0 < j < N and ayyp; € pAr if N =p and
j=>1

Proof. We first prove the formula for ayyp; by induction on N. For N = 1 the statement
is clear using (7). Assume the statement true for N = n. For j = 0 or j = n+ 1 the
statement is also clear. So we assume 0 < j < n + 1. It follows once more from (7) that
Uniikng = Aning + Uk +2n —h — j + Dappnj1- In particular, a,i1pn; € Ar C RO,
Moreover we compute

n)((uk—h+n—1)---(uk—h) N

+(uk—h+2n—j—|—1)( " >(“’“_h+”_1)"'(”k_h>:

J=1) (ug—h+n—75)(uxr—h)

“Gamhen o (e () e (1)) =

(ugp—h+n—1)(up—h)n! (g —h+n—7)n+1—75)+ (up—h+2n—j+1)j)

(ue —h+n—j)-(u,— h)jln+1-7)

C(ug—h+n—=1)-(up —h)n!(n+1)(up —h+n) (ug —h+n)--(ux — h)(n+1)!
(== g) e (we =)+ 1) (up—h+n—g) - (u = h)jln+ 1)
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as claimed. The last two claims of the Lemma are clear as p divides ( ? ) for 0 < 7 < p. For

J = p there exists an integer ¢ with 0 < ¢ < p — 1 such that and —h + N — 1 — ¢ = 0 modulo p
and then p divides [[*_y (ur, — h+ N — 1 — i) as u;, € pAY.
m

Remark 3.39. The formula in Lemma 3.38 suggests that for an arbitrary locally analytic weight
s: Zn — A7, one should define

Ve (9(q)Vin) == Z < Q}S ) ﬁ(uk +us —h—1—1)0"7(g(q)) Viras j+n-

J=0

Here uy € A} [p7'] is such that s(t) = exp(uslog(t)) for all ¢ € 1+ p°Z, for a > 0 and

( l;s ) = “S'(us_l);!'(“rjﬂ). In particular, in order not to have unbounded denominators in p

we must have that u, € A;, and u;, € AY and there should be some divisibility by p. We will see
that these conditions are also sufficient in order to define V?® for overconvergent families in such
a way that the formula above on ¢g-expansions is satisfied.

Lemma 3.40. For every positive integers u and h, consider the element 1 + pZ € W)(q). We
then have
o (L pZ)?o) — 1" - (1 +p2)"07) — 1)
Vo P .

= Pyni(1+pZ - Vou
D hJ( ) % 0

j>max(h—u,0)
with P, ;(T) € Z[T] a polynomial with coefficients in Z, divisible by p if u > p.
Proof. Recall that Viis, = (1 + pZ)*Vi,. For simplicity we omit the subscript in V. We use
the formula (7) that gives

V(14+p2)") =V (Vio) = HViroq = H(1 + pZ)" V1.

Hence V((1 + pZ)2e=Y — 1)h) = 2ph(p — 1)((1 + pZ2)*@~H — 1)ph71(1 + pZ)2P=DH2Y4 o As
(14 p2)2e=0 — )" = (14 p2)2e=Y — 1) V(1 4+ p2)2=D — 1)"" we get that

(1 + p2z)2=1) — 1)ph (1 + p2)2p=1) — 1)p(r=1)
ph ph1

where Q(T') is a polynomial with coefficients in Z. Proceeding inductively on u the first claim

follows.

We prove the second statement. For p = 2 we have divisibility applying V once and the
claim is clear. Assume that p > 3. It suffices to deal with the case that u = p. Notice that

VP(fg) = V(g + fVP(g) + 20 (}Z) V*(f)VP*(g). Thus taking f = (222220 g
g=1I= ((HPZ)Q;TI)_DM and proceedng by induction on ¢ and using the first part for the

contribution of V*(f)VP~*(g), one is reduced to prove the claim for f. Write

(1 +pz)*@~D — 1)
p

v( ) = 20Q(1 + pZ)

‘/0,17

V(f) = 2(p—1)((1+p2)* P D 1) (14+pZ)* Vo1 +2p(p—1) (1+pZ)2Vp..
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Recall that

V(L4 p2)"Vay) = (H +1) -+ (H + $)Virsaoraons = (H+1) - (H + 5)(1 +pZ) 242

thanks to formula (7). In particular, if s = p—1 and H is prime to p then (H+1)---(H +s) is
divisible by p. We conclude that VP! of ((1+pZ)?®=1 — 1)p_1(1 +pZ2)* Vo1 = ((14p2)*r=1 —
1)p71V2,1 is divisible by p as all the exponents of (1 4+ pZ) appearing in ((1 + pZ)2e=1) — 1)p71
are prime to p. The second claim follows.

O

In particular let g(q) = >~ ,ang™ € Ar]q] be the g-expansion of a p-adic modular form g of
weight k& and assume that U(g(q)) = 0 that is a,, = 0 if p divides n. Let ¢ be a positive integer
such that p“~tu;, € AY.

Proposition 3.41. For every positive integer N we may write

vt —1q)"? e _LNp ((1+ p2)2e=D — 1)
(T i) - 3 e L
p r=0 heN p

with gﬁj,\i) € RVl + pZ] a polynomial in 1+ pZ with coefficients in RV=Y. If we assume

that uy, € pAY, then pN=2— hg € RV=[1 + pZ] for every v and h, i.e., p* TN divides 95«,]}\?
whenever 2r +h — N > 0.

Proof. We first compute (VP! — Id)H(g(q)Vk,n) for every positive integer H:

H
(Vp—l _ Id)H(g(Q)‘/}c,n) = H (_1>H—sv(p—1)s (.g(CZ)Vk,n) _
S
s=0
H (p—1)s I |
= Z (S) (_1)H_Sa(p,l)s,km’ja(p—1)5—] <g(q))vk+2(p71)57n+j _
s=0 j=0
(p—1

)s
H —S S— — S
( )(—1)H A1) g0 (g(q)) (1 + pZ)* @DV oy i+
( ) (- 1)=20#1% (g()) (1 + pZ)"*~DVi, =

H (p—1)s H
55 (M) 0 s ) (0 2P Vit
H o .
+> < > (=1 (0P %(g(q)) — 9(q)) (L + pZ)**" Vi + (1 +pZ)*P~ = 1) Vi,
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Base step N = 1: We prove the Lemma for N = 1 using the previous computation with
H=np.

For 1 < s < p—1 we have that 9®"Y%(g(q)) — g(q) € pRY= so that <§> (0P=Ds(g(q)) —

9(g)) € p?RU=". On the other hand also 9"~Y?(¢(q)) — g(q) € p*RV=C. Considering the term
((1 + pZ)2P—1) — 1)p, the first part of the claim is proven for h =0 or h = 1 and r = 0. Recall
from Lemma 3.38 that a(,—1)sxn,; is a polynomial with coefficients in Z in u;, of degree j so that
by assumption p?“ Ya, 1y, € AY. The first part of the claim then follows also for the terms
with » > 1.

We prove the second part. For j > 1 we have 2j — 1 > 1 so that p¥~19P—1s=J (g(q))(l +

pz)Q(P s ¢ RU= o[1 + pZ]. Tt follows from Lemma 3.38 that (i) Ap—1)s,kn,; € PAr: in fact
for 1 < s < p — 1 the binomial coefficient <]; ) is divisible by p, for s = p and j prime to p

then ag,—1ypkn,; has a factor (p (p J_ 1)) which is divisible by p and for j divisible by p then

A(p—1ypkmy has a factor [[PZy (u +p(p — 1) — 1 —1) divisible by p. This proves the statement for
N =1.

Inductive step N = N + 1: It suffices to prove the following:

CLAIM: Let gﬁz) € RU=[1 + pZ] and suppose that pN—2r—g!l)

wn € RV + pZ] in case
ug, € pAY. Then

_ _ ph
(VP~! —1d)» N—(c+1)r—h ((1 +pZ)*Y — 1) My, _
p p ph gﬁh k,r -

. e (1 +pZ)2(p—1) -1 pv
= Z ZpNH (e+1)(r+7) ( = ) ggH)Vk,Hj

with g( ) ¢ pU= 0[1+pZ]. Furthermore, if we assume that u;, € pA} then pV+1=2(r+7)— “g(NH) €
RV= 0[ + pZ] for every j.

We compute (WHT_M)? <pN_(C+1)T_2h (1 +pz2)2e=b — 1)phg£fx) Vk7r> as the sum of two terms:

N—(c+1)r—h ((1 + pZ)*P) — 1)ph (VP=1 —1d)P

(N)
b ph P (gr,h Vkﬂ") (8)
and
P s(p—1)
s N—(c+1)r—h—1 S(p - 1) ((1 +pZ) 1) s(p—1)—u [ (N)
$(0) oo B (0o (B i
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We start with the contribution given by (8). As (1 + pZ)*Vi., = Viisn, the computation at
the beginning of the proof shows that if we write

vPel —1)p . (N
% g'rh ZP H)Jgr ) VerrJ

then gTNJr1 € RV=[1+pZ] for j > 1 and g%H) is the sum of a term o with « € RV=°[1+pZ] and

20-1)_1)"
((””Z)p2 ) 8 with 8 € RV=0[1 + pZ]. Those terms multiplied by p¥—(+Dr=21((1 4+

pZ)2P—1) — 1)ph satisfy the claim:
We start with the terms j > 1 and we use that N — (c+1)r—h > N+1—(c+1)(r+j)—h.

7)2(p—1) _
Then pN—(ctlr=h (0 )ph 1) gfnJJ’ ) is equal to

_ ph
N41—(c41)(r+4)—h ((1 + pZ)2e=h) — 1) (
o

a term

(N=(e+Dr=h) = (N1 (4 1) ()R (VD)

D p g'r,j

with p(N_(C“)T_h)_(N“_(C“)(T”)_h)gﬁgﬂ) € RU=Y1 + pZ]. Assuming that u, € pAY we also
have

pN+1—2<r+j)—hp(N—2r—h)—(N+1—2(r+j)—h>g(f]Y+1> = pN2h g € RUSO[1 4 pZ]
using the inductive hypothesis that pV=2—h¢") ¢ RU= o1 + pZ].

2 1 ph
Nt 1— (et 1yr—p ((4p2)20-D-1) (N1 1t is the

Consider next the contribution for 7 =0, i.e., p = 9ro
20-1)_1)""
sum of two terms. The first ig pN*t1-(ctDr=h (a+02) pz 1) -a. If we assume that ug, € pAY then
pN =2 hg = pN=2r=h(pa) € RV=O[1 + pZ] by the hypothesis that p¥ =2 ~"g"’ € RV=[1+ pZ].

On the other hand

_ h -
N ernrn (L pZ)2070 = 7 (14 p2)*e7t) — 1)7
P P

P p=

_ ht1
N+1—(c+1)r—(h+1) ((1+p2z)*r—) — 1)p( )
=p ht1 g
p

If ug € pAY then pV =2~ hgﬁN) € RVU=°[1+4pZ] so that pN*T1=2r—(htl) g — pN=2r=hg ¢ RU=0[141pZ].

Consider next the contribution of the terms in (9), namely

_ 14 pz)2e-b — )"
(i) pN*(c+1)r7h71 <S(pu 1)) v ((( p ) . ) vp—1)—u (gf«,]}\i)ka)

p

forl<s<pand1l<u<s(p—1)and write

Vs(pfl) gr h Vk r Z Q, N+1 Vk,r+j-

j=>0
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It follows from Lemma 3.40 that V“(((l + pZ)Hr—1) 1)php*h) can be written as a sum

h .
1+ pZ)2=1) _ 1)pi

Z Pu,h,i(l‘i‘PZ)((( pZ) ; )
i>max(h—u,0) p
in Z. Hence we need to analyze the expression

)Vo.u with P, ;(T) a polynomial with coefficients

—eryr—n—1 (8(p—1 14 pZ)*0~) — 1)
Z Z (];) pN (c+1)r—h—1 ( (pu )> Pu,h,i(]. +pZ) (< P ) 5 ) a£g+1)vk,r+j+u
J20 i>max(h—u,0) b

As1 < s, if s < p—1 then (i) is divisible by p. If s = p and u is coprime to p then

p(pu— U) is divisible by p. If s = p and w is divisible by p then the polynomials P, ; ;(T") are

divisible by p. In all these cases I; <s(p u_ 1)) P, 1i(1+pZ) is divisible by p. Write this as

pﬁs,u,h,i Wlth Bs,u,h,i S Z[l +pZ]
Asj>0,¢+1>2 u>1landi > h—u, we also have N—(c+1)r—h > N—(c+1)(r+j)—h >
N—(c+1)(r+j+u)—(h—u)+u>N+1—(c+1)(r+j+u)—i Hence

_ 1 7 2(p—1) _ 1 pi
<1;) pN—(c—l—l)r—h—l (S(Pu 1)) Pu,h,i<1+pZ)(( +p ) ‘ ) OKT(}}IH) _
pZ )

N1 (et D)ty ra)—i (L +pZ)* D — 1) (PN DR (V= (e -0 o (VD)

= ﬁs,u,h,ip - Q.
pz J
and (p(Nf(c+1)rfh)f(N+17(c+1)(7'+j+u) i) &1}7+1)) c RUZO[l—I—pZ].
Furthermore, assuming that u, € pA} and that pV *QT*"QS}IH) € RY=Y1 + pZ] by induc-
tive hypothesis, we have pN+1-2(r+itu=i (p(N_Qr_h)_(N+1_2(T+j+“)_i)agﬂ)) = pN—QT_hagH) c

RY=C[1 4 pZ|]. This proves the inductive step and the Claim follows.
O

Write w*(q) for the sheaf r* evaluated on the Tate curve. We consider it as a submodule
of W(q) using the identification t*(q) = FilgW(q). Recall that Wy (q) := W2(q) ®r w"/(q),
where 10*s is the evaluation at the Tate curve of the coherent sheaf (g@* ((’) Qjord) ® o AI) [k: f]
where ¢ = 1 for p odd and i = 2 for p = 2.

Corollary 3.42. Let g(q) € w*(q) with U(g(q)) = 0 and let ¢ be a positive integer such that
ptup € AY. Then for every positive integer N we have

(p—1)pN

((vp—l_ld)Np> Z pAN—(etn mkf(q)[z]%ﬂn'

Moreover, if uy, € pAY then

(p—1)pN

((vp*—ld)N”) (9(q) ( Z toks v,m)
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Proof. The Igusa tower 3@;’3‘1 over Spf(R) becomes a disjoint union of copies of Spf(R), permuted
transitively by the group G; = (Z/qZ)*. We denote it by J&(q) = Spf(R’). The connection
on W,,(q) is the composite of the connection on W°(q) and of the connection on w"/(q) defined
by usual the derivation on R’ and, hence, by the derivation on R. It suffices to prove the
claim replacing "/ (q) with R” := R' ® a0 Ar which is a finite and free R-module, i.e., we work
with W9(¢) ®g R”. Fix a basis {e;};, with j varying in a set of indices J, so that W)(q) ®r
R' = @;W)(q)e;. Taken g(q) € w*(q) C Wi(q) we can decompose it as a sum Y_. g;(q)e;
with g;(¢q) € w*%(q) € W(q) and V(g(q)) = 3=, V(g;(g))e;. The assumption U(g(q)) = 0 is
equivalent to require that U (gj (q)) = 0 for every j. The statement then follows from Proposition
3.41.

[

4 p-Adic iterations of the Gauss Manin connection.

Let us fix closed intervals I, = [p%p’] and I = I}, = [p,p?] with a < b,c < d,a,b,c,d € N
and an integer r adapted to I, and I,. The main topic of this chapter, in view of applications
to the construction of p-adic L-functions attached to triple products of finite slope families of
eigenforms in the next chapter, is the following: given weights k: Z; — A} and s: Z; — Aj
define the operator “(Vy)*”.

To see what this should be we’ll first look at g-expansions. Let g(q) = Y~ ,anq™ € Af[q]
be the g-expansion of a p-adic modular form ¢ of weight k. Then the g-expansion of V(g)

is 0D 0" g ang"wi, = (oo, na,qg")w?, seen as the g-expansion of a p-adic modular form

d
of weight k + 2. Here 0 := qd—q. Let gP(q) = Zfzoy(%n):l a,q" be the p-depletion of g(q).

Seeing the weight s as a continuous homomorphism s: Z; — A7, we define the operator 9° on
p-depleted g-expansions by:

>(G"(g) = > ans(n)g"

n:l,(n,p):l

It can be seen easily that gP!(¢) is the g-expansion of a p-adic modular form of weight & which
lies in the kernel of the U-operator and that 0° (g[p](q)), thus defined is the ¢-expansion of a
p-adic modular form of weight k + 2s: Z; — AI®AIS.

Therefore we'd expect that V§ were a differential operator defined on H°(X, ;, W9)V=C with
values in HO(X,; ® Ar,, W)_,,), but unfortunately things are not as simple as this.

The first problem is that Vy, seen as a connection on the sheaf W9 over X, ;, has poles along
Hdg; see section 3.4. This makes it difficult to iterate it.

The second problem is that the definition of 9° on g-expansions given above is not algebraic
enough and what we would like to interpolate is not d but the whole connection V. We then
incur in the problem discussed in Remark 3.39.

To remedy this let us suppose that the weight s has the property: there is us € A;, such that
for every ¢ € Z, s(t) = exp(uslog(t)). In particular s|,, , = 1 and s|i4,z, is analytic. Then let
us remark that the operator 9?~! —Id on p-depleted g-expansions is divisible by p, i.e., if g(¢) =
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S ot (npy=1 @nq" € Ar[g]V=0, then 9P~ (g(q)) — g(q) = Y02y (=1 @n (PP = 1)q" € pA;]g]. So
Us

if we put:
3(g) = exp( 5 Lo (@) (9)

then the definition makes sense and moreover we have that 0(g), on p-depleted g-expansions,
equals the previously defined 0°(g). Our strategy to define V7§ in general is based on the following
assumption:

Assumption 4.1. k and s are weights satisfying the condition: k = x -ko-v and s = x' - 89w
where:

a) X, X' are finite order characters of 7 and x is even,

b) ko, so are integer weights such that ko is even modulo p, i.e., there are integers a, b with
a even modulo p such that ko(t) = t*, so(t) = t* for all t € Z.

¢) v, w: Z; — A} are weights such that there exist u, € pAs, u, € qA; satisfying: v(t) =
eXp(uU log(t)) and w(t) = exp(uw log(t)) for allt € Z;,.

We recall that ¢ = pif p > 3 and ¢ = 4 if p = 2 and that a finite order character x: Z; — O}
is called even if there is a finite field extension K C L and a character e: Z; — O} such that
2
¥ =x.

Remark 4.2. Assume that p is odd. Then x: Z; — Oj has the form x = € -7, where
€li4pz, = 1 and 7|z/pz)» = 1, ie. € = w' with i a positive divisor of p — 1, while 7 is a character
of order a power of p. Here we have denoted by w the Teichmiiller character composed with
reduction modulo p. Let us remark that ¢, ¢ and 7 are uniquely determined by x. Then, the
character y is even if and only if € is even, i.e., if and only if ¢ is even. In this case the field L
may be taken L = K.

For all g € H°(X, [, Wg)UZO, if k and s satisfy Assumption 4.1 we set

s Us -1)
Vi)*(g) = eXp( log (V) )(9)
and claim that this makes sense and it is the desired section of W, o.
The rest of this section is devoted to the implementation of this strategy. Let r and I be as
at the beginning of this section and let n be an integer adapted to I. The main result is the
following:

Theorem 4.3. Let K, k and s be a finite extension of Q, and respectively a pair of weights
satisfying the Assumptions 4.1 such that K contains the images of the finite parts of k, s. Let
g € HY(X,.;, W,)U=0. Then there exist positive integers b and ~y depending on r, n and p and an
element V;(g) of Hdg "HO(Xy 1, Wyas) such that on q-expansions, in the notations of §3.5, if

9(q) = > 9n(@) Vin then

\% (g) (q) := Z Z ( 1;-8 ) ﬁ(uk +us—h—1— i>as_j (gh(Q)>vlc+2s,j+h§

h 3=0 =0
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here < z;.s ) = Ul D(us gt ) g if gn(q) = Zn,pm anng" then

7!

057 (gh(q)) = Z s(n)yn™apnq".

n,plh

Proof. We show how to reduce the proof of the Theorem to the case that k and s as in Assumption
4.1 which in addition satisfy x = x' =1 and ko = s9 =1 (i.e. a =b=0) (we’ll call these “strict
assumptions”). The proof in this case is postponed to §4.1.

Case I. First of all assume that k(t) = exp((a + u,) log(t)) and s(t) = exp((b+ u,,) log(t))
for all t € Zy, where a, b € Z with a even modulo p, u, € pA; and u,, € gA;. Let then o, 8 € Z
be integers such that:

i) p|(a+2a) and a > 0

and

ii) g|f and f —a+b > 0.

Then let us remark that we can write formally:

(Vi)*(9) 1= (Vasaznszun-28) " ((Tussasaa) P (V0)°(9)) ).

Remark that everything written on the right hand side makes sense either because the weights
satisfy the strict assumptions or because the exponent of V is a positive integer.

Here we wrote the weights additively, i.e. w, + a + 2 is the weight sending ¢ € Z to
exp((uy + a + 2a)log(t)) = k(t) - t** etc. We leave to the reader to prove that one obtains
the expected formula on ¢g-expansions using Lemma 3.38 and the assumption that the Theorem
holds for (V. 1at2q) 7.

Case II. 'We next consider weights of the form k = k'y and s = s’y with k&’ and s’ weights
with trivial character of the type considered in Case I and x and y’ characters such that y even.
Let L be a finite extension of K and €: Z5 — Oj a finite character such that x = £*. Thanks
to Proposition 3.29 we have an element

0° ' (g) € HO(X,0, Wior @i L)V=0 = HO(X,., Wy @5 L)V,
Define:

Vilg) = 9“‘(% (‘96_1@))) € H(X,.1, Wy o5 @ L)V=0.

We leave to the reader to check that one gets the required formula on g-expansions using Propo-
sition 3.29. One deduces from this that in fact Vi(g) € H(X, ;, Wj12,)Y=", concluding the

proof.
O

Following a suggestion of Eric Urban define:

Definition 4.4. If s = \/ is a finite character and a is a positive integer and f € H%(X, z, ro*)
set Vi (f) == 0X (Vi(f)).
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Remark 4.5. Notice that V{™(f) is a modular form of weight &+ 2a + 2y’ that coincides with
AV (QX/( f )) as can be checked on g-expansions using Lemma 3.38 and Proposition 3.29.

With the notations of the Theorem 4.3 and Assumptions 4.1, take Og-valued points «
(resp. ) of A; so that the induced weight ko 4+ v (resp. so + w) specialize to classical weights
vg € N and wyg € N. Let g, be the specialization of g at a. One deduces from the formula on
g-expansions and using the notations of Definition 4.4 the following:

Corollary 4.6. The specialization of (V)*(g) at o and 5 is V%OJK‘/ (Ga)-

4.1 The proof of Theorem 4.3

From now on until the end of this section we will assume that the weights k£ and s satisfy the
strict assumptions:

Assumption 4.7. There are u, € pA; and us € qA; such that k(t) = exp(uylog(t)) and
s(t) = exp(uslog(t)) for allt € Z.

Our goal for the rest of the section is to define for all g € H® (%h I Wg)UZO

(V4)*(9) = exp( ———log (V") ) (9).

uS
(p—1)
We start with the following

Definition 4.8. Let us denote W%l c W0 =, (OVO(Hﬁ s)) the subsheaf of W° defined by

WO = 3 WO, WO We let W, € W be the sheaves obtained from WY < WO by
twisting by w*s (see Definition 3.1).

We also define the differential operator V: W — (HdlgCn ) ‘W’ by Vlwan = Viion: Wiio, —
Wii2nt2 C Wi

The fact that inside W we have Wy o, N Wy o, = {0} for n # n’ implies that V is well
defined on W’. We start with the following result:

Proposition 4.9. Under the Assumption 4.7 above for every g € HO(%ﬁf}l,Wzrd)U*O and every
positive integer N we have

(V7L —1d) " (g) € pVHO(X2, W) N HO (X2, W).
The same result applies if we replace X, 1 with any layer of the Igusa tower &, , ;.

Proof. This follows from Corollary 3.42 and the fact that the evaluation at the Tate curve
provides an injective map H° (X7, WO /pW) — WO(q) /pW°(q).

ord *_, xord is finite étale.

The second claim follows as the map J&;",
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Proposition 4.10. Let s be a non-negative integer. Then there exists a positive integer b > r
depending on r, n and s with the following property: for every w € Hdg *H°(X,.;, W) such that
wlxora € HY(XF, pPPW) we have w € HO (X1, pU/AW).

Proof. Recall that W := W° R0y, 0¥/ where 1"/ is the coherent Ox, ;-module (g@',* (Og@m) ®p0
A) [k;l} of Definition 3.1. It follows from Theorem 3.11 that tensoring WO(X)@%T , with a coherent

O, ,-modules is exact so that W, is also W, = <W2 ok, , (gi,* (OJ@M) ®p0 A)) [k}jl] Thus
it suffices to prove the statement locally on X, ; and repla(;ing W with W ®oy, F with F =
(gi,* (Ojasm) @0 A)-

Consider first the case of W% Let V = Spf(S) C X,; and let U = Spf(R) C 78,
be its inverse image. For V small enough W(U)/pW°(U) = R/p’R[Z,Y] is a free R/p’R-
module and Wor(U) /pWerd(U) = R /p! RR[Z, Y] is a free R /p! R"-module. We
may choose the variables so that the restriction map WO(U)/p?WO(U) — Wo(U) /p?Word(U)
sends Y +— Y4 and Z — png; 12704 = 7" 71z Tt follows from Lemma 3.4 that the ker-
nel of WO(U)/p?WO(U) —s Wod(U) /piWerd(U) is annihilated by 6% ®~D+"~P This implies
that the kernel of WO(V)/pWO(V) —s Word(V) /pPWerd(V) is annihilated by &% #—D+P"—»
since pPWO(V) = (pPW°(U)) N W°(V) by construction. The same then applies for the kernel of
WO(U) /P WO (U) — Woord(U) /prWoord(U) as pWO(U) = (pPWO(V)) N WO(U) by construc-
tion.

As explained in the proof of Lemma 3.4, the morphism ¢,: 3&;, — X, is flat and J&,, —
J&1, can be factored via a flat morphism 3&;, — 3, with épi_”(’)jgm,J C Oyg; - Since Ag
is a finite and free A%module, the tensor product of the pushforward of the structure sheaf of
38, — X,; via A] = A defines a finite and flat Ox,,-module G such that W PFCGCF

This implies that the kernel of (WO(V)/p"WO(V)) @ F(V) — (WY(V)/p W (V)) @p
F(V) is annihilated by §7 @=D+" P+ We also conclude that 677 PP ry, o
pPW(V) as § is invertible in R°™

Then passing to X, ; with b such that (p — 1)p*™ > 2p"(p — 1) + 2(p" — p) + 2(p — p) and

considering the open Vj, := Spf(S;) corresponding to V' we have that a = po~ PP " e 5, and

2 ,
P = pa(é(p—l)pb“—%”l(p—l)—2(p"—p)—2(pl—p)) € pS,.

52p““+1(p—1)+2(p“—p)+2(pi—p)

Hence, if we denote by w' the image of w in H’(V;, W), we have that w' € pU/2'W(V}) as claimed.
]

Consider now the connection V: W' — <@) - W' over X, defined in Section 3.4. We

have the following key result:

Corollary 4.11. There exists an integer b depending on r and n such that for every g €
HO(X,. 1, Wi)V=Y and every positive integer N we have

Hdg =" (v~ = 1d) " (g) € pN/#IH® (2,1, W) 0 HO (X0, W)

and there exists a positive integer v (depending on r, n and p) such that, given positive integers
h and jy,...,Jn with N = 31 + -+ jp, then
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B, h (-1 _19)""
}Mﬁe‘ﬂj(v j d)>@)cﬂw%mﬁ@%bwﬂﬂH%%MWM$

here h' = h if p #£2 and h' = 2h if p = 2.

Proof. Note that
Hdg VoD (vr —1d)": W — W Cc W

is well defined, i.e., it does not have poles. Write N = p[N/p| + Ny the division with reminder
of N by p. Then

Hdge =) (VP! — Id)N (g) = HdgNow=Ddgenr—DIN/] (VP! —1d) [N/p] (VP = Id)NO (9))

We then deduce from Proposition 4.9 that the restriction to the ordinary locus belongs to
pN/PIHO (%27 W). Thanks to Proposition 4.10 there exists b, depending on n, r and p such that

HdgeNo—1) (Vp—l _ Id) [N/p] ((fol _ Id) No (g)) e pN/2PIHO (%M, W)

As Ny < p — 1, the first claim follows.
We prove the second claim. Write N = p[N/p| + Ny Also in this case

HdgerP(P~DIN/pl+en(p=1)No (vt - Id)P[N/p} o (VP! —1d) No (9): W — W’

over X, is integral. Over the ordinary locus the image of g is zero modulo p!¥/? thanks to
Proposition 4.9. Arguing as in the proof of Proposition 4.10 there exists a linear function
((X) = aX + [ with a and 3 positive integers depending on 7, n and p such that

Hng([N/p]) (qu . Id)p[N/p} ((qu . Id) No (g)) c p[N/p}Ho (%M’ W)

and hence Hdg" /"y € pN/P*IHO (X, ;, W)with

w L(Vﬁ—l . Id)p[N/p] ((Vp—l . Id)NO (g))

Wi
thanks to Lemma 4.12. Replacing ¢([N/p]) with ¢'([N/p?]) := pa|N/p?|+~ with v := (p—1)a+2,
noticing that ¢ ([N/p?]) > ¢([N/p]) and arguing as the proof of Proposition 4.10 we find a positive
integer b depending on a and 3, and hence on r and n, such that Hdg"w € p¥/27*IHO (X1, W),
concluding the proof of the Corollary.
[

Lemma 4.12. Let jy,...,Jn be positive integers and write N = jy + --- 4+ jn. Then we have

Oh+ X =30 vp(Gi) — vp(hl) > X with 6 =1 if p>3 and 6 =2 if p = 2.

Proof. Write h = hg + -+ - + hyp" for the p-adic expansion of h. Then the p-adic valuation v, of

h! is
h—(ho+ -+ h) < h

p—1 “p—1

vp(h!) =
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It suffices to prove that dh + % — > (i) — % > % withd =1if p>3and § =2 for p = 2.

As N = j1 +-- -+ jp it suffices to prove the claim for h = 1, i.e., that for every positive integer j

(p—1). : 1
> .
o+ e ]_Up<])+p_1

If v,(j) = 0 this is holds for any § > 1. Else write j = ~p" with p not dividing v and r > 1,
then the inequality becomes

-1 1
o+ Mvpr’l >4+ —.

p p—1
It suffices to prove it fory =1. If p >3, wecantake 6 = lasp" ' >r+1forr>1. If p =2,
we can take 6 = 2 as 2"~ > r for every r > 1. This concludes the proof of the Claim.

O

Proposition 4.13. The notations are as in Corollary 4.11 and let s: Zy — (A(I)S)* that satisfies
the Assumption 4.7. Then, there exist positive integers v, b depending on r, n and p such that
for every g € HY(X,.;1, W;)V=0, the sequences

+

Alg. 5)n = (_13')j1 (V7' =1d)’(9)

J
and, if we write H; ,, for the set of i-uple (j1, ..., ji) of positive integers having j1+- - -+j; < n+1,

n

1 ul ! (_1)]'”71 1 J1tetii
B(g,8)n = .——si — (V""" —-1Id (9), forn >0
; il (p B 1) ((jl,...;)em,n (a=1 Ja )( ) )

converge in Hdg "H(%, ;@A;,, W). Moreover if we denote the limits
lim,, 00 A(g, 8)n =: log(Vh )(g)

and
U

= 1)10g(Vﬁ_1)>(9) =: Vil9),

hmn—)ooB(gv S)” = eXp((
p

we have that V3 (g) € Hdgi’yHO(be@A[S,WkH,QS). Finally on q-expansions we have

OIS ( i ) Tk 102 — = 1= 0% (94(0)) Visoagon

R =0 i=0

Proof. The first convergence follows immediately from the first claim of Corollary 4.11. Therefore
log(Vi_l)(g) converges p-adically in Hdg’C”(p’l)zHO (%bJ, W)

We prove the second claim. Thanks to Corollary 4.11 we have a positive integer v such that
for positive integers h, N and ji,...,Jj, with j; +---+ j, = N we have

ph (vp,l - Id)j1+...+jh (g)
hljy--- jn

Hdg” c p™2PIHO (%, 1, W) N H (%7, W),
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In particular the series B(g, s)m — B(g, s)n for m > n lie in p+1/2*IHO (X1, W). ie., B(g,s)n
is a Cauchy sequence for the p-adic topology and in particular converges.

To see that V§(g) belongs to HY(X, 1, Wy94) it is enough to see how a section of the torus
T acts on this section of W. By density it is enough to see how an element ¢t € Zy acts. As
tx V() = t2Vi(t* ) and t x g = t*g, we obtain: t x Vi (g) = t**V;(tkg). This proves the claim.

It remains to show the claim on g-expansions. Assume first that s is an integral weight.
(pqisl)
coincides with the one claimed in the Proposition thanks to Lemma 3.38. In the general case,

consider the coefficients ) ¢,(q)Vii2sn of the g-expansion of V§(g) and the coefficients of
> bn (@) Vitas,n with

= S (%) TLow =100 (n(a).

h.j,h+j=n i=0

Then B(g, s),, converges p-adically to exp( log(Vifl)> (g) which is Vj(g). Its g-expansion

For every n both ¢,(q) and b,(q) are functions with values in R&A;,, where R = Ay, ((¢)) is the
completed local ring at the cusp. For every n the coefficients in the g-expansion of ¢, and b, lie
in Aj, QA 1, and coincide for all the integral specializations of us, i.e., for infinitely many points.
Hence they coincide. The claim follows. O]

5 Applications to the construction of the triple product
p-adic L-function in the finite slope case.

In the first two sections of this chapter, in which we recall the known construction of the triple
product p-adic L-function attached to a triple of Hida families, we follow closely the exposition
in Section §4 of [DR1].

Let f be a newform of level Ny, character x; and let Q; denote the number field generated by all
Hecke eigenvalues of f. We write f € Si(Ny, xr, Qf). We denote by 7y the automorphic repre-
sentation of GLy(Ag) generated by f. If N is a multiple of Ny and Q; C K we let Si(N, K)[m¢]
denote the f-isotypic subspace of Si(N, K') attached to the automorphic representation 7. For
every divisor a of N/N; consider the elements [a]*(f) of Sk(N, K)[r¢] defined by pull-back via
the morphism [a] from the modular curve of level I'y(N) to the modular curve of level 'y (IVy)
given as follows. Take an elliptic curve E with cyclic subgroup Hy. Let H,n,, resp. H, be the
kernel of multiplication by aNy, resp. a on Hy. Then [a](E, Hy) = (£, H]’Vf) with £’ := F/H,
and Hy = Hun,/H,. Note that [a]"(f) = f(¢"). Then, as recalled in loc. cit.:

Lemma 5.1. The space Si(N, K)[r¢] is a finite dimensional K-vector space of dimension

GO(Nﬁf)’ where ao(n) = #{d | d|n}, and a basis of Sp(N, K)[m¢] is given by {[a]*(f)}a“vl.
f

Let f, g, h be a triple of normalized primitive cuspidal classical eigenforms of weights k, ¢,

m, characters xy, x4, xn» and tame levels Ny, N, Nj respectively. We write f € Sp(Ny, x7),

g € Se(Ng, xg)s h € Sin(Np, xn). Weset N :=L.c.am(Ny, Ny, Ni), Qrgn = Qp-Q,-Qp the number

field generated over Q by the Hecke eigenvalues of f, g, h. We assume that x7 - x, - xn = 1

and the triple of weights (k, ¢, m) is unbalanced, i.e., there is t € Z>( such that k = ¢ + m + 2t.
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We have the following result of M. Harris and S. Kudla ([HaKu]), previously conjectured by
H. Jacquet and recently refined by A. Ichino ([I]) and T.C. Watson ([W]):

Theorem 5.2 (Theorem 4.2. [DR1]). Let f, g, h be a triple as at the beginning of this section.
Then there exist:
e holomorphic modular forms

[ € SN, Qpgn)lmsls s g% € Se(N, Qpgp)lmgl, h” € SN, Q) [

o for each q|Noo a constant Cy € Qy.g1, which only depends on the local components at q of
£, 9°, h° such that

Hq|Noo Cq

k+0+m—2
7T2k L(f’g7h’—

) = (g ).
Moreover, there is a choice of f°, g°, h® such that all Cy # 0.

In the above theorem L(f, g, h,s) is the complex Garrett-Rankin triple product L-function
attached to f, g, h and
I(f°,9°,h°) == ((£°)7,0"(g")h°),
where (, ) is the Peterson inner product on weight k-modular forms, § is the Shimura-Maass
differential operator and (f°)* = f°® X;l is an eigenform having prime-to-N eigenvalues equal
to those of f°, twisted by the character X]TI.

5.1 The triple product p-adic L-function in the ordinary case.

Let f, g, h be as at the beginning of Section 5 with the additional assumption that f, g, h
are ordinary at p. Let f° ¢° h° be as in Theorem 5.2 such that all constants C, for ¢|Noo
are non-zero. Let f, g h be Hida families of modular forms on I';(N) (seen as g-expansions
with coefficients in the finite flat extensions of A denoted Ay, Ay, Ay, respectively) deforming the
ordinary p-stabilizations of f, g, h in the weights k, £, m respectively. As explained in [DR1, §2.6]
the families f, g, h determine Hida families f°, g° and h® deforming the ordinary p-stabilization
of f°, g° and h° respectively. Define also (g°)P!, the p-depletion of (g)°, on g-expansions by: if
g°(q) = >°°° | ang™, then (g°)P(q) == > et (np)=1 @ng". We then have

Definition 5.3 (Definition 4.4 [DR1]). The Garrett-Rankin triple product p-adic L-function
attached to the triple (f°,g° h°) of Hida families is the element

((£2)", e (d(g°)P) x h°))

EZ{(fo’go’ho) = <f*’f*>

€ A; @r (Ag @ AR @ A).

The p-adic L-function Eg (f°, g°, h°) in Definition 5.3 is a function of three weight variables.
In particular if x, y, 2 € W are classical weights which are unbalanced and if we denote by ¢ > 0
the integer such that © = y + z + 2t then we have (see section 4 of [DR1])

((£2)", e”(d(gy)® x h2))
(£ £2)

X)X

,C]Jj (f07 g07 ho) (xa Y, Z) =
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Thanks to [DR1, Thm. 4.7] the above value of the p-adic L-function at x = k, y = ¢, z = m is
related to the classical L-function via

k+£+m—2)>§

L5 (£2,8°.0°) (k£ m) = x (L% (f,9.h, =

for some non-zero constant x. It follows from Theorem 5.2 that the p-adic L-function Eg (f ° g° h°)
is non-zero if the value of the special value of the classical L-function is non zero; see [DR1, Rmk

4.8].

5.2 The triple product p-adic L-function in the finite slope case.

Let f € Sk(Ny, xr), 9 € Se(Ng, Xg), b € Sp(Np, xn) be a triple of normalized primitive cuspidal
eigenforms such that f has finite slope a and x - x, - x» = 1 and assume (k, ¢, m) is unbalanced
and denote ¢ a non-negative integer such that k = ¢+ m + 2t. Let N := l.c.m(Ny, Ny, Nj,) and
let f°, g°, h° be as in Theorem 5.2 such that all constants C,, are non-zero. In particular f° has
finite slope a. We denote by K a finite extension of Q, which contains all the values of xy, x,,
Xh-

Let wy, wy, wy denote overconvergent families of modular forms deforming f, g, h and let w?,
wy and wy, be the overconvergent families deforming f°, ¢°, h? and associated to wy, w, and wy,
via the procedure described in [DR1, §2]; for example if we express f° as a K-linear combination
> o Aa-lal*(f) of the basis elements [a]*(f)’s, for a varying among the divisors of N/Ny, provided
in Lemma 5.1, then w§ := >, A - [a]* (wy).

We then have a non-negative integer r, closed intervals I, I, and Ij, such that the weights
of these families, denoted respectively ky: Zp — A} ., kg: Zy — A} i, kn: Zyy — A}, g are all
adapted to a certain integer n > 0. This data gives a tower of formal schemes 3&,,, ;1 — X, ; —
X, where X is the formal completion along its special fiber of the modular curve X;(N)z, and
Xo1 = X1, Xz Xo 1, Xz X1, and likewise for 3&,,, ;. We denote by ”s  1oks rokr the respective
modular sheaves (over X, ; or on the analytic adic fiber & /), then wy, w$ € H()(/"L’Mf,t'okf)7
similarly wy, w9 € HY(X,. 1, 0*) and wy, wy, € HO(A,;,, 0*"). We make the following assumption
on the weights of w$, wy, wy:

Assumption 5.4. 1) Suppose that the weights kg, ky, ky, are such that ky — k, — ky, is even, i.e.
there is a weight u: Zy — (A1 k)" such that 2u = ky — kg — ky,.

2) the weights kg, u (in this order) satisfy the Assumption 4.1, i.e. ky = € x, - k' and
u = t-e-s where € is a finite order, even character of Z; and k', s are weights such that
k'(n) = exp(uw log(n)), s(n) = exp(uslog(n)), for all n € Zj with uy € pAr, us € gAr.

We see wy, wf, wy, wy, wy, wj as global sections of Filp(Wy?), Filo(Wi) and Filo(Wj))
respectively. Let w2 be the p-depletion of w¢ as in Definition 3.27. Then Assumption 4.1

implies via Theorem 4.3 that (ng)“(wg’[p]) makes sense and
(V)" () € HO(Xpr 1, W2L0,),
for some positive integer r’ > r. Therefore we have a section

(V)" () x wp € HO(Xy 1, W),
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Consider its class in H(lm (XTQ 1,s W f,z), which after base change to &7, where £/ is obtained from
Ap, x by inverting the elements {u, —n|n € N}, we obtain a section in H (X, 7, , /) s,k R
Using Definition 3.36 and the spectral theory of the U-operator on H° (XT/’ Ius mkf) developed in
[ATPHS, Appendice B| we have its overconvergent projection onto the slope < a subspace:

HYS (V)" (w3 ) x wp) € HY (X, b7 ) =" @y, Ry

The family w;* In order to define triple product L-functions we need to pass from the
family w$ to a different family w?* € HO(&,;,,w*), with the property that for any classical
specialization of w} which is an eigenform of conductor prime to p the specialization of w;’* is
also an eigenform of conductor prime to p with prime-to-N Hecke eigenvalues twisted by inl.
For this reason one also writes w} ® X;l for w;’*.

We follow [BDP, Lemma 5.2] and [BSV, Lemma 5.1]. Possibly after base change from Z, to
the ring of integers of a finite extension of Z, we may assume that A contains a primitive N-th
root of unity ¢. This allows to define an Atkin-Lehner involution wy on X;(N): given an elliptic
curve E with a cyclic subgroup of ¢y : Z/NZ C E[N] we let wy(E, ¢¥n) be the elliptic curve E’,
quotient of E by the image Hy of ¢y, with subgroup H), := E[N]/Hy trivialized by identifying
HY; with the Cartier dual HY;, identifying Hy with uy using the dual of ¥y : Z/NZ = Hy and
using the chosen N-th root of unity to provide an isomorphism Z/N7Z = px. Such involution
extends to an involution on X, ;, Wj, etc. We let w;’c’* = wy (w;’c) As explained in loc. cit. it has

Definition 5.5. The Garrett-Rankin triple product p-adic L-function attached to the triple
(w;’e, We, w,‘;) of p-adic families of modular forms, of which w$ has finite slope < a, is

e G (V) ) <))
[’p (wf,wg,wh) = <w3; w;';) S ﬁf®Ak9,K®Akh,K~

We refer to [Url4, §4.2.1] for the Petersson inner product in this context; see also the dis-
cussion below. By the definition of the overconvergent projection in Definition 3.36 the p-adic
L-function Eg (w$, wy,wp) has only finitely many poles, i.e., it is meromorphic.

On the Petersson product for families of overconvergent forms: Consider the space M =
HO(X,;,10%)=® defined over an affinoid Wy := SpmA of the weight sapce with total ring of
fractions K. Let T be the subalgebra of EndM generated by the Hecke operators. It defines an
open affinoid of the eigencurve and SpmT — Wy is finite and generically étale. Thus we have a
trace map T — TV := Homy(T, A) which defines an isomorphism ¢: T® 4K = TV @4 K. We also
have a pairing M x T — A sending a pair (f,T), consisting of a form f and a Hecke operator
T, to the Fourier coefficient a;(f|T) in the g-expansion of f|T. This defines an A-linear map
j: M — TV. The Petersson product is defined as the composite

OV MxMZE3T xTV 5TV @ Kx T @4 K'—5 Toa K x TV @4 K — K

(the last map is defined by the natural pairing T x TV — A).
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5.3 Interpolation properties

Let now z € Wy, y € Wy, 2 € Wy, be a triple of unbalanced classical weights, i.e., such
that z, y and z are obtained by specializing k¢, k, and k. at integral weights in Z>, and there
is a classical weight ¢ with x —y — 2 = 2t'. Let us denote by f., f?, g,, g, h., h? the
specializations of wy, W$, Wy, Wy, Wp, Wy, at x, y, z respectively, seen as sections over &,/ of
w” C Fil,_o(W,) = Sym” *(Hg), w¥ C Fil,_o(Wa,) = Sym’*(Hg), w* C Fil._o(W,) =
Sym*~*(Hp) respectively. Let us denote by (Vi (woP }))%t, the specialization of Vj (wo) e

HO(X, 1, Wit ,,) at the classical weight y 4 2¢'. We have:

Lemma 5.6. We have (V%g (w;”[p}))yﬂ = V! (g2, the equality taking place in H° (X p, WERL ).
In particular,

< £7*7 H’r,a (Vt’ (g;’»[P]) X hg>>
Proof. The first claim follows from Corollary 4.6. The second claim follows as the specialization
map commutes with the overconvergent projection and the cup product by Corollary 3.35. [J

As now t' > 0 is a classical weight we can relate the right hand side of the formula of Lemma
5.6 to more classical objects. This is the content of the present section.

In order to do that we fix embeddings of Q in C and C, respectively. We also assume that
fz, gy and h, are eigenforms of level I'; (V) and nebentypus x., x, and x. respectively and with
eigenvalues a,, a, and a, respectively for the operator 7},; that is the Hecke polynomial for 7,
and the eigenform f,, for example, is X? — a, X + x.(p)p* ! and likewise for g, and h..

Let ag, 8., o, By, oy, By and o, . be the corresponding roots of the Hecke polynomials
of T, for the forms f,, resp. f¥, resp. g,, resp. h,. Recall that f = f, ® x;'; it has nebentypus
Xz © and its eigenvalues for T, are the complex conjugates of a, and §,. In particular a, is the
complex conjugte of a,. We assume that o, # 3;, o # B, and o, # (.. In particular also
o # [B%. Then we have the following interpolation result. With the notation of Theorem 5.2
write

1
H ooC x zZ— 2
x+y+z—2) ( o qL<fx’9y’hz=%2>>

Lalg ffE7g 7h27
( v 2 (3 12)

Following [DR1, Thm. 1.3] define
E(gy, h, T) := (1 — pt/ayazT’I) (1 — pt/ayﬁzT’l) (1 — ptlﬁyazT’l) (1 — pt/ﬂyﬁzT’I),

&gy, he, T) =1 — p* ay, By B. T2 &(S,T):=1— g
and 2 ()T
Xa (P)a
TY=1- 22—~~~
82( ) px_l(p“‘l)
Theorem 5.7. We have Eg (w?,wé’,wi) (x,y,2) =
_ ( E(an hz,a;)&(ﬁ;) 5(93;7 hmﬁ;)&(a;) )Lalg(f ok T+y+z— 2).
50(0532,5;)51 (gy, h., Oé;';) 50(5;, 04;)51 (gy, h., 5;) o Gy Moy — 5
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The Theorem will be proven via a series of Lemmas and Propositions. We start with:
Lemma 5.8. We have U(V(gy™) x V(h2)) = 0 and U(V ((V,)"(g2)) x h2®) = 0.

Proof. This is the analogue of [DR1, lemma 2.17]. We prove the first formula, the second one
being analogous to the first. Using Theorem 4.3 we have the following formula on g-expansion

(V7)< v02) 0 =% ( )Huw ~=1=00" (9,0, [p)(@))-V (1) (@) Vi

¢ j=0

As U acts on 04 (g7 (q))V (12) (9) Vysagos 25 774U (9 (g5 (@) V (h2) () ) Viysaw e, where
U (Zn anq”) = > . apq", it suffices to prove that the Fourier coefficients a, of the product

oV =i (gg’[p](q))‘/(hz) (q) are zero whenever p divides n. By construction the Fourier coefficients

oV =i (gZ’[p](q)) =, bug™ are zero if pln and V (h2)(q) = 3, ¢,g"". The claim is then clear.
[

Given the roots a, and 3, of the Hecke polynomial of T}, associated to the form g,, we get two
associated eigenforms for U, of level I'y(Np), with eigenvalues «, and 3, respectively, namely
Ga, = gy — B4V (9y) and gz, :== g, — @,V (g,). These are called the p-stabilizations of g,. We
start with the following analogue of [DR1, Lemma 4.10]:

Lemma 5.9. Fizx p-stabilizations e, and hg,_ of gy and hY with eigenvalues oy, and c, respec-
tively. Then,

HESS (97 () 5 2) = (1= o, ) <2 (V7 (8,) x 12
Notice that U is invertible on the slope < a part so that the formula makes sense.

Proof. This is the analogue of [DR1, lemma 4.10(iv)]. Recall from §3.7 that ga) W= 9o, —

V(U(ggy)). In particular, as U(gy ) = aygs , then ga, o]

Vt'(V(ggy)) = ptV(Vt'(ggy)) as VoV =pV oV. Hence,

= o, — ayV(g%). We also have

HT,Sa(vt’ (gg,y[p]) % hgz) — HT,Sa(vt/ (ng) >< h‘;z) _pt’ayHT,Sa(V(vt' (ggy)) v hiz).
One computes
HY=(V(V¥(g2,)) x V(hg.)) = HY=(V(V"(g5,) x hg.)) = U HY= (V" (g2, ) x hS.);

the last equality follows using that U o V = Id and the fact that H"<% can be expressed as an
entire power series -, -, s,U" so that 37 -, s,U" 0V =3 . s,U""'. It then follows from the
second formula of Lemma 5.8 that

HES(V (97 (03,)) W) = =2 (V (97 (02,))  V (12,)) = 0n T HVE (97, ) x 12,
Assembling these formulas we get that
Hi=e (th (gg’y[p]) X hgz) = (1 —pt,ayozzU_l)HT’ga (Vt/ (ggy) x h? )

Qz
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Since ho, = h, — 3,V (h,), it follows using Lemma 5.8 that
V<0 (9 (g5 1) = HV<0 (9 () 1)

which is also HT'<¢(V* (gZ’[p}) X hg’lp}), using again the Lemma 5.8, as h3” = he — oV (RS)).
Since V¥ (g‘y)’[p]) =V (99) +pt'V(Vt/(U(g§))), by loc. cit. we have

HESH (9 (g5 ) x hgl) = HS (97 () g = B0 (V7 (g2,) x )

the last equality follows from g = gy — ByV(gZ) and the fact that V* (V(gg)) =p'V (V¥ <95))
so that HM<(V* (V(ggy)) x hoP ]) = 0. Arguing in the same way backwards we have

HISH(T (6,) % 1) = S (9 (0 < )

The claim follows.

We also have the following analogue of [DR1, Prop. 4.11]:
Lemma 5.10. We have

HYSo(V (o) x h2) = E(gy, h=, U)

= B L [ghse(VY (g°) x h9).
Eugy b D) (Y 0) < B)

Y

Proof. Tt follows from Lemma 5.9 that
HY< (7 (g3) x 1) = (1= bl ) VS0 (97 (g2,) x B )

for a, b = a, 5.
If hY_ and h$ are the two p-stabilizations of h?, then hg = (o, — £.)7" (csh?. — 5zhgz) and
similarly for g,. Hence

S (V7 (g ) x B2) = (1= p 00U (1= p e, U HOS (9 (g5, ) x 1)
and
HYS (T (g7) x B2) = (1= g Byl ™) (1= 9 B80S (97 () x h2)
Thus, using that g7 = (o, — 8,) " (ayg2, — 8,98, ), We obtain
HY(V" (g7) x h2) = (o = B,) " oy, H= (V" (92,) x h2) — (= B,) 7' B, H=(V" (g5, ) x h2).

A simple computation provides the claimed formula.
m

Proposition 5.11. We have ( j*,HT’S‘L(Vﬂ (gZ’[p]) x h?)) =
)

:( E(gy, har ) E() E(gy, he, 82) Ea (0
Eolaz, B2)E(gy, hay o) Eo(B2, o) Ex gy, ey B2
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Proof. Consider now the projection e« onto the Hecke eigenspace corresponding to fo*. Write
3 i e HVS0 (W (g5) )
and write yo: =y — 35V () and 3. = v — a3V () for the two p-stabilizations. Then
(for HY=2(V (g7) x h2)) = (f2",)

and

E(Qy,hz,U) - g(gyahzaa;:)

o7 7 )= o7 37 o Vs

E1(gy: 2. U) (ez) E1(gys hsv ) (ez)
and similarly for 4. Recalling that v = (o} — 85) 7 (@fvaz — Bivs:) = (1— ﬁ;/a;)fl’ya; +(1-
al/ B;)_lfy/g; the conclusion follows from Lemma 5.10 and Lemma 5.12 noticing that the Hecke

eignspace associated to fo* has nebentypus y;'.
O

Lemma 5.12. Let 0 and v € Sk (Fl(N)). Assume that v is an eigenform with eigenvalue a, for
the operator T), and with nebentypus x. Then

__x(p)’ay
<57 V(7)> - pk_l(p 4 1) <57 7>

Proof. Let a:= (1 0). Following [DS, §5.2] we write

0 p

(M)l (V) = I ()5, 1) () b

where 3; = ((1) ij) for 0 <j<p-—1, oo = (g (1)> and mp —nN = 1. Moreover T,(v) =

Sl () e Honce, (0,) = (. T0) = S0 +O ke (3 1) B

Write 3; = ajab;. Then
(0,71k)) = (8,7|rajab;) = (0]xd; ", ylkaja) = (6,7|ra)

as the Petersson product is invariant for the action of elements of I'y(/N). Similarly, writing

m n
(N p) B = aab we have

) = Gl (3 2) 075 = Gl (g )

We conclude that
ap(d,7) = (p + L)X () (0, V[ Bo0)-
Recall that T,(7) = U(7)+x(p)p" "'V (v) with V(7) = X(p)p' #4118 and U(y) = 3070 7118,

Hence

__x(p)’ay
<67 V(7)> - pk_l(p 4 1) <57 7>
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Proof. (of Theorem 5.7) It follows from Theorem 5.2 that L (fx, Gy “y‘;z_z) = I({f;gfc;];g).
On the other hand

(12", e HYS (9 (g5) 1)) = (127 oW (57 (07)  B2)) = 172,519

where H! the classical holomorphic projection on nearly holomorphic modular forms and & be
the Shimura-Maass operator; see [Url4, §2| or [DR1, §2.3 & 2.4]. The claim follows now from
Proposition 5.11. O

In particular for = k, y = ¢, 2 = m we have by construction f, = f, g, = g, h. = h and
£ = 1° 92 = g¢° hg = h°. Then

Corollary 5.13. We have

k+€+m—2)>é

LI (W, wl wp) (@, y, 2) = x (Lalg(f,g, h, 5

for some non-zero constant X so that Eg(w;,wgo,wg) # 0 if the value of the classical L-function
1S Non-zero.

Remark 5.14. For Hida families the Euler factors appearing in the formula in 5.7 differ from
those in [DR1]. This is due to the fact that the pairing (f*, HH<¢(V* (95,[17]) x h2)) computed in
Proposition 5.11 is substituted in loc. cit. by the ordinary stabilizations, namely one computes

<€ord (,f"g’*) » €ord (th (9;’[1)]) X hg) >7

where e,,q = H is the ordinary projection appearing in Hida theory. Nevertheless, under the
Assumptions (4.1), one can use the techniques of the present paper to provide an alternative

proof of [DR1, Thm. 4.7].

6 Appendix I.

In this appendix we set-up the general theory of formal vector bundles with marked sections for
families of p-divisible groups “which are not far from being ordinay” in order to facilitate the
construction of sheaves of type W9 on Shimura varieties of type PEL other then modular curves.
However we do not construct these sheaves and we do not construct the triple product p-adic
L-functions in the finite slope case here for other Shimura varieties, only set-up the geometric
machine which should produce the modular sheaves.

6.1 Vector bundles with marked sections associated to p-divisible
groups.
We start by fixing a flat Z,-algebra A, such that Ay is p-adically complete and separated integral

domain. Let R be a normal domain, which is a p-adically complete and separated Ag-algebra,
without Ag-torsion. Let G be a p-divisible group over R of height h and dimension d < h.

Let det Vi be the determinant ideal of the Vershiebung morphism Vg: G — E(M, where G =
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G xg (R/pR). Its inverse image via the projection R — R/pR defines an ideal of R that we
denote by Hdg(G). Let n be a positive integer and assume that p € Hdg(G)?"". It then
follows from [AIPHS, Lemma A.1] that Hdg(G) is an invertible ideal. Furthermore, G admits
a canonical subgroup H, C G[p"] of rank p™® thanks to [AIPHS, Cor. A.2]. We assume that
HY(R) = (Z/p™)"* and that G[p|(R)/H:i(R) = (Z/pZ)"~*. Thanks to [AIPHS, Prop. A.3] this
implies that there exists an invertible ideal Hdg(G)pf11 C R whose (p — 1)-th power is Hdg(G).

We also know from [AIPHS, Cor. A.2] that Ker(wg — wp,) C p”Hdg(G)in:llwg so that we
have a natural diagram
wa
1
HT\L/ dlo, Wi, (10)
{

wG

(r11as(@)” T Y

Let Z C R be the invertible ideal p”Hdg(G)fﬁ of R. Let Q¢ C wg be the R-submodule
generated by (any) lifts of the images of a Z/p"Z-basis of H\/(R) in we/ (p"Hdg(G)~ e Jwe via
dlog. It follows from [AIPS, §3] and [AIPHS, §A] that the sheaf Q¢ has the following properties:

a) the cokernel of ()¢ C w¢ is annihilated by Hdg(G)ﬁ;

b) Q)¢ is a free R-module of rank d and the map dlog defines an isomorphism
HY(R) ®z (R/T) = Q¢ @r (R/T).

Let E(GY) — GV the universal vector extension of the dual p-divisible group GY and let
Hli (G) be the sheaf of invariant differentials of E(GY). It is a locally free R-module of rank h
endowed with an integrable connection V: Hiy (G) — H}lR(G)@) rQp /4y Called the Gauss-Manin
connection. It also fits into the exact sequence

0 — wg — Hig(G) — wiv — 0.

This defines the so called Hodge filtration on Hj (G). Consider the exact sequence

0 — Hdg(G)rT wg — Hdg(G)r1 -HL(G) — Hdg(G)rT-wlh —0
1 1 \

0— we — Hir (G) — Wv — 0
obtained by multiplying by the invertible ideal Hdg(G)%.

Definition 6.1. Using the inclusion Hdg(G):v%1 ‘wg C Qg C wg define HﬂG to be the pushout
of Hdg(G)P%l - Hig (G) via the inclusion Hdg(G)ﬁwG C Q¢.

The R-module H% has the simple description H, := Hdg(G)P%lHéR(G) + Q¢ as R-submodule
of Hiz(G).

Proposition 6.2. The R-module HﬁG has the following properties:
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1. we have an exact sequence 0 — Qg — HﬂG — Hdg(G)P}%1 cwlv = 0. In particular, it is a
locally free R-module of rank d and it contains Qg C HﬂG as a locally direct summand;

1. it fits into the following diagram with exact rows:

p

0— Q¢ — H, — Hdg(G)r' -wl —0

\ \

0— we — HRG) — W — 0.

<<

iii. the choice of a Z/p"Z-basis of H,(S) defines a basis si,...,sq of the R/IZ-module of
Q¢ /IO via the map dlog.
In particular, we are in the hypotheses of §2.3 with £ = Hﬁg, F = Qg and the sections
S, 554 of Qa /IO where T = p"Hdg(G) 71,
Proposition 6.3. Assume that GV [p"|(R) = (Z/p"Z)". Then the Gauss-Manin connection V
on Hix (G) defines a connection
VG’?ﬁi HﬁG — HﬁG(/X\)RQ}%/AO
such that Veagla, = 0 modulo Z. In particular, the hypotheses of §2.4, namely that si1,. .., sq
are horizontal for Vg y modulo Z, hold true.

Proof. The isomorphism pg: GY[p"](R) = (Z/p"Z)" induces a morphism of finite and flat group
schemes p: (Z/p"Z)" — GV[p"] over R. Let R, := R/p"R. Since dlog is functorial and
Wepr] R, = Wa/P"we as G is a p-divisible group, we have a commutative diagram:

leguhn
(Z/pnz)h — pr",Rn
1 p(S) L dp”

G\/ n legG\/[pn] . n
p"I(R)  — weprr, = we/p"we-

The connection on Hjy (G) modulo p" is the connection Vgpn on the invariant differentials

of the universal extension of G[p"]¥ = G"[p"] relative to R, that we denote by Hip (G[p"]/R.).
Since pl, is isotrivial over R,, it follows that the Gauss-Manin connection V. - on Hig (1l /Ry,)
p

is trivial so that vﬂhn odlog,» = 0. By the functoriality of the Gauss-Manin connection and
the commutativity of the diagram above it follows that Vg o dloggvm = 0. Due to (10) the

map dloggv,» composed with the projection to wg/ Hdg(G)TﬁlIwG factors via GV[p"](R) —
H)(R) and dlogpy. In particular, we can choose lifts §1,...,54 € Qg of s1,..., s in the image
of dloggvy,n modulo p* and we deduce that V(3;) = 0 modulo p"Hjg(G) for i = 1,...,d.

Thus the restriction of V to € factors through p"Hk. (G) C Hdg(G)7TH, (G) C HE, (recall
that p € Hdg(G)”""") and the images V(sy), ..., V(sq) are 0 modulo ZH:, ® QE@/AO (recall Z =

p”Hdg(G)_%). This defines V4 on Q.

As HY, = Q¢ + Hdg(G)71HL, (G), as R-submodules of Hl. (@), to conclude we are left to
show that V sends Hdg(G)»1H., (@) into Hdg(G)#»THiy (G). Using Leibniz’s rule this follows
as Hdg(G)?P/?=Y is a p-th power so that dHdg(G)?/ =" = 0 modulo pR and p € Hdg(G)”""" by
assumption.

]
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6.2 Functoriality in the elliptic case

We keep the assumptions of the previous section on the rings Ap and R. Let G and G’ be p-
divisible groups over R associated to elliptic curves over R. We assume that p € Hdg(G')”""" and
that Hdg(G") € Hdg(G). Then both G and G" admit canonical subgroups H,, C G[p"] and H], C

G'[p"], of rank p". We assume that HY(R) = (Z/p") = H;"(R). We set T = p"HAg(GY) T
(which contains p”Hdg(G)fﬁ).

We let A\: G’ — G be an isogeny such that H] maps to H, and the induced map H) — H,
is an isomorphism after inverting p. Then the dual isogeny AV: GY — GV defines a map of
universal vector extensions \: E(GY) — E(G"Y') and, taking the induced map on Lie algebras
MY, a commutative diagram:

0 = we — HRG) — wiv — 0
LA LN L))
0 - wg — H(liR(G,) — wé,yv — 0.

Here \*: wg — wer, resp. (AY)*: wgv — wev is the pull-back on invariant differentials defined
by A, resp. A\¥ and (()\V)*)v is the R-dual of (AY)*. As A induces a map H/ — H,, which is an
isomorphism after inverting p, then X\ induces a map HY — H ;" which is an isomorphism after

inverting p and we get an isomorphism H)(R) = H,;V(R). Then, the functoriality of diagram
(10) provides the commutative diagram

0 — QG C wg
= LA

0 = Qg C wg

We denote by A*: Q¢ — Q¢ the induced isomorphism. The choice of a Z/p"Z-basis of H, (R)
defines a basis s of the R/Z-module Qg /I and, via the isomorphism HY(R) — H"(R)
induced by AV, also a basis s" of the Og/Z-module of Qg /ZQq.

Lemma 6.4. Assume that \ has degree p™. Then the map N\ induces a morphism \': HﬁG — Hg,.
Moreover N fits in following commutative diagram

0— Qp — H, — Hdg(@)7 -wf —0
LA L L()n)*

0— Q¢ — HE — Hdg(G)7r-wl, —0,

with the properties that f*(s) = s' (modulo T) and the image of Hdg(G)7 1 Wy via (()\v)*)v
(p+1)(p" —1)

is equal to 7y - Hdg(G")71 ‘Wi with ™ =14fn =0 and 7\ = p"/Hdg(G") »"@=D

Proof. If X is an isomorphism there is nothing to prove. For general n, we remark the HﬁG
and Hg, are locally free R-modules of rank 2 and R is normal; hence it suffices to prove that
Y (HﬁG) C HﬁG, holds after localization at codimension 1 prime idelas of R. This is clear for
prime ideals not containing p. Thus, after replacing R with the localization at a prime ideal
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cotaining p, we may assume that R is a dvr. In this case, we may write A as the composite of
n isogenies of degree p and we reduce to the case that n = 1, i.e., that X\ has degree p. Then
A is the quotient under a subgroup scheme N such that N N H] = {0}. From now on we view
the dual isogeny \Y as a morphism \V: G — G, identifying G = GY and ' = GV via the
principal polarizations on G and G’ and wg = wev and wer = werv. Then AY is the quotient by
the canonical subgroup H;. This forces Hdg(G') = Hdg(G)? and Y coincides with Frobenius
modulo p/Hdg(G) (see [AIPHS, Cor. A.2]).

As Hdg(G") = Hdg(G)P, the image A\ (Hﬁc;) is contained in ITIﬁG, = Hdg(G’)ﬁHéR(G/) + Qe

We clearly have H%, ﬁug, and since Hdg(G’ )ﬁwgf C Q¢r, we have an exact sequence

0— Qe — H, — Hdg(G)7 - wly — 0.

In particular H, is identified with the pull-back of ﬁﬁG/ via the inclusion Hdg(G’) 1 Wl C
Hdg(G’)zo%1 - wl. Then X/ (Hg) is contained in H, if and only if the image of Hdg(G)7 1 - w
via ((AV)*)" is contained in Hdg(G')7 1 - wls. This amounts to prove that the image of w
via ((AY)*)Y is contained in Hdg(G')7THdg(G)r T - wl, = Hdg(G)wY,. We remarked above
that A is Frobenius modulo p/Hdg(G) so that the map A is Vershiebung modulo p/Hdg(G)
and hence \*(w¢) = Hdg(G) - we modulo p/Hdg(G)wer. Since p € Hdg(G)P"" this implies that
N (wg) = Hdg(G)wer. Using that AY o\ is multiplication by p, we deduce that the map (AY)*o\*
on differentials is mutiplication by p so that (A\Y)*(we) = p/Hdg(G) - wg. Taking R-duals we
conclude that the image of wy. via ((AY)*) is p/Hdg(G) - wg and the image of Hdg(G)7 T - w,
via (AV)*)Y is 7, - Hdg(G")71 - w, with 7, = pHdg(G) Hdg(G)7 1 Hdg(G")71.

Since Hdg(G) = Hdg(G’)% then 7, = p/Hdg(G’)PTtl = p/Hdg(G)*and, as p € Hdg(G)”"" C
Hdg(G)P™, we deduce that 7, € R so that the first and last claims follow.

The statement concerning f*(s) follows from the fact that A* is compatible with dlog: HY(R) —
Qq/IQq and dlog: H;V(R) — Q¢ /IQq and the isomorphism HY(R) — H.;"(R) provided by
AV,

[

Let fl: Vq (HﬁG,) — S and fy: Vg (Hg) — S be the formal schemes of Definition 2.3. It
follows from the functoriality of this definition that f* defines a commutative diagram of formal
schemes over S:

Vo(Hy) 25 V()
! e
Vo(Qr) -5 V(Qq)
In conclusion, we deduce from Corollary 2.7:

Proposition 6.5. Assume that \ is an isomorhism or that it has degree p. Then the morphism \!
induces a morphism fo . (OVo(Hﬁ;)) — fox (OVo(H’g,)) preserving the filtrations Fﬂ-fO,*(OVO(HﬁG))

and Fﬂ.f(’)*((’)vo(Hn )). Via the identifications of the graded pieces in Corollary 2.6 the induced
: i
map
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fou (Ovy00) ®os Sym” (Hdg(G)P%lwév) — [0 (Ovo(00)) ®og Sym” (Hdg(G/)#wé/,v)

is the tensor product of the isomorphism f . (OVO(QG)) — fou (OVO(QG/)) provided by \* and
the map on Sym” provided by the dual of the map (\V)x: Wg' v — Wav -

Furthermore, assume that G[p")(R) = (Z/p"Z)? and G [p"|(R) = (Z/p"Z)*. Then \t: HE, —
HﬁG, is compatible with the connections Vgy and Ve y defined in Proposition 6.5.

7 Appendix II: Application to the three variable Rankin-
Selberg p-adic L-functions. A corrigendum to [Url4],
by Eric Urban.

7.1 Introduction

In [Url4], the author introduced nearly overconvergent modular forms of finite order and their
spectral theory. The theory has be refined in [AI17] including intgral structure that allows to
define families of nearly overconvergent modular forms of unbounded degree that was missing
in [Url4]. The purpose of this appendix is to fill a gap in [Url4] about the construction of the
three variable Rankin-Selberg p-adic L-functions which we can now solve thanks to the work of
F. Andreatta and A. Iovita [AI17]. The gap lies in the construction made in section §4.4.1 a
few lines before Proposition 11 where the existence of a finite slope projector denoted er gy is
claimed. Here U is an affinoid of weight space and R is a polynomail in A(0)[X] dividing the
Fredholm determinant of U acting on the space of U-families of nearly overconvergent modular
forms. It was falsely claimed on top of page 434 that ergy can be defined as S(U) for some
S € X.A(D)[[X]] when it would actually be a limit of polynomial in the Hecke operator U with
coefficient in the fractions ring of A(U) that may have unbounded denominators making the
convergence a difficult question. In the following pages, we will explain how the existence of this
projector in the theory of [AI17] can actually be used to define the missing ingredient of the
construction in [Url4, §4.4.1]. For the sake of brevity, we will use freely the notations of [Url4]
and [AI17] without recalling all of them.

I would like to thank Zheng Liu for pointing out the gap to me when she was working in her
thesis on a generalization of my work to the Siegel modular case. I would like also to thank F.
Andreatta and A. Tovita for telling me about their work and for including this corrigendum as
an appendix of their paper.

7.2 Families of nearly overconvergent modular forms

Let p be an odd prime. The purpose of this paragraph is to collect some results of [Url4]and
[AI17] and harmonize the notations. Recall that for any rigid analytic variety X over a non
archimedean field, we denote respectively by A(X) and A°(X) the ring of rigid analytic function
on X and its subring of functions bounded by 1 on X. Recall also that we denote weight space
by X. It is the rigid analytic space over Q, such that X(Q,) = Homent(Z,;,Q,;). For any integer
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k, we denote by [k] € X(Q,) the weight given by x — 2* V& € Z*. For any p-power root of unity
¢, we denote x the finite order character of Z trivial on j1, 1 and such that x¢(1+p) = ¢.
Let & C X be an affinoid subdomain of weight space and choose I = [0,p¢] such that

A%(X) = A c A; C A°(U) with A and A; as defined in [AT17, §3.1]. We also fix integers r and n
compatible with I as in loc. cit. We consider the Frechet space over the Banach algebra A(Ll)

NLJ[ = h_r_{l(HO(%T,Iv Wk’]) XA, A(L[))
Here X, ; is the formal scheme defined in [AI17, §3.1] attached to a strict neighborhood (in rigid

geometry) of the ordinary locus of the modular curve.
It is easily seen that the filtration on Wy, of [AI17, Thm 3.11] induces the filtration

Mi=NT N e Nt e a N

where for each integer s, /\/’j’T denotes the space of U-families of nearly overconvergent modular
forms as defined in [Url4, §3.3]. The work done in [AI17, §3.1] that we use here is the rigorous
construction using the correct integral structure of what was alluded to in [Url4, Remark 10].
Moreover, it follows from [AI17, §3.6] that there is a completely continuous action of the U
operator on ./\/j that respect the above filtration and that is compatible with the one defined
in [Url4]. Moreover, we easily see for example using [Url4, Prop. 7 (ii)] that the Fredholm
determinant P3°(k, X) of U acting on Nl satisfied the relation

P (k,X) = H Pu[—Qi](ff-[—zi]apiX)
i=0

where Py(_y; stands for the Fredholm determinant of U acting on the space of families of over-
convergent modular forms of weights varying in the translated affinoid 4 by the weight [—2i].

Recall finally that an admissible pair for nearly overconvergent forms is a data (R, Q) where
R € A(U)[X] is a monic polynomial such that there is a factorization P°(k, X) = R*(X)Q(X)
where R*(X) = R(1/X)X%9 R and Q(X) are relatively prime in A(U){{X}}. To such a pair,
one can associate a decomposition

./\/’Jr :NR,uEBSRM

which is stable under the action of U and such that det(1— X.U[Ngy) = R(X). We will call eg g
the projection of /\/J onto Ny . This later subspace consists in families of nearly overconvergent
modular forms of bounded order. This is well-known and follows from the generalization by

Coleman and others of the spectral theory of completely continuous operators originally due to
J.P. Serre.

7.3 The nearly overconvergent Eisenstein family
Recall that we have defined in [Url4, §4.3] the nearly overconvergent Eisenstein family g-
expansion ©.F € A’(X x X)[[q]] by

[e.o]

©.E(k, k) = Z (n)sa(n, E,k")q"

n=1
(n,p)=1
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It satisfied the following interpolation property [Url4, Lemma 6]. If k = [r] and &' = [k]¢
with 1 a finite order character and k and r positive integers, the evaluation at (k,x’) of ©.EF is
©.E(k, k) = @T.E,(f )(w)(q) and is the p-adic g-expansion of the nearly holomorphic Eisenstein
series 07 EP) (1)),

A generalization of this statement is the crucial lemma below which will follow from [AI17,
Thm 4.6]. Because of the hypothesis 4.1 of loc. cit., we need to introduce the following notation.
We denote by X’ C X the affinoid subdomain of X of the weights x such that |k(1 + p) — {(1 +
p)"|, < 1/p* for some integer n and some p-power root of unity ¢. Notice that ¥'(Q,) contains
all the classical weights.

Lemma 7.1. There ezists OFy x € A(%’)@/\/} such that its q-expansion is given by the
canonical image of ©.E into A(X)®q,A(X')|[q]] induced by the canonical map A ®z, A —
A(X)®g, AX').

Proof. For a given integer n and p-power root of unity (, we denote by %’n’c C X’ the affinoid
subdomain of the weights x such that |k(1+ p) — (14 p)"|, < 1/p*. When ¢ = 1, we just write
X, for X7, ;. Since X' is the disjoint union

p—1
!/
= L

n=0 (
it is sufficient to construct Ey. JRERIS A(X] )®N T, satisfying the corresponding condition
on the g-expansion. Notice also that X . = [ ] n)xc. X and that, with the notations of [AI17], we
have AY(X}) = Ap with I’ = [0, p?].

It clearly exists Ej(g) eMl, c /\/’T, Such that its g-expansion in A(X7,,)[[q]] is given by
m,n m,n )

O©FE([0], k). Indeed it is defined by E(’f) = E"’”d B |V, where Em"d?7 € eora-ML,  denotes

the X;, -family of ordinary Eisenstein serles aﬁd Vi denotes the Frobenius operator inducing
raising ¢ to its p-power on the g-expansion.
We have the isomorphism A = Z,[(Z/pZ)*][[T]] done by choosing the topological generator

1+ p € 1+ pZy, Let rx, be the universal weight Z) — A(X;)*. We can easily see that

Log(kx,) = ll‘:f;((ll:z)) = u, where u, is the notation defined in [AI17] while Log(kx;) is the

notation defined in [Url4]. The assumption 4.1 of [AI17], now reads easily as I C [0, p?] and is
therefore satisfied since A%(X() = A 2.

Before pursuing, we note that we will use the notation VX following the definition 4.11 of
[AI17] for the twist of nearly overconvergent forms by a finite order character x of Z)x. We refer
the reader to loc. cit. for its properties.

Let ks the generic weight Z, — A(X] ). Since X] . = [n]x¢. Xy, the weight k,.[-n ]Xc
satisfies the assumption 4.1 of [AH?] Let m/ be a natural 1nteger such that m+2m’ is divisible
by p and let o' be a p-power root of unity so that > = n~*. Then ([m/].x, )QX’mW = X, and

therefore the weight of VX V™ E®)  satisfies also the assumption 4.1. of [AI17]. According

m,n

to [AI17, Thm 4.6], one can therefore define V*=x¢(VXr V™ EP) ) where V*~"X¢ stands for

V* with s’ the weight corresponding to kg = ns[—n]xgl taking values in A°(Xf). Since X,
depends only on n modulo p, we may and do assume that n > m/, and we can therefore set

Oy v, = VvV (Ve (v v EY )
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From the effect of V on the g-expansion, it is now easy to verify that © Ey/ X satisfies the
condition on the g-expansion claimed in the Lemma. O

7.4 Final construction of Gg,u,R,‘B

In this paragraph, we explain how to replace the bottom of page 433 of [Url4]. We now assume
that & and U are affinoid subdomains of X’. Let (@, ) be an admissible pair for overconvergent
forms of tame level 1 and let Ty  be the corresponding Hecke algebra over A(4l). By definition it
is the ring of analytic function on the affinoid subdomain &  sitting over the affinoid subdomain
Zgy associated to (@, ) of the spectral curve of the U-operator. Recall that

Zow = Maz(AW)[X]/Q*(X)) € Zy € AL, x

Larig
where Zp; is the spectral curve attache to U and
Tou = A(gQ,u) with EQ’M =& Kz ZQ}L[

where £ stands for the Eigencurve. The universal family of overconvergent modular eigenforms
of type (@, Y1) is an element of Mg g ® 4y Tips whose g-expansion is given by

Goulg) =) T(n)q" € Toulld]

Tautologically, for any point y € £g ¢ of weight k, € 4, the evaluation G «(y) at y of Ggy is
the overconvergent normalized eigenform g, of weight «, associated to y.
We set

GE = Gou.0.Fvy € Tou® AX)ONL = A(Eou) ® A(X)ON,

Let now (R,0) be an admissible pair for nearly overconvergent forms as in [Url4, §4.1]. We
consider

GE ynw € AT x Egu x X)ENpy

defined by

GS&R’%(/{, y,v) = eRm.Gg’u((y, v, miy_lu_2) e NI
for any (k,y,v) € Vx Egux X' (Q,). Notice that since U and U are contained in X', so is rr, '
which allows to evaluate Gg,u at (y, v, KK, 1y72). Tts gives a nearly overconvergent modular form
of weight x which is the running variable in 0. We can therefore apply the finite slope projector

ersy from ./\/% onto Ny specialized at k.

7.5 Final Remarks

We denote G r(q) € A(U x Egu x X')[[g]] the g-expansion of the family of nearly overcon-
vergent forms we have defined above. This is the family of g-expansion that we wanted to define
in [Url4, §4.4.1]. The rest of the statements and results of [Url4, §4] are now valid under the
condition that we replace X by X’ and £ by &' = £ xx X’ in all of them. To obtain a more general
result, we would need to extend the work of [AI17] to relax their assumption 4.1. This seems
possible by noticing that the condition u, € p.A; can be replaced by u, topologically nilpotent
in A; and by using a congruence for V®~VP" —id for n sufficiently large. This would allow to
replace X’ by X in Lemma 7.1 above which is the only reason we needed to restrict ourself to X'.
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