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Abstract

The overarching goal of the doctoral thesis was thus the development of a systematic procedure capable
to examine and enhance the role of geomechanical and climatic processes in rockfall susceptibility,
performed with statistically based and Machine Learning techniques. To achieve this purpose, two case
studies were analysed in the Italian Alps (Valchiavenna, Lombardy Region; Mountain Communities of

Mont Cervin and Mont Emilius, Aosta Valley Region).

For both case studies, Generalized Additive Models (GAM) were used for rockfall susceptibility
assessment; for the Valchiavenna case study, a Random Forest (RF) model was tested too. All models
were validated through k-fold cross validation routines and their performance evaluated in terms of area
under the receiver operating characteristic curve (AUROC). Predictors’ behaviour physical plausibility
was verified through the analysis of the mathematical functions describing the predictors-susceptibility
modelled relationships. Specific objectives of the two case studies differed.

The Valchiavenna case study was dedicated to testing the role of the outcrop-scale geomechanical
properties in a rockfall susceptibility model. Specific objectives were: (i) the optimal selection of
sampling points for the execution of geomechanical surveys to be integrated within an already available
dataset; (i1) the regionalization over the study area of three geomechanical properties, namely Joint
Volumetric Count (Jv), rock-mass weathering index (W1) and rock-mass equivalent permeability (Keq);
(ii1) the implementation of the regionalized properties as predictors in a rockfall susceptibility model,
along with the traditional morphometric variables; (iv) the investigation of prediction limitations related
to inventory incompleteness; (v) the implementation of a methodology for the interpretation of
predictors’ behaviour in the RF model, usually considered a black box algorithm; (vi) the integration of
the RF and GAM outputs to furnish a spatially distributed measure of uncertainty; (vii) the exploitation
of satellite-derived ground deformation data to verify susceptibility outputs and interpret them in an
environmental management perspective.

The additional geomechanical sampling points were selected by means of the Spatial Simulated
Annealing technique. Once collected the necessary geomechanical data, regionalization of the
geomechanical target properties was carried out by comparing different deterministic, regressive and
geostatistical techniques. The most suitable technique for each property was selected and geomechanical
predictors were implemented in the susceptibility models. To verify rockfall inventory completeness
related effects, the GAM model was performed both on rockfall data from the official landslide Italian
inventory (IFFI) and on its updating with a field-mapped rockfall dataset. Regarding the RF model, the
Shapely Additive exPlanations (SHAP) were employed for the interpretation of the predictors’



behaviour. A comparison between GAM and RF related outputs was carried out to verify their
coherency, as well as a quantitative integration of the resulting susceptibility maps to reduce
uncertainties. Finally, the rockfall susceptibility maps were coupled with Synthetic Aperture Radar
(SAR) data from 2014 to 2021: a qualitative geomorphological verification of the outputs was
performed, and composite maps were produced.

The key results were: (i) geomechanical predictor maps were obtained applying an ordinary kriging for
Jv and Wi (NRMSE equal to 13.7% and 14.5%, respectively) and by means of Thin Plate Splines for
Keq (NRMSE= 18.5%). (i1) Jv was the most important geomechanical predictor both in the GAM (witha
deviance explained of 7.5%) and in the RF model, with a rockfall susceptibility increase in
correspondence of the most fractured rock masses. (iii) Wi and Keq were penalized (i.e., they had low
influence on rockfall susceptibility) in the GAM model, whereas Keq showed an importance comparable
to Jv in the RF model. (iv) In a complex Machine Learning model (RF), the SHAPs allowed the
interpretation of predictors’ behaviour, which demonstrated to be coherent with that shown in the GAM
model. (v) The models including the geomechanical predictors resulted in acceptable rockfall
discrimination capabilities (AUROC>0.7). (vi) The introduction of the geomechanical predictors led to
a redistribution of the high-susceptibility areas in plausible geomorphological contexts, such as in
correspondence of active slope deformations and structural lineaments, otherwise not revealed by the
topographic predictors alone. (vii) Models built with solely the IFFI inventory, resulted in physically
implausible susceptibility maps and predictor behaviour, highlighting a bias in the official inventory.
(viii) The discordance in predicting rockfall susceptibility between the GAM and the RF models varied
from 13% to 8% of the total study area. (ix) From the integration of InNSAR data and susceptibility maps,
a “SAR Integrated Susceptibility Map”, and an “Intervention Priority Map” were developed as
operational products potentially exploitable in environmental planning activities.

The Aosta Valley case study was dedicated to challenge the concept of “susceptibility stationarity” by
including the climate component in the rockfall susceptibility model. The availability of a large historical
rockfall inventory and an extensive, multi-variable meteorological dataset for the period 1990-2020 were
crucial input for the analysis. Specific objectives were: (1) the identification of climate conditions related
to rockfall occurrence (i1) the summary of the identified relationships in variables to be used in a
susceptibility model; (ii1) the optimization of a rockfall susceptibility model, including both topographic,
climatic and additional snow-related predictors (from a SWE weekly gridded dataset).

Starting from an hourly meteorological dataset, climate conditions were summarized in indices related
to short-term rainfall (STR), effective water inputs (EWI, including rainfall and snow melting), wet-dry

cycles (WD) and freeze-thaw cycles (FT). Climate indices and rockfall occurrence time series were



paired. Critical thresholds relating rockfall occurrence to climate indices not-ordinary values (>75th
percentile) were derived through a statistical analysis. As summary variables for the susceptibility
analysis, the mean annual threshold exceedance frequency for each index was calculated. Model
optimization consisted in stepwise modifications of the model settings in order to handle issues related
to inventory bias, physical significance of climatic predictors and concurvity (i.e., predictors collinearity
in GAMs). The starting point was a “blind model”, i.e., a susceptibility model created without awareness
of the rockfall inventory characteristics and of the physical processes potentially influencing
susceptibility. To reduce the inventory bias, “visibility” masks were produced so to limit the modelling
domain according to the rockfall collection procedures adopted by administrations. Thirdly, models were
optimized according to the physical plausibility of climatic predictors, analysed through the smooth
functions relating them to susceptibility. Finally, to reduce concurvity, a Principal Component Analysis
(PCA) including climatic and snow-related predictors was carried out. Subsequently, the obtained
principal components were used to replace the climatic predictors in the susceptibility model.

The key results were: (i) the 95% of the rockfalls occurred in severe (or not ordinary) conditions for at
least one among the EWI, WD and FT indices; (ii) ignoring inventory bias led to excellent model
performance (0.80<AUROC <0.90) but physically implausible outputs; (iii) the selection of non-rockfall
points inside the “visibility mask™ was a valuable approach to manage the inventory bias influence on
outputs; (iv) the inclusion of climate predictors resulted in an improvement of the susceptibility model
performance (AUROC up to 3%) in comparison to a topographic-based model; (v) the most important
physically plausible climate predictors were EWI, WD, with a deviance explained varying from 5% to
10% each, followed by the maximum cumulated snow melting with a deviance explained varying from
3% to 5%. The effect of FT was masked by elevation. (vi) When the climate and snow related predictors
were inserted in the susceptibility model as principal components, concurvity was efficiently reduced.
The inclusion of climate processes as non-stationary predictors (i.e., considering climate change) could
be a valuable approach both to derive long-term rockfall susceptibility future scenarios and in
combination with short-term weather forecasts to adapt susceptibility models to an early warning system

for Civil Protection purpose.
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Chapter 1
Preface

1.1. Introduction to rockfall phenomena

Rockfalls are classified as fast-moving landslide type, consisting of the detachment of a rock block (or
several individual blocks) from a vertical or sub-vertical cliff followed by rapid down-slope motion
characterized by free-falling, bouncing, rolling and sliding phases (Varnes, 1978; Selby, 1982; Cruden
and Varnes, 1996). In hazard-related studies, the term rockfalls refers to volumes lower than 10> m? with
negligible dynamic interaction between single blocks (Frattini et al., 2008). Due to the high energy and
mobility, rockfalls are a major cause of landslide fatalities (Bunce et al. 1997; Hoek 2000; Frattini et al.,
2008) and deeply affect human society and infrastructures in mountainous environments (Ravanel and
Deline, 2010; Duvillard et al. 2015; Scavia et al., 2020). In the lower portion of slopes or in the valleys,
rockfalls may damage roads and rail routes or properties, while at higher altitudes, these events can
affect tourists and damage infrastructures such as cable cars, ski runs, trekking and climbing paths (Coro
et al., 2015). In the densely frequented European Alps, public authorities are becoming aware of the
increasing rockfall-related risks (Magnin et al., 2017), also in consideration of the effects of the 21st
century global warming (Gobiet et al., 2014; Stoffel et al., 2014). Therefore, the development of reliable
and transferable procedures to deal with such instabilities and their evolution is crucial. Several studies
focusing on the analysis of rockfalls and rock mass systems were carried out at different scales: (i) at the
slope scale, by means of physically-based numerical models (Gischig et al., 2011; Brideau et al., 2011;
Wang and Ni, 2014; Morcioni et al., 2020); (i1) at the medium scale, including contiguous slopes, by
means of ground-based monitoring systems, such as LiDAR (Gigli et al., 2014; Dunham et al., 2017,
Matasci et al., 2015; 2018), or with the pioneering use of augmented reality (Zhang et al., 2019); (iii)
less frequently at the regional scale, by means of hybrid physically and statistically based approaches
(Frattini et al., 2008), multi-criteria decision-making methods (Cignetti et al., 2020), and rarely with
statistical and machine-learning methods (Messenzehl et al., 2017; Zhou et al., 2018; Losasso and Sdao,

2018; Fanos and Pradhan, 2019; Rossi et al., 2021).

Corominas et al. (2014) analysed and distinguished conditioning (i.e., predisposing, preparatory) and
triggering factors and processes leading to rockfall occurrence. Triggering factors are immediate causes

acting directly, while preparatory factors are linked to a slow cumulative effect, requiring a higher


https://link.springer.com/article/10.1007/s00603-016-0918-z#ref-CR136
https://link.springer.com/article/10.1007/s00603-016-0918-z#ref-CR16
https://link.springer.com/article/10.1007/s00603-016-0918-z#ref-CR66
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amount of time to induce a major consequence (Gunzburger et al., 2005). Nevertheless, the distinction

between preparatory and triggering factors should not be considered as a dualistic concept, as they act

in a continuous spatial-temporal transition (Dorren, 2003; Gunzburger et al., 2005). Also, slope systems

can be described in terms of internal parameters and external factors; the former are intrinsic features of

the slopes and may evolve over time due to external processes that lead to slope collapse (Volkwein et

al., 2011). The internal parameters crucial for rockfall occurrence, and usually associated with a

predisposing effect, are (Volkwein et al., 2011; Corominas et al., 2014):

1)

2)

3)

Slope morphology: elevation, slope gradient, aspect, roughness and curvature concur in defining
slope potential energy, meteo-climatic processes differential occurrence (e.g., wet-dry cycles,
freeze-thaw cycles, permafrost), hydrological processes and local stress state distribution.
Geology and geomechanical properties: rock type, weathering degree and its depth, the
variability of the geological structures (e.g., faults, folding), the joint intensity and discontinuity
sets characteristics determine the hydro-mechanical behaviour of the rock mass system.

In situ stress state: a wide spectrum of topographic, tectonic, glacial loading-unloading and
exhumation generated stresses interacted at several spatial and temporal scales and preferential
directions, concurring in the localization of the actual rock mass system stress state (Ballantyne,

2002; Leith et al., 2014).

The main external processes responsible of rockfall occurrence, potentially acting both as preparatory

and triggering processes, are:

1)

2)

Meteo-climatic processes: intense rainfall events, prolonged precipitation periods, freeze-thaw
cycles and temperature fluctuations above 0°, snow dynamics (Matsuoka, 2019; Ravanel et al.,
2013; Macciotta et al., 2015; Paranunzio et al., 2019; Nigrelli et al., 2018; Scavia et al 2020;
Camera et al., 2021; Morcioni et al., 2022 — in press). These meteo-climatic processes are in turn
responsible of degrading and weakening processes linked to modifications of the slope water
circulation patterns, weathering and erosional processes, fractures nucleation and coalescence.

Seismicity: rock mass structure could be dramatically damaged and weakened by earthquake
shaking, both at the slope scale and at the micro-scale. Large earthquakes frequently act as
triggering factors for rock mass instabilities (Keefer, 1984a,b; Wasowski et al., 2011; Valagussa
et al., 2014; Marzorati et al., 2002), even at consistent distances from the epicenter (up to 300
km, Stoffel et al., 2019). Nonetheless, also the long-term effects generated by earthquakes (i.e.,
post-seismic effect) may lead to large deformation and fracture propagation, thus representing a

temporal persisting preparatory process for rock mass instabilities (He et al., 2021).
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3) Human activity: anthropic activities such as quarrying and mining, excavation for infrastructures,
vibration due to blasting are responsible of the alteration of rock slope geometry and stress

distribution (Selby, 1982; Dorren, 2003; Hantz et al., 2003).

1.2. Objectives

The assessment of landslide susceptibility has been largely addressed in the literature, at several
geographical scales and in various environments (Reichenbach et al., 2018). However, researchers have
been traditionally focused on shallow landslides susceptibility. Conversely, rockfalls are commonly
investigated through physically-based models, dealing with runout analyses rather than on the spatial
prediction of potentially critical rockfall sources. Therefore, the successful development of susceptibility
models for an underexplored landslide type is an open research question. Thus, the overarching goal of
the doctoral thesis was the development of a systematic procedure capable to promote and analyse the
role of geomechanical and climatic processes in rockfall susceptibility, performed with statistically
based and Machine Learning techniques, and to contribute to define rockfall susceptibility mapping

procedures in the context of mitigation strategies.
The thesis general objectives were:

(1) To select appropriate geomechanical and climatic processes and synthesize them in spatially
distributed predictors for susceptibility modelling of rockfall occurrence in Alpine
environments.

(11) To ascertain the suitability and the (in)completeness of the available input data - i.e., rockfall
inventories, geomechanical and meteorological datasets - and to propose strategies to address
the related uncertainties.

(iii))  To assess the function of the newly introduced predictors during the susceptibility modelling
phase, not only through traditional quantitative performance metrics, but also in terms of
plausibility and coherency of their physical-geological behaviour within the model.

(iv)  To determine the consequences of the selection either of different susceptibility modelling
algorithms or different model configuration setups on the outputs.

(v) To move towards non-stationary landslide susceptibility models by including climate-related

predictors.

To explore these issues, two distinguished case studies were set up and explored; they were chosen for

their peculiarities and data availability, and for their potential to satisfy distinguished requirements of
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the proposed research questions. The two study areas are: (i) the Valchiavenna territory, located in
Lombardy Region in the Italian Central Alps and (ii) the Mountain Communities of Mont Cervin and
Mont Emilius, located in Aosta Valley Region in the Italian Western Alps. Anthropic and seismic factors

were not accounted in the analyses, as not considered of primary importance in the selected study areas.

The principal specific objective for the Valchiavenna case study was to test the role of outcrop-scale
geomechanical properties in a rockfall susceptibility model. The project benefitted from the availability
of an extensive geomechanical and geomorphological dataset for the area, developed during many years
of surveys carried out by the Geoengineering Group of the University of Milan. Three target
geomechanical properties, obtainable from the processing of geomechanical field survey data, were
chosen as potential rockfall susceptibility predictors, namely Joint Volumetric Count (Jv), rock-mass
weathering index (W1i) and rock-mass equivalent permeability (Keq). As statistically-based and Machine
Learning models require spatially distributed variables, the regionalization of the selected
geomechanical properties was necessary. The already available geomechanical dataset was not suitable
for this purpose, as the available geomechanical surveys were clustered along roads and thus not enough
homogeneously distributed. Therefore, the first specific objective for the Valchiavenna case study was
the optimal selection of additional locations for geomechanical surveys execution and data collection,
by means of the Spatial Simulated Annealing technique. After an intensive field campaign, for the
regionalization, different deterministic, regressive and geostatistical techniques were tested and
compared in term of quantitative performance and physical reliability. Consequently, the obtained
regionalized geomechanical properties were implemented as predictors in a rockfall susceptibility model
along with the traditional morphometric variables, performed both using Generalized Additive Models
(GAM) and Random Forest (RF). Both models allowed the analyses of predictors’ behaviour, by means
of Component Smoothing Functions (CSF) and Shapely Additive exPlanations (SHAP), respectively.

The available rockfall inventory for Valchiavenna was the result of the integration of the official
landslide Italian inventory (IFFI) and a geomorphological field-mapped rockfall dataset. Three GAM
models were produced and compared: a topographic model, a model containing both topographic and
geomechanical predictors, and a third model with the further addition of the geological component. The
aim was to examine the variation of the susceptibility spatial patterns amongst models, by introducing
knowledge about the geomechanical conditions and geological features of rock masses. To assess
potential implications of inventory incompleteness, a complete GAM model including all the predictors
was performed also on the solely IFFI dataset. Regarding RF, one model was produced, including all

the morphometric, geomechanical and geological predictors, and SHAP values were used for outputs
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interpretation. The GAM and RF outputs were then compared to each other to examine the coherency
of predictors behaviour and geomorphological plausibility of the susceptibility maps. The resulting maps
were integrated in order to quantify accordance-discordance areas between the two models in predicting
susceptibility and therefore to furnish a spatially distributed measure of uncertainty. In addition, rockfall
susceptibility maps were integrated with satellite-derived ground deformations data (Synthetic Aperture
Radar-SAR), both qualitatively, for a geomorphological verification of the outputs, and quantitatively,
producing operative combined maps potentially tailored for environmental management and planning

purposes.

The principal specific objective for the Aosta Valley case study was to define a robust procedure to
include a climate component in the rockfall susceptibility model. In the dynamic framework of climate
change, this part of the research project was aimed at representing a step towards undermining the
limiting concept of a time-invariant susceptibility. The fundamental idea was to couple the concepts of
susceptibility spatially-distributed predictors and of Intensity-Duration thresholds. This could represent
an essential and propaedeutic procedure to subsequently update susceptibility maps with data coming
from future climate projections. The set-up of this part of the project benefitted from the availability of
a large historical rockfall inventory and an extensive, multi-variable meteorological dataset for the
referecnce period 1990-2020 (i.e., approximately a three-decade reference period allowing the
calculation of Climate Normals as defined by the World Meteorological Organization, WMO 1989,
2007). At the beginning of the PhD project, the meteorological dataset available was in the form of
station-based temperature and precipitation data series. During March 2021, the “Centro Funzionale

Valle d’Aosta” made also available a grid-based meteorological dataset of temperature and precipitation.

The first part of the study addressed the identification of climate processes related to rockfall occurrence.
An exploratory analysis between meteorological conditions recorded in several time- frames before
rockfall occurrence and the average, or ordinary, conditions recorded at the station in the reference
period was carried out for this scope. The idea was to verify if the majority of the rockfalls (more than
50%) occurred in severe, or not ordinary, meteorological conditions related to different processes
(climate index value for the specific process larger than the 75" percentile of its distribution), thus
reasonably linking rockfalls and climate through a cause-effect relationship. The processes analysed
were rainfall (sub-daily data), effective water inputs (daily data, both considering rainfall and snow
melting), wet-dry episodes and freeze-thaw cycles. For each climatic process recognized having a role
in rockfall occurrence, empirical critical thresholds were defined. For each climatic index, specific

procedures were set up in order to define, during the reference period, the number of independent
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threshold exceedance events. Consequently, mean annual threshold exceedance frequencies for each
climate index were used as synthetic climatic predictor for rockfall susceptibility modelling. These
climatic predictors were produced both from the station-based hourly dataset (with consequent
regionalization) and from the grid-based hourly dataset. The two sets of variables were alternatively

used in the models.

The second part of the study was aimed at carrying out a rockfall susceptibility model by means of
GAMs, including both topographic, climatic and additional snow-related predictors obtained from a
Snow Water Equivalent (SWE) weekly gridded dataset (from Camera et al., 2021). A four-step
procedure was carried out in order to manage the crucial issues of inventory bias, physical significance
of climatic predictors and concurvity (i.e., predictors collinearity in GAMs) by stepwise modifications
and improvements of the model setup. The first step dealt with the creation of a “blind model” i.c., a
susceptibility model created purposely ignoring the rockfall inventory characteristics and the physical
plausibility of the functions relating climatic predictors to susceptibility values. The second step focused
on the implementation of a strategy to reduce the inventory bias effects on susceptibility outputs. To
achieve this, the model domain was reduced according to the actual reporting activity of rockfall events
by regional Forest Corps, through the creation of proper “visibility” masks. The third step concentrated
on optimizing models according to the physical plausibility of the mathematical functions describing the
behaviour of climatic predictors in defining susceptibility. The fourth step implemented a Principal
Component Analysis including climatic and snow-related predictors. Subsequently, the obtained
principal components were used to replace the climatic predictors in the susceptibility model, in order
to minimize concurvity effects. Outputs from the four steps were compared and discussed in terms of

plausibility, susceptibility spatial patterns and quantitative performance.

1.3. Thesis structure

Chapter 1 has defined the investigated instability phenomena and has highlighted the general purpose
and the rationale of the research, as well as given a brief overview of the methodological approach. A
glossary for the acronyms used in the thesis will be also provided in Section 1.4 to facilitate readability.
The thesis is distinguished in three major chapters. Chapter 2 is focused on the theoretical concepts of
geo-spatial modelling, fundamental for the purposes of the project. It deals with sampling optimization
strategies, regionalization techniques and a detailed summary of the state-of-the-art on landslide

susceptibility modelling.



Chapter 1 — Preface

Chapter 3 and Chapter 4 are dedicated to the Valchiavenna and Aosta Valley case studies, respectively.
It was deemed appropriate to offer a comprehensive and specific literature review at the beginning of
each of these two chapters, in order to introduce the reader to the research questions and objectives
addressed. In particular, Chapter 3 deepens the literature related to rock mass instability processes from
a geomechanical point of view, while Chapter 4 addresses the topic of meteo-climatic processes as
predisposing and triggering factors. In both chapters, these introduction sections are named “Specific
objectives and research questions”. The same applies for the Section “Study area” and the final Section

named “Discussion and future perspectives”.

The core of Chapter 3 is linearly organized in the sections: “Data”, “Methods” and “Results”. The first
topic addressed is the acquisition and calculation of geomechanical target properties and their
regionalization. Secondly, rockfall susceptibility models by means of Generalized Additive Models and
Random Forest are carried out. Then, the outputs of the two distinct modelling algorithms are examined
and discussed separately. Finally, strategies are tested for the integration of the susceptibility maps

coming from the two modelling techniques and coupled with ground deformation satellite data.

Due to procedure complexity, Chapter 4 is structured in three main parts. “Results” of each part directly
follow the corresponding “Methods” section. The first part deals with the definition of climatic processes
influencing rockfall occurrence and thresholds definition. The second part provides the procedure for

the realization of the climatic predictors. The third part deals with rockfall susceptibility modelling.

A final and overall concluding remark is given in Chapter 5, “Conclusions”.

1.4. Glossary

The acronyms are presented in alphabetic order.

A-DInSAR techniques: Advanced Differential Interferometric Synthetic Aperture Radar techniques
AIC: Akaine Information Criterion

ARPA: Agenzia Regionale per la Protezione Ambientale (Regional Agency for Environmental
Protection)

ATLR: Altitudinal Temperature Lapse Rate (°C)

AURQOC: Area Under the ROC Curve

Cm: degree day factor (mm/degree-day C)

CSF: Component Smoothing Function

CV: Cross Validation

DEM: Digital Elevation Model

DS: Distributed Scatter (for SAR)

DSGSD: Deep Seated Gravitational Slope Deformation
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ECDF: Empirical Cumulative Distribution Function
edf: effective degrees of freedom

EWI: Effective Water Inputs (mm)

EWIind: EWI independent

EWIper: EWI persistence

FT: Freeze Thaw Cycles

FTN: Freeze Thaw Normal

GAM: Generalized Additive Models

GCV: Generalized Cross-Validation

GIS: Geographic Information System

GLM: Generalized Linear Models

GPS: Global Positioning System

GSI: Geological Strength Index

GWR: Geographically Weighted Regression

Idp: Inverse Distance Weighting power

IDW: Inverse Distance Weighting

IFFI: Inventario dei Fenomeni Franosi in Italia (Italian Landslide Inventory)
ISRM: International Society of Rock Mechanics
JRC: Joint Roughness Coefficient (-)

Jv: Joint Volumetric Count fractures/m?)

KED: Kriging with External Drift

Keq: Equivalent Permeability (m/s)

LiDAR: Light Detection And Ranging

LOO-CV: Leave-one-out Cross Validation

LOS: Line of Sight

MAP: Mean Annual Precipitation (mm/year)
mDD%: mean Decrease in Deviance Explained
MESS: Multivariate Environmental Similarity Surface
ML: Maximum Likelihood

MLR: Multiple Linear Regression

MR: Melt Rate (mm/day)

mtry: the number of candidate variables randomly selected at each split during trees growing in RF
NDVI: Normalized Difference Vegetation Index
nlos, hlos and elos: the direction cosines of the LOS
NMRSE: Normalized Mean Root Square Error
nsCV: non-spatial Cross Validation

ntree: number of trees in RF

OK: Ordinary Kriging

OOBE: Out-Of-Bag Error

PCA: Principal Component Analysis

PS: Permanent Scatter (for SAR)

RDN: Rainy Days Normal

REML: Restricted Maximum Likelihood
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RF: Random Forest

RMR: Rock Mass Rating

ROC: Receiver Operating Characteristics Curve

SAR: Synthetic Aperture Radar

sCV: spatial Cross Validation

SHAP: Shapely Additive exPlanation

SSA: Spatial Simulated Annealing

STR: Short Term Rainfall (mm)

SWE: Snow Water Equivalent (m)

SWEep: average number of melting events occurring over 16-day periods in a hydrological year
SWEmax: maximum amount of melting recorded over 32-day periods in the whole data series
SWI: SAGA Topographic Wetness Index

TEF,: annual threshold exceedance frequency

TPS: Thin Plate Slpine

UNIMI: Universita degli Studi di Milano

Vlos average annual velocity of PS and DS in the satellite LOS direction

Vslope: Vlos projected in the direction of the steepest slope

WD: Wet and Dry Cycles

Wi: Weathering index (-)

WMO: World Meteorological Organization






Chapter 2
Fundamentals of geospatial modelling and

analysis

This chapter outlines the theoretical background of the most relevant concepts and techniques of spatial
analysis and modelling used throughout the thesis. Three main topics are explored: (i) sampling design,
used for optimizing field work and geomechanical data collection for the Valchiavenna case study; (ii)
regionalization techniques, employed for the creation of spatial distributed landslide susceptibility
predictors; (iii) susceptibility modelling, concerning the background and the state of the art on landslide
susceptibility by statistical and machine learning techniques, from landslide inventory types and related
issues to model validation and uncertainties evaluation. This last section deals with landslide
susceptibility in general, without focusing on a peculiar landslide type, as the modelling framework is
generalizable. A more specific introduction with a comprehensive literature review on rockfall
predisposing and triggering processes will be given at the beginning of the following Chapter 3 and
Chapter 4, dealing with geomechanical and climatic processes relevant for rock mass instability,
respectively. This choice was deemed appropriate for sake of linearity, and to offer the reader an
immediate connection between the literature research questions and the variety of analyses performed

within the two different case studies.

2.1. Sampling optimization strategies

Wang et al. (2012) defined sampling as the “selection of a subset of individuals from within a population
to estimate characteristics of the whole population”; it is a fundamental step to plan efficiently field
surveys and to project monitoring networks in a multitude of environmental and geological applications.
The optimization of sampling locations has the goal of overcoming both the costly, time-consuming and
sometimes redundant intense (or exhaustive) sampling and the sparse sampling, which, although

economically advantageous, could miss important features or areas (Cochran, 1977; Wang et al., 2013).

De Gruijter et al. (2006) offered a comprehensive overview of sampling techniques, which could be
broadly subdivided in convenience sampling, purposive sampling and probability or random sampling.
Convenience sampling is when sampling is limited to specific locations controlled by their accessibility

(e.g., along the road network) and it is considered arbitrary. Although convenient from both an economic



Chapter 2 — Fundamentals of geospatial modelling and analysis

and time perspectives, it could be affected by biases. Purposive sampling (or non-probability sampling)
selects the sampling locations by satisfying a specific purpose; this could be made in a subjective
manner, dependent on the surveyor sensibility and experience, or by optimizing an objective function
related to the purpose of sampling. Probability sampling selects sampling locations at random; the
probability of selecting a specific location is assumed to be known and could be useful for successive

statistical inference from the data. This sampling mode is also referred as design-based approach.

Two well-known design-based sampling techniques are Simple Random Sampling and Stratified
Random Sampling. For the former, a pre-specified number of sample locations is randomly selected
among geographical coordinates of the area, with equal and independent probability of selection; the
latter is done by applying Simple Random Sampling to sub-regions (i.e., strata), within which the
probability of sample selection could differ (de Gruijter and Brus, 1997).

Purposive, non-probability sampling techniques have gained increasing popularity in recent years. If the
goal is to use sampled data to estimate values at unobserved locations (i.e., regionalization), then it is
possible to optimize the non-probability sampling in various ways (Brus, 2019). Several non-probability

sampling designs exist for mapping purposes:

(1)  Regular grid and spatial coverage sampling, based on the optimization of geometrical rules and
distances between samples. Although simple and straightforward methodologies, they are
entirely based on the spatial coordinates of the locations and on the number of affordable
sampling points (Brus, 2019). The method is considered not suitable to deal with the non-
uniform, highly variable, mountainous environment.

(1)  K-means sampling and conditioned Latin Hypercube sampling (Minasny and McBratney, 2006),
based on the optimization of the representativeness of the samples in the covariates space. In an
extremely variable environment as the alpine valleys, a very high number of sampling points
may be required to be representative of the different combinations in the covariate space. In
detail, k-means sampling tends to concentrate the sampling points where, in the multivariate
distribution, the density of points is largest, i.e., in the most “common” environments (de Gruijter
etal., 2010). In Conditioned Latin Hypercube a series of intervals (marginal strata) is defined for
each covariate; the interval breaks are chosen such that the numbers of pixels in the marginal
strata are equal. Subsequently the algorithm selects the sampling points by minimizing a criterion
which is a function of the number of sampling points in the marginal strata and the correlation

matrix of the environmental features (Ma et al., 2020). For this reason, this method is particularly
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(iii)

suitable when the variable of interest could be represented by a complex (i.e., not linear)
combination of numerous covariates which, in turn, need to be available as spatially distributed
variables.

Model-based sampling, which assumes the availability of a model of spatial variability to
optimize grid spacing or coordinates of sampling locations. The main drawback is that this
sampling design approach must rely on a quite consistent number of previous collected data, or
on the availability of enough resources to carry out a reconnaissance sample survey. In other
words, the availability of a pre-existing sample is necessary to build the spatial model to develop
the final sampling design (Brus, 2019). These methods consist in the minimization of functions
related to the spatial structure of the pre-existing sample (mainly the kriging variance from
Ordinary Kriging or Kriging with External drift in case of covariates inclusion). Model-based
sampling usually leads to the selection of locations spread out throughout the study area (this
particularly useful if the previous data were clustered) and without necessarily assuming

covariates (Brus, 2019).

A single best sampling design technique cannot be determined; the best technique is site-specific as
it depends on the method that will be adopted for the subsequent regionalization of the property of
interest (Brus, 2019). When covariate maps related to the variable of interest are not available, the
best sampling method are the geometry related ones and model-based sampling. Conversely, when
covariates related to the variable of interest are available, all the three methods presented above may
be used, depending on the expected relationship type (i.e., linear or not) between the variable and
covariates. However, usually, the regionalization method at the stage of the sample design is not
already decided. For this reason, the covariate inclusion at the sampling stage could be a very
sensitive issue as it is necessary to decide in advance which covariates explain part of the variation
of the variable of interest. When the covariates are used in the sampling optimization but not used

for the subsequent regionalization, the sampling could be suboptimal and vice versa (Brus, 2019).

The above discussed sampling methods were evaluated; the goal was to select the most suitable for
the optimization of data collection and regionalization of geomechanical properties in the
Valchiavenna area. Considering (i) the complex mountainous environment characterizing the area,
(i1) the numerosity of already available geomechanical data and their clustering along roads, (iii) the
complexity of the properties to be regionalized, not necessarily involved in a priori recognizable
relationship with readily available morphometric covariates, it was deemed appropriate to focus on

model-based sampling techniques. Amongst this category, Spatial Simulated Annealing - SSA (Van

13
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Groenigen and Stein, 1998; Van Groenigen et al., 1999, 2000) was adopted for the present study and
is briefly presented hereafter. This technique is able to deal with kriging variance minimization. It
was widely and successfully used in a multitude of environmental, hydrological, and agronomic
applications (Chen B. et al., 2013; Barca et al., 2015; Wang et al., 2016; Scudiero et al., 2016; Li et
al., 2021). Spatial Simulated Annealing is an iterative random search procedure (Brus, 2019) that
optimizes a custom target function based on a model of spatial variability built on pre-existing points.
Randomness is associated to the selection of the candidate sampling configurations: a sequence of
sampling configurations is generated, where each new proposed configuration is obtained by slightly
modifying the current one, by a perturbation consisting of a transformation of the sampling locations
over a vector with random length and a random direction (Van Groeningen et al., 1999). The SSA
algorithm implements an iterative procedure as at each step i, it considers a neighbouring
configuration Si of the current configuration S0 and probabilistically decides whether to move to Si
or stay in the previous configuration. The transition between the current configuration to the new
configuration is controlled by an acceptance probability Pt defined by the Metropolis Criterion (Van
Groeningen et al., 1999), which depends on the value of ¢, i.e., the so-called fitness function to be
minimised (e.g., the kriging variance associated to the pre-existing points) for the two configurations

S0 and Si, and on a parameter called Annealing Temperature 7 (Barca et al., 2015):

P(So—S)=1 when P(S) < (So)

Eq. 2.1

when  @(S;) > ¢(So)

©(So) — @(Sy)
T

Pe(So = 8;) = exp<

The larger 7, the larger the probability that a new proposed sample with an increase of the fitness

function instead of a further minimisation is accepted. The advantage of using the SSA method is that

even combinations with worse configurations than S0 are accepted with a certain probability, meaning

that suboptimal configurations (i.e., local minima of the fitness function) are discarded (Brus and

Heuvelink, 2007); indeed, as T is gradually decreased during the procedure, the acceptance probability

of worse samples (i.e., only local minima) gradually moves towards zero (Brus, 2019). Initial

temperature 70 is one of the most sensitive parameters to avoid local minima (Ameur, 2004) and for

SSA performance (Barca et al., 2015) and it is usually set as suggested by Triki et al. (2005) through the

equation:

A(p("’)

— Eq.2.2
In (X,)

T0 =
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which represents the ratio between the average of all the rejected fitness function values and the
probability of acceptance of worse configurations. The Annealing Temperature decreases during the
iterative process according to a given cooling scheme. The geometric cooling scheme has demonstrated
the best balance between algorithm running time and the rate of convergence to the global optimum
(Nourani and Andresen 1998):

Tiyj = aconrTj Eq.2.3

where j is the current temperature index and, acool is the cooling rate, usually belongs to the range

0.800—0.995 (Barca et al., 2015).

Beyond the sampling approach selected, a useful tool to verify the representativeness of the obtained
sampling scheme could be the Multivariate Environmental Similarity Surface (MESS; Elith et al., 2010),
which is widely used especially in the ecology and biology fields (e.g., Owens et al., 2013; Reygondeau
et al., 2017). The higher the associated MESS value, the more common the environment of the points is,
while negative values indicate a novel environment, meaning one or more covariates are not fully
represented by the survey locations (Camera et al., 2017a). Moreover, in such cases that mapping
methods involving covariates would be used, MESS allows to evaluate the extent and location of the

extrapolated areas.

2.2, Regionalization techniques

The optimization of a spatial sampling has in general two main purposes in the environmental field:
designing an efficient monitoring network and planning field (or remote) surveys to obtain valuable
point-based datasets, necessary to estimate spatially distributed variables. Spatially distributed data (or
spatially continuous surfaces) play a significant role in environmental sciences and management (Li et

al., 2011).

The process of estimating a target variable at unsampled locations is usually referred as spatial
interpolation (Li et al., 2011) or prediction (Veronesi et al., 2019). The former has a stricter definition
as it is the process of estimating the values of a variable at points within the same region, more often
(but not necessarily) in the value range of the observations at the sample locations. Also, interpolation
considers distances and mutual positions between sampled and unsampled points and usually refers to
the geographical space. Prediction has a broader meaning as the estimation could rely on a more general
“feature” space, including time. Moreover, prediction at points outside the region (or beyond value

ranges of the feature space covered by sampled points) could be also more specifically referred as
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extrapolation (Burrough and McDonnell, 1998). As the majority of environmental variables could be
considered as spatially dependent random variables (Oliver et al., 1989), explainable through the
Regionalized Variable Theory (Matheron, 1963), regionalization is used too as a synonym of
interpolation. Throughout the whole thesis, interpolation and regionalization could be intended as
synonyms, while prediction will be used as the preferred term when dealing with susceptibility

modelling, benefitting from its broader connotation.

Li and Heap (2014) enumerated the principal features distinguishing and characterizing regionalization

methods, which are summarized below:

» Global/local methods: the former use all available data in the study area to estimate a general trend,

while the latter operate on short-range variations.

» Exactness: some methods generate estimates, which exactly match the observed values, while the

others are considered inexact methods.

» Deterministic/stochastic: while stochastic methods provide both estimation (the deterministic part)

and uncertainties (the stochastic part), deterministic methods only produce estimations.

» Abrupt/Gradual: this characteristic distinguishes between methods producing discrete surfaces (i.e.

maps) and smoothing surfaces.

» Convex/non-Convex: Convex methods estimates are always valued between the values range of
the observed values, whereas non-convex methods can yield estimates outside of the range of the

observed values.

» Univariate/Multivariate: methods using only samples of the target variable in deriving the
estimation are termed univariate methods, whereas methods that also use explanatory variables are

referred to as multivariate.

For the evaluation of the interpolation performance, the establishment of an appropriate confidence level,
or of an acceptable error, is necessary when dealing with environmental data, as they are often involved
in decision-making and land management. The modelling (interpolation) function usually leads to an
error that incorporates two quantities: its bias and its variance (James et al., 2013). On the one hand, bias
refers to the approximation error of a function that can accurately fit only data that follow a strict pattern
and is linked to the ability of the function to adapt its shape. On the other hand, functions more adaptable

to the pattern of data could result in higher variance (Veronesi et al., 2019).
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Bennet et al. (2013) offered a very detailed categorization of quantitative performance approaches. They

divided the approaches in:

(@)

(i)

(iii)

(iv)

)

direct statistical values comparison of the whole dataset (e.g., comparing real and

interpolated data mean, range, skewness etc.).

Coupling real world and modelled values, via concurrent comparison (e.g., hit rate,
false alarm ratio etc.), key residual methods (e.g., Root Mean Square Error, RMSE, or

Mean Absolute Error, MAE).

Testing the ability of the model in preserving data patterns (e.g., through Pearson’s

correlation coefficient between modelled and measured data).

Indirect metrics, useful to detect possible model overfitting (e.g., Akaike Information

Criterion, AIC).

Data transformation into different domains to highlight aspects of a model’s behaviour

not revealed in the original domain.

To obtain error and performance metrics, sample data should be split in subsets in order to both develop

the model and to validate it. The most frequently used method for this subdivision is cross-validation

(CV), which includes three sub-categories (Kohavi, 1995):

(@)

(i)

(iii)

Hold-out CV, where the original dataset is split into two groups, one for model
development and one for model evaluation. A popular split percentage between the two

1s 80/20 or 70/30.

K-fold CV, where the original dataset is split in k sets, one used for model evaluation
and the remaining k-1 for development. The procedure is repeated k times, so that each

fold is used k-1 times for development and once for model performance evaluation.

Leave-one-out CV (LOO-CV), where n-1 data points are used for model development
and only one point is used for validation (e.g., a k-fold CV where n=k). The procedure
is repeated for all data points. In general, k-fold and LOO-CV are less affected by size
and position of group splitting than hold out CV.
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Nevertheless, it should be highlighted that quantitative metrics should not be the only criteria to define
the best performing model or to state whether a model is useful. A qualitative assessment done by experts
may become essential in highly complex or data-scarce situations, where a model behaviour that

resembles the real system trends is more useful than quantitative metrics (Bennett et al., 2013).

Many interpolation methods are available in literature, including deterministic, regressive, and
geostatistical methods, with different level of complexity in terms of interpretation and model
construction (Attorre et al., 2007). Even sampled data density and topographic complexity are important
in finding the best interpolation method (Li and Heap, 2014). A brief overview on the main
characteristics of the most used interpolation methods is given in the next paragraphs. Inverse Distance
Weighting (IDW), Thin Plate Splines (TPS), Multiple Linear Regression (MLR), Geographically
Weighted Regression (GWR), Kriging (in particular Ordinary Kriging OK and Kriging with external
Drift KED) will be presented.

IDW This technique estimates the values of a variable at unsampled points using a linear combination
of values at sampled points, weighted by an inverse function of the distance from the point of interest to

the sampled points. The weights are expressed as (Shepard, 1968):

1

W=—
Yod(x,x;)P

Eq.2.4

where x is the point where the estimate is wanted, xi is the i point where observations are available, d
is the distance between the two locations, and p is the power parameter that controls the influence of
remote observation on the estimation. The assumption is that sampled points closer to the unsampled
point of interest have more similar values to it than those further away; weights decrease as the distance
increases, especially when p is set to high values, resulting in a more local spatial interpolation (Isaaks

and Srivastava, 1989). The most popular choice of p is 2 (Li and Heap, 2008).

TPS Splines consist of polynomials describing locally a piece of a line or surface (i.e., they are fitted to
a small number of data points exactly) and fitted together so that they join smoothly (Burrough and
McDonnell, 1998; Webster and Oliver, 2001; Li and Heap, 2008). Thin plate splines were developed by
Wahba and Wendelberger (1980) for climatic data. Specifically, the smoothing parameter of TPS is
calculated by minimising the generalised cross validation function - GCV (Hutchinson, 1995) and are

based on the minimisation of curvature and enforcement of smoothness (Li and Heap, 2008).
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MLR Multiple Linear Regression is not a spatial interpolator in the technical sense; however, it could
be used to relate multiple covariates to the variable of interest through a mathematical function, which
is eventually used to estimate the value of the latter in unsampled locations. The approach is identical to
simple least squares regression with a dependent and an independent variable; when the covariates are
multiple, the workspace is more complicated than a simple two axes Cartesian plane. The standard MLR
model for spatial estimation is based implicitly upon the assumption of spatial stationarity in the
relationship between the dependent variable and the covariates, and the estimated parameters are

assumed to be constant over space.

GWR Geographically weighted regression (Fotheringham et al., 2002) is based on the traditional
regression framework but incorporates local relationships; differently from MLR is a regional regression
method that can be used to investigate the non-stationary relationship between the dependent and

explanatory variables, thus accounting for spatial heterogeneous processes.

The equation for a typical GWR would be:
yi(w) = Poi() + Bri(Wxy; + Poi(Wxa; + -+ i (W xm; Eq. 2.5

where the notation fyi(u) indicates that the parameter describes a relationship around location u, thus
being specific to that location. Weights are conditioned on the location # and hence change for each
location. The weighting scheme is also known as kernel; several kernel shapes are possible, but the most
used are the gaussian and bilinear types. The kernel is a function of the distance between the target point
and the n observations around that point, falling in a distance range called bandwidth. As the bandwidth
gets larger the weights approach 1 and the local GWR model approaches the global MLR model. The
combination of geographically weighted estimators, kernel and bandwidth can be referred to as a local
model. In terms of sensitivity, the bandwidth is more sensitive than the kernel shape and could be
selected as fixed or adaptive. The former indicates that the bandwidth is the same for each local
estimation, the latter allow the kernel to vary according to possible sampling irregularities by increasing

and decreasing the bandwidth size depending on sample data density throughout the study area.

GEOSTATISTICS and KRIGING Geostatistics was originated from the work in geology and mining
by Krige (1951) and it was successively formalized by Matheron (1963) with his theory of regionalised
variables. The key concept of geostatistics is “When a variable is distributed in space, it is said to be
regionalized, [...] geostatistical theory is based on the observation that the variabilities of all regionalized

variables have a particular structure” (Journel and Huijbregts, 1978).
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Kriging is the definition of a family of generalised least-squares regression algorithms used in
geostatistics, based on the variogram model, which provides an estimation of the autocorrelation pattern
in the study area (Webster and Oliver, 2007). It can be classified as a BLUE (best linear unbiased
estimation) methodology, as in every point the estimation of the variable of interest is given by a linear
combination of the weighted neighbouring observations and with the sum of weights equal to one
(Hofstra et al. 2008). The variogram is created by averaging the semi-variances, which are calculated as

follows:

1
/(i xo) = y () = Fvar(Z(x) - 2(x0)] Eq.2.6

where Z is the regionalized variable of interest, h is the distance between points x; and xy and y(h) is the semi-

variogram.

A plot of semi-variances against /4 is known as the experimental variogram, which is characterized by
three essential elements (Li and Heap, 2008): (i) the nugget, a positive value of semivariance at distances
close to 0, which reflects the variance due to sampling errors or the spatial variance at distances shorter
than the minimum sample spacing; (ii) the range, which is a value of distance at which an asymptotic
semi-variance value is reached; (iii) the sill, which is the asymptotic value on the semi-variance axis
reached at the range. The samples separated by a distance larger than the range are spatially de-correlated
or independent. If the ratio between sill and nugget is close to 1, then most of the variability related to

the variable of interest is non-spatial (Hartkamp et al., 1999).

Variogram modelling is the procedure involving the approximation of the experimental variogram with
a mathematical model (i.e., variogram model); the choice of the variogram model is extremely important
for the spatial interpolation. Several variogram models are available, e.g. Exponential, Spherical,
Gaussian, Power and the nested sum of one or more simple models (Pebesma, 2004; Webster and Oliver,
2001). The sampling design is extremely important for kriging as, to obtain a robust representation of
the autocorrelation structure, it requires samples to be separated by a variable range of distances (lags),
so that the variogram can capture the spatial complexity of the area from short to large separation
distances (Li and Heap, 2008). Environmental properties show commonly different autocorrelation
structures in different directions, thus sometimes, anisotropic semi-variogram modelling is required; the
most commonly employed model for anisotropy is the geometric anisotropy, meaning the semi-
variogram reaching the same sill in all directions and with the same variogram model, but at different
ranges. In such cases, a maximum and minimum ranges are modelled, revealing the maximum and

minimum correlation directions, respectively. A focus on two different and widely used kriging
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estimators, namely Ordinary Kriging (OK) and Kriging with External Drift (KED), is briefly presented

in the following paragraphs.

Ordinary Kriging assumes that the local means are unknown but constant within a search area, thus
limiting the stationarity domain to a local neighbourhood; moreover, the local means are not necessarily
closely related to the population mean. OK is based on the spatial correlation structure of the data to
determine the weighting values, and the spatial correlation between data points determines the estimated
value at unsampled locations. It also assumes a normal distribution of the data points and can account

for local fluctuations of the mean.

Kriging with External Drift incorporates the local trend within the neighbourhood search window as a
linear function of a smoothly varying secondary variable instead of as a function of the only spatial
coordinates as done by OK (Goovaerts, 1997). The assumption is that the trend of the primary variable
must be linearly related to that of the secondary variable, which must be known both at all sampled

points and at all points which need to be estimated Pebesma (2004).

2.3. Landslide susceptibility modelling: state of the art

2.3.1. Overview and definition

Landslide susceptibility is the likelihood of a landslide occurring in an area on the basis of local
environmental conditions (Brabb, 1984); it is the process of predicting “where” landslides are likely to
occur (Guzzetti et al., 2005, 2006; Reichenbach et al., 2018), by giving a measure of the degree to which
a terrain can be affected by future slope movements. In mathematical terms, susceptibility can be defined
as a probability of spatial occurrence of slope failures, given a set of geo-environmental conditions and
independently from any size characteristic of the landslide itself (Guzzetti et al., 2005). For this reason,
susceptibility is different from landslide hazard, which could be defined as the probability that a
landslide of a given magnitude will occur in a given period and in a given area, in relationship with a

defined trigger (Guzzetti et al., 2005).

Methods for landslide susceptibility could be subdivided in qualitative or quantitative (Reichenbach et
al., 2018); the former evaluate susceptibility heuristically, using descriptive terms, while the latter
produce numerical outputs, i.e., estimates of the occurrence likelihood of landslide phenomena. More
specifically, these methods can be grouped into the following main categories (Guzzetti, 2005,

Reichenbach et al., 2018; Lombardo et al., 2020):
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(1)

(i)

(iif)

(iv)

(v)

Geomorphological mapping, which strongly depends on the experience of the investigators
in determining the sliding potential of a slope and it is essentially impractical over very large
areas. Moreover, it does not provide quantitative estimates hampering its employment for
hazard assessment.

Analysis of landslide inventories, which is obtained preparing landslide density maps and
inherently depends on the quality and completeness of the available landslide database.
Heuristic or index-based methods, which are again dependent on the subjective choices of
the investigators in weighting the known instability factors in causing landslides.
Deterministic, physically- based models, which exploit the existing mechanical laws
controlling slope instability. Although providing numerical measures, these models require
several input parameters and a large dataset regarding mechanical and hydrological
properties of the slope materials, which may not be available or difficult and expensive to
acquire, especially over large and heterogeneous territories.

Statistical predictions models, which exploit the functional relationships between a set of
instability factors and the past and present distribution of landslides. Practically a binary
classification model is fitted to a spatial data set containing information on the presence and
absence of past landslides (response) and some associated preparatory environmental factors
(predictors). Finally, the resulting classification rule, which allowed to identify conditions
that promoted or favoured past instability, is applied to all spatial units containing
information on these environmental conditions (Steger et al., 2016a). The entire process is

also referred as susceptibility modelling.

The next sections will be dedicated to the deepening of the statistical models for landslide susceptibility,
focusing on several aspects and challenges. Among them, the selection of the mapping unit, the landslide
inventory (dependent variable), the environmental predictors (independent variables), the modelling
framework (which operates as the functional relationship) will be discussed. In addition, a final section
regarding the evaluation of model performance, uncertainties and plausibility of the results of the process

will be introduced.

2.3.2. Mapping units
The preliminary requirement for landslide susceptibility modelling involves the selection of an
appropriate mapping unit. As defined by Guzzetti (2006), it is a geographical domain characterized by

the maximization of internal homogeneity and the between-unit heterogeneity in terms of a set of ground
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conditions. Reichenbach et al. (2018) categorized and discussed advantages and disadvantages of

different mapping units used in the field of landslide susceptibility.

The different categories include (i) grid cells (“pixels”), (ii) unique condition units, and (iii) slope units.
The selection between them is dependent on scale, quality and type of geo-environmental predictors,
landslide size and type, modelling technique used and scope of landslide susceptibility assessment

(Guzzetti, 20006).

Grid cells are the most popular among landslide susceptibility modellers, thanks to their simplicity and
applicability at all resolutions and scales. Reichenbach et al. (2018) however listed some drawbacks
related to their usage. Particularly concerning for the authors is the possibility of a pixel to be physically
representative of a landslide process. This is particularly true when dealing with morphometric and
geometrical predictors, unless the grid-cell size is small compared to the landslide size. In that case,
very-fine grid cells are suitable for modelling small landslide, as they allow to capture their
morphological signature in detail but may result geomorphological insignificant for large or deep-seated
landslides. A similar problem concerns the final susceptibility zonation, which may be difficult to
interpret and use operationally, whether several artefacts related to the pixels are present. When this
situation occurs, the authors suggest defining clear and unambiguous criteria for post-processing to

improve results readability.

Unique condition units (Bonham-Carter, 1994) are obtained by intersecting all the geo-environmental
layers considered important for susceptibility modelling and are simply obtainable in a GIS environment.
The main problem with unique conditions is that each continuous predictor need to be categorized in a
small number of classes. Nevertheless, class selection introduces a heuristic and subjective component
in the process, and in other words, an unquantifiable uncertainty. Moreover, even small digitalization

imprecisions could result in poorly significant units.

Slope units are hydrological terrain units bounded by drainage lines (Carrara, 1983; Carrara et al., 1991,
1995; Guzzetti et al.,1999), corresponding to a slope in the geomorphological point of view, being
physically appropriate for the scope (i.e., landslide susceptibility modelling). The main advantage of
slope units is that their shape and size may be tailored to the landslide type and size: a slope unit may
correspond to an individual slope, an ensemble of adjacent slopes, or a small catchment. In particular,
they can provide representative statistics of large, deep-seated landslides. Recently, Alvioli et al. (2016)
proposed a specific software for the automatic delineation of slope units, overcoming their principal
disadvantage, related to the difficulties in their manual identification. A possible limitation could be that
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drainage-based subdivision may not reflect some peculiar geomorphological and geological
characteristics; thus, additional post-processing should be made. Furthermore, a non-optimal
construction of slope units would lead to the proxy variable characterization into the slope-units as too

smoothed (Amato et al., 2019; Baet al., 2018; Rotigliano et al., 2011, 2012; Martinello et al., 2020).

Some authors focused on the comparison between a grid-cell and a slope unit approach, both in terms
of quantitative performance and readability of the results. Van Den Eeckhaut et al. (2009) combined the
susceptibility zonation obtained by applying both a pixel-based and slope unit approach by means of a
heuristic procedure, stating that this procedure helped in increasing the interpretability of the
susceptibility zonation. Martinello et al. (2020) carried out a pixel-based landslide susceptibility model
and zoned the scores into 10 different types of slope units, obtained by differently combining two half-
basin and four landform classification coverages. The authors found out that the predictive performance
of this approach was slightly lower than the pixel-based model, balanced with an increasing readability
of the final map. Jacobs et al. (2020) found out that a slope unit-based approach outperformed the pixel-
based one, when dealing with a point-based inventory with unknown accurate location within or in
vicinity of the landslide. In the work of Ba et al. (2018), the slope unit approach slightly outperformed
the grid-cell one. However, the authors pointed out that for the slope unit-based model, the same
susceptibility level is assigned to the whole unit, making it difficult to determine within which part of
the slope landslides tend to occur, an important information for next step analysis, e.g., run-out

modelling, hazard and risk assessment.

2.3.3. Landslide inventory

The dependent or response variable is typically used in a binary structure, expressing the presence or
absence of landslides in each mapping unit used to partition a study area (Lombardo et al., 2020). The
landslide presence can be obtained from landslide inventories and catalogues (Guzzetti et al., 2012; Van
Den Eeckhaut and Hervas, 2012). The indispensable information is the location of occurrence of the
events. Additional information can consist in the date of occurrence, the landslide type, the failure
mechanism, the causal factors, involved volumes and damage caused by mass movements that have left
recognizable traces in an area (Guzzetti et al., 2000; Van Westen, 2008). Landslide inventory is
considered the most important component in the susceptibility process (Van Westen, 2008). Different
techniques and tools are available for the preparation of landslide inventory maps (Guzzetti, 2006, 2012);
their selection depends on the purpose of the inventory, the extent of the study area, the scale of the base
maps, the characteristics of the available imagery as well as the investigators skills and the resources

available (Guzzetti et al., 2000; Van Westen et al., 2006; Guzzetti, 2012). Tools and techniques for the
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collection of landslide information may be categorized in conventional and innovative methods (Van

Westen, 2008; Guzzetti, 2012; Reichenbach et al., 2018).

Conventional methods include field mapping, including Mobile GIS and GPS for attribute data
collection, and visual interpretation of stereo aerial photographs. The former has objective difficulties
relying on the visibility and discernability of landslide phenomena from the investigator viewpoint
(Santangelo et al., 2010), the availability of trained and experienced geomorphologists and the possible
obliteration of landslide characteristics due to human activities, e.g. forestation, agriculture (Guzzetti,
2012; Petschko et al., 2013, 2014). Conversely, aerial photographs interpretation, even if considered a
benchmark in landslide mapping, may be limited by the lack of interpretation standards (i.e. the
identification is based on the investigator sensibility and experience), and by the availability of adequate

coverage and time-series length.

Innovative techniques comprehend analyses of high and very-high resolution digital elevation models
(acquired by means of airborne laser profilers and LiDAR sensors). The analyses are performed both by
means of image analysis of single or multiple acquisition and through (semi) automated classification
by exploiting different terrain characteristics as surface curvature variation and slope threshold. This is
typically done on a pixel basis (Chen G. et al. 2012; Hussain et al. 2013), which however often results
in imprecise outcomes for complex morphologies. An object-oriented classification procedure can be
alternatively adopted (Dragut and Blaschke 2006; Lu et al. 2011; Stumpf and Kerle 2011; Dragut and
Eisank 2012; Holbling et al. 2015, 2017), which is capable of exploiting embedded and scaled
geomorphological features characterizing landslide phenomena (Kurtz et al., 2014). Otherwise, a
combination of remote sensing and morphometric analysis is preferable (Mondini et al., 2011;
Ciampalini et al. 2016; Du L. et al. 2019). A second category of innovative techniques comprehend the
exploitation of satellite derived products, both from passive (optical) and active (radar) sensors. The
visual interpretation of optical images and secondary products (e.g. panchromatic, composite, false
colour, pan-sharpened) is a valuable alternative to aerial photography and could be used in (semi)
automated processes (Martha et al., 2012; Van Den Eeckhaut et al., 2012; Holbling et al. 2015, 2017;
Catani, 2021). Recently, Google Earth™ imagery has been employed as a source of information too
(Conoscenti et al., 2016; Broeckx et al., 2017). Another approach is to concentrate on satellite
multispectral information to construct derivative maps (e.g., Normalized Difference Vegetation Index,
NDVI). These maps are therefore used in combination with aerial or optical products to visually detect
landslides, or as inputs for (semi) automatic classification by means of e.g., index thresholding,

clustering, change detection and object-oriented image analysis (Liu et al., 2002; Hervas et al., 2003;
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Cheng et al., 2004; Rosin and Hervés, 2005; Borghuis et al., 2007; Yang and Chen, 2010; Martha et al.,
2011; Parker et al., 2011; Scaioni et al., 2014; Behling et al., 2014; Holbling et al. 2015; Heleno et al.,
2016). Furthermore, the application of interferometric techniques to radar images has proved to be
another powerful tool for landslide detection, especially at the large scale (Strozzi et al., 2006; Colesanti
and Wasosku, 2006; Meisina et al., 2013; Agostini et al., 2014; Ciampalini et al., 2016; Raspini et al.,
2017; Rosi et al., 2018). It consists mainly in the exploitation of A-DInSAR techniques - e.g., PSInSAR
(Ferretti et al., 2000), SqueeSAR (Ferretti et al., 2011), Small Baseline Subset (SBAS) (Berardino et al.,
2003). More specifically, radar images are useful to individuate landslide typology and to update existing

inventories with landslide state of activity (Antonelli et al., 2019).

Based on the type of mapping, landslide inventory maps can be classified as archive or
geomorphological inventories (Guzzetti, 2012; Reichenbach et al., 2018). Archive inventories are
obtained by e.g. newspaper, road maintenance companies, fire-brigade, administrations, interviews (Van
Westen, 2008) and “Citizen Science” (Juang et al., 2019). Geomorphological inventories can be further
classified as historical, event-related, seasonal or multi-temporal (Guzzetti, 2012). An historical
inventory records several landslides over a period of tens, hundreds or thousands of years (Galli et al.,
2008), independently from a particular triggering event. On the contrary, an event-related inventory
reports landslide caused by a single trigger (e.g. seismic event or rainfall event). Multitemporal (years
or decades) or seasonal inventories are instead prepared on the basis of multiple aerial images or satellite
products. Geomorphological inventories may suffer of incompleteness due to the easy and rapid
obliteration of shapes and geomorphological features due to erosional and vegetational processes,
reactivations, or human interference (Reichenbach et al., 2018). However, whilst the inventory is
representative of the abundance and distribution of landslide phenomena and the incompleteness is rather
balanced and not biased, it should not be problematic in terms of landslide modelling (Petschko et al.,
2013, 2014, 2016) as consistency is more important than completeness (Reichenbach et al., 2018).
Event-related inventories are less appropriate for susceptibility model construction, as not depending
only on geo-environmental conditions but even on the triggering event characteristics, thus their
generalization should be carried out with caution, as specific predictors representing the pattern and
extent of the meteorological (i.e., a particular rainfall or snowmelt event) or seismic (i.e., the Peak
Ground Acceleration — PGA of a given earthquake) triggers are included in the analysis and influence
the landslide spatial occurrence (Guzzetti et al., 2012; Reichenbach et al., 2018). However, these types
of inventories resulted to be appropriate for susceptibility model validation (Rossi et al., 2010) and are
successfully implemented as supporting tool for early-warning operative system (e.g., Segoni et al.,

2015;2018; Bordoni et al., 2020). Seasonal or multi-temporal inventories are not surprisingly considered
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the optimal datasets for susceptibility modelling (Galli et al., 2008); these inventories are specifically
suitable for testing the long-term performances of susceptibility models and defining their learning curve
(Guzzetti et al., 2004; 2005) along with the possibility to test dynamic environmental predictors (if the
period covered by the inventory is long enough). Nevertheless, as they are time and resource consuming

to prepare, they are quite rare and of limited extent (Galli et al., 2008; Guzzetti et al., 2012).

The quality of a landslide inventory depends on its accuracy, which in turn is conditioned by the
completeness of the map and the geographical and thematic correctness of the information recorded
(Galli et al., 2008; Guzzetti et al., 2012). Subjectivity, experience, measuring errors or imprecision
related to the landslide inventory preparation are all sources of parametric uncertainty (i.e., a component
of the epistemic uncertainty, which is the uncertainty related to the missing knowledge of the
phenomena), which propagate in the subsequent modelling and analysis (Petschko et al., 2014). The
completeness level of an inventory is unknown (Malamud et al., 2004); however, if incompleteness and
errors are not random but systematic, they could induce a bias in the inventory, thus introducing

systematic modelling errors (Petschko et al., 2014; Steger et al., 2016a; 2017).

Recently, some researchers focused on the quantification of issues as landslide inventory positional
accuracy and completeness on the modelling results (Petschko et al., 2013, 2016; Steger et al. 2016a,
2017). Steger et al. (2016a) highlighted that the occurrence of positional errors in mapping landslide
inventories affected modelled relationships and variable importance assessments. Furthermore, they
found that the propagation of positional error in the modelling process was not only linked to the size of
the landslides under consideration and to their spatial representation (e.g., points at the landslide scarp
or inside the body, polygons), but also to the modelling characteristic of the territory (i.e., raster
resolution and mapping unit), to the study area morphology and to the complexity of the applied model.
To deal with these issues the authors suggested, in such situation in which a mapping update of the
landslide inventory is not feasible, to generalize input data to a coarser scale and to opt for simple and

easily interpretable modelling algorithms.

As regarding positional accuracy, a previous work of Petschko et al. (2013) compared modelling
landslide susceptibility by representing presence either as single point for the main scarp or as point
randomly selected in a landslide polygon. The authors observed very small differences in the predictive
performance and final aspect of the susceptibility maps. Successively, Petschko et al. (2016) compared
the susceptibility modelling results using as inventory both a representative set of landslide polygons

and a substantially complete inventory of main scarps related points. The trade-off between temporal
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requirements for compilation and performance was found to be essentially better for the point related
inventory. Ozturk et al. (2020) explored the effect of selecting landslide information from the available
inventory in different positions of the landslide body, finding out that sampling the landslide presence
points at the landslide toe (i.e. deposit) improved the model performance by 10% over a model using for
training the entire landslide polygons. Hussin et al. (2016) tested different landslide representations (i.e.,
scarp centroids, points populating the scarp and entire scarp polygons) obtaining model highest

performance when sampling shallow landslides as grid points and debris flow scarps as polygons.

Incompleteness is the other frequent drawback that may affect landslide inventories. For instance, in
some contexts, landslides in forested areas are overrepresented than in agricultural areas, where landslide
features are more frequently masked by human activities (Bell et al. 2012; Petschko et al. 2016;
Conoscenti et al. 2016). Conversely, analysis of multi-temporal images may be positively biased towards
unforested areas, as dense vegetation could mask landslide morphologies (Jacobs et al., 2016). Another
very common situation that favours systematic incompleteness is related to inventories coming from
administrations or public reports, which usually overrepresent landslide closer to infrastructures and
roads (Guzzetti et al., 1999; Steger et al., 2016b; Bajni et al., 2021b). Steger et al. (2017), by synthetically
creating biased inventories of different degrees (i.e., reducing a substantial complete inventory by pre-
selected percentages), figured out that highly biased inventories produced very high validation results
but distorted relationships with geo-environmental predictors and geomorphological implausible
landslide susceptibility maps. More specifically, they relate the high performance to the presence of
bias-describing predictors (e.g., land cover, distance from roads or elevation). The authors discouraged
the exclusion from the model of the bias-related predictors, as a cascading effect of misleading
relationships between landslide presence and such predictors (named confounding predictors) could
occur. As an alternative approach they proposed the application of mixed-effect logistic regression
models, which resulted in an attenuation of the influence of bias-describing predictors in the predictions,
by modelling them as random effects instead of fixed effects (as usually geo-environmental predictors

are modelled).

Another approach to deal with inventory bias related to a systematically unbalanced survey of landslides
along roads and infrastructures was offered by Bornaextea et al. (2018) and Knevels et al., (2020). These
authors created an effective surveyed area, delineated by an automatic procedure that accounted for the
actual visibility of slopes during the geomorphological field mapping phase, starting from the available
GPS tracks. They trained the statistical model inside the effective surveyed area and eventually applied

the resulting model to the entire study area. A similar approach was adopted by Meinhardt et al. (2014),
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who used the viewshed GIS algorithm from roads to select the area in which to train the susceptibility
model. More recently, Steger et al. (2021) suggested to change perspective and to simultaneously predict
landslide susceptibility effects and a landslide intervention index (i.e., areas where damage-causing and
infrastructure-threatening landslides are likely to occur). In other words, they changed the modelling
subject, from landslide susceptibility to areas affected by damaging landslides, exploiting in a positive

and useful way the inherent bias in the inventory.

As landslide susceptibility model requires landslide absence points along with landslide locations, their
selection is equally important; however, they are not readily available and need to be reasonably
generated. Conoscenti et al. (2016) compared two different strategies: the extraction from randomly
selected circles having a diameter equal to the mean width of the landslide source areas and randomly
distributed points, which is the most traditional technique used in literature. Their results highlighted
that the former approach is preferable in terms of predictive performance. Zhu et al. (2018), concerned
about the lack of uniform standards in selecting an exclusion mask or buffer around landslide source to
select absence points, compared two presence-absence methods and two only-presence methods. Their
findings, in accordance with the previous studies of Zaniewski et al. (2002) and Engler et al. (2004),
showed that the presence-absence methods constrain the over-prediction of susceptibility values,
concluding that absence data are necessary in susceptibility modelling. Zhao et al. (2020) compared the
modelling results deriving from a presence-only, presence-absence and pseudo-absence approaches. The
latter approach, which resulted to be the best performing, does not assume that a landslide cannot occur
at the selected sites, but only provides a large sample (in this case 25 times higher than the presence
points) representing conditions available in the region. Zhu et al. (2019) used different thresholds in
terms of environmental dissimilarity between the absence and presence data to quantify the reliability
of candidate negative points. In other words, they separated presence and absence data in the feature
space rather than on a geographical basis. They proposed a Similarity Based Sampling and tested its
application by means of three different statistical models, concluding that the best performance was
achieved with a dissimilarity threshold of 0.5 (in a range between 0 and 0.9). Hong et al. (2019)
compared different methods, i.e., the random selection in the geographic space and four methods based
on the feature (or environmental) space, to recognize an “eligible area” in which to select absence points.
They observed that, in terms of performance, the size of absence points needed to be increased when the
eligible area was reduced (due to the application of the different selection methods). More specifically
a 1:1 ratio was optimal when the eligible area was about the 99% of the total study area, a 1:5 ratio was
optimal when the eligible area was between 50 and 70% of the study area, and a 1:100 ratio when the

eligible area was around 30% of the study area.
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2.3.4. Geo-environmental predictors

In addition to the response variable or dependent variable, represented by landslide and non-landslide
information, landslide susceptibility models require a set of geo-environmental predictors, representing
the independent or explanatory variables (Guzzetti et al., 1999). In their review, Reichenbach et al.
(2018) classified and quantified the frequency of use of different geo-environmental variables in
landslide susceptibility models and found out that terrain morphology related variables are the most
common (25.5%), followed by geological variables (19.1%), land cover (17%) and hydrological
variables (17.6%). Van Westen et al. (2008) grouped predictors into two classes, static and dynamic
(i.e., based on their need to be updated regularly or not). As an example, morphology and geology belong

to static predictors, while land use and hydro-climatic factors are dynamic predictors.

Variables related to morphometric aspects of slopes and topography are unquestionably effective in
predicting landslide likelihood (Fabbri et al., 2003; Van Westen et al., 2008). These variables basically
come from the post-processing of a DEM. While elevation and slope are directly linked to slope
instabilities, which are processes mainly controlled by gravity, other morphology-related variables such
as aspect, curvature and terrain roughness have a less immediate and more local link with landslide
predisposition (Reichenbach et al., 2018). As these topography related predictors strongly depend on the
quality and resolution of the DEM (Tarolli, 2014), landslide susceptibility modelling is benefitting from
the increasing availability of high-resolution DEM (Reichenbach et al., 2018). However, a finer DEM
resolution does not necessarily imply either a more accurate and performing susceptibility model, or the
optimalization of the derived geo-environmental predictors (Chen L. et al., 2019; Chen Z. et al., 2020;
Rabby et al., 2020a). Other more complex terrain attributes (e.g., flow direction, drainage density, flow
accumulation, Topographic Wetness Index) may be derived from the available DEM and they are mainly
introduced as hydrological and topo-climatic processes proxies relevant for slope stability such as snow
accumulation and duration, incoming solar radiation variability, drainage efficiency, local moisture
patterns, sediment storage, permafrost distribution and probability, efficiency of weathering activity,

plant colonization (Van Westen, 2008; Messenzehl et al., 2017 and references therein).

Geology related predictors are often included as they are classified in the basic geological maps available
for the area (i.e., along with their unit or formation regional names) leading to misleading or unclear
relationship with landslide susceptibility and making it difficult to compare the effect of geological
features in different and distant areas (Reichenbach et al., 2018). A more appropriate representation of
geology for landslide susceptibility should deal with the geotechnical behaviour (e.g., strength,

cohesion) and properties (e.g., thickness, weathering, grain size, texture, permeability etc.) of the
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investigated materials rather than with its chronostratigraphic subdivision, thus a reclassification in
terms of physical or mechanical properties is advisable (Reichenbach et al., 2018; Van Westen, 2008).
Segoni et al. (2020) performed a sensitivity analysis on the use of the geological information in various
ways for landslide susceptibility modelling. They performed different tests either using lithologic, or
chronologic, structural, paleogeographic, and genetic units. Even if the genetic units approach (i.e.,
categorizing geology as magmatic rocks, metamorphic rocks, clastic rocks, organogenic rocks and soils)
performed better than the other subdivision for their case study (including the most commonly used
lithologic subdivision), the most significant outcome of their work was that a comprehensive
representation of geology, combining the different geological parameters together, resulted in the best

performing model, as it captured the multifaceted connotation in a complex study area.

Regarding structural data, the most used related predictors are bedding attitude (Clerici et al., 2002; Coe
and Harp, 2007; Ruff and Czurda, 2008; Santangelo et al., 2015; Messenzehl et al., 2016) and distance
from faults (Hong et al., 2016; Du et al., 2017; Yi et al., 2020; Rabby et al., 2020b). On the one hand, a
problem with structural and bedding data is that they are time consuming to collect in the field and
challenging to interpolate for landslide susceptibility assessment at the regional scale (Reichenbach et
al., 2018). On the other hand, distance from faults predictor suffers from several problems as it is often
based on “subjective” distance classes based on the modeller sensitivity, and seldom considers the state
of activity and size (i.e., the extent of the influence of the faults on the surrounding rock masses in terms

of mechanical weakening) of the fault-zones.

An interesting use of the presence of old deep-seated landslides as predictor for secondary landslides
was attempted by Carrara et al. (1991). The authors based the inclusion of this predictor on the basis of
a possible alteration of mechanical properties of the rock masses located in the areas affected by the

more ancient deep-seated deformations.

Land cover related predictors are widely used in landslide susceptibility (e.g., Glade, 2003; Knevels et
al., 2020; Reichenbach et al., 2014; Reichenbach et al., 2018; Bordoni et al., 2020; Camera et al., 2021)
and comprehend vegetational and land use characteristics and could be obtained both from aerial
photographs and through the automatic and semi-automatic classification of optical and, more recently,
multispectral satellite imagery. Land cover conditions slope stability and some land cover types could
be more prone to instability. However, the relationship is not always unambiguous and generalizable;
for instance, Carrara et al. (1991) found out that forested area favoured stability but in an adjacent study

area Carrara et al. (1995) discovered that forested areas were more prone to landslides. The presence
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and abundance of vegetation may be also represented by a numeric continuous predictor rather than a
land use class, such as Normalized Difference Vegetation Index (NDVI), easily obtainable from optical

satellite imagery.

Reichenbach et al. (2018) listed two additional “distance to linear features” predictors, which are widely
used in the related literature and expressed concern about their inclusion in a susceptibility model. The
first is distance to river, with the aim to capture the destabilizing effect of river incision favouring slope
instability. This could be quite reliable for hydrologically controlled landslides or otherwise for rockfall
activity, if the incision may lead to shape overhanging slope morphologies at the valley bottom.
However, rarely authors limited the distance calculation to the actual slope, ignoring the presence of the
divides or use this predictor only in hydrologically related contexts. The second predictor is represented
by distance to roads, with the aim of capturing the disturbance of road cuttings on the natural slopes;
Reichenbach et al. (2018) concluded that the distance metric is not able to capture these disturbance
effects, which may be more local and geotechnical related. Moreover, as already discussed in the
previous section, distance to roads could also be a bias-descripting predictors, limiting its

meaningfulness in the susceptibility process.

Recently some authors raised attention on several issues regarding geo-environmental predictors for
landslide susceptibility modelling, which are seldom addressed by the related literature. Reichenbach et
al. (2018) argued that authors seem to be more interested in testing increasingly complex modelling
algorithms and model ensembles rather than in convincingly discussing the geomorphological and
physical significance and relevance of the single geo-environmental variables in the analyses. This issue
is exacerbated in such cases where predictors deriving from very different spatial scales are used together
in the susceptibility modelling process; indeed, the predictor physical meaning at a given scale should
be consistent and relevant to the landslide type and size. In this regard, Steger et al. (2016b, 2021)
extensively focused their work on the discrepancies between high quantitative model performances and
implausible predictors behaviour. Camera et al. (2021) introduced climate variables within a shallow
landslide susceptibility analysis, which, even with a slight increase of model performance, resulted to

be physically plausible and consistent with the investigated phenomena.

Another limitation to the traditionally approach to landslide susceptibility modelling is that predictors
are usually considered as static and, as a result, susceptibility is considered stationary (Lombardo et al.,
2020). The assumption of stationarity does not hold especially in mountainous environments, where the

occurrence of landslides is deeply connected with climate-related processes such as intense rainfall,
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snowmelt, freeze-thaw cycles (Luino et al., 2020; Lucas et al., 2020; Stumvoll et al., 2020; Subramanian
et al., 2020; Schiliro et al., 2021; Bajni et al., 2021b), which are expected to vary in the future due to
global warming (Beniston et al., 2018; Gobiet et al., 2014). Nevertheless, studies including climate
related variables are quite rare, with only 2.8% of them including a precipitation-related predictor and
only 0.3% including other climatic predictors (Reichenbach et al., 2018). Different approaches were
tested to include rainfall-related variables in landslide susceptibility modelling: (i) precipitation is
included in the form of mean annual rainfall, mean monthly rainfall and rainy days frequency (e.g.,
Broeckx et al., 2018; Chen and Li, 2020; Fang et al., 2020; Nahayo et al., 2019; Nhu et al., 2020); (ii)
precipitation is included in event-based susceptibility studies, where a particular intense rainfall event is
summarized in variables representing multiple day-maximum cumulated precipitation and used to model
post-event rainfall induced landslides (e.g. Kim et al., 2015; Knevels et al., 2020); (iii) stationary
variables based susceptibility models are updated for early warning purposes by coupling them with
thresholds exceedance (Segoni et al., 2015, 2018) or with additional temporal statistical models (Bordoni
et al., 2020). However, all these approaches have some inherent limitations as the weather conditions
leading to landslide occurrence are widely variable in terms of amount, duration and intensity
(Perruccacci et al., 2017). Including precipitation as an average predictor, again fail in capturing the non-
stationary connotation of landslide occurrence. The event-based approach is valid only for a limited time
frame and a single precipitation event characteristic. The early warning approach, even if undoubtedly
effective for civil protection purposes, do not formally include the climate-related variable in the
modelling process. In this regard, the recent work of Camera et al. (2021) in Aosta Valley (Italy) tried
to give an answer both to the problems related to the inclusion of a rainfall-related predictor and to the
gap related to the inclusion of other climate-related variables. Authors investigated the relationships
between landslide occurrences and intense rainfall and snowmelt events (period 1991-2020).
Successively, they set up a susceptibility model including the effective annual number of rainfall events
with intensity—duration characteristics above a defined threshold and the average number of melting
events occurring in a hydrological year. These two variables together accounted for 5% of the explained
deviance and their introduction led not only to a slight increase in the model performance but made the
model adaptable to future climate change projections (i.e. they introduced non-stationarity in the
process). In recent years, the inclusion of climate change scenarios in landslide susceptibility is
becoming an appealing, and undeniably essential, challenge for researchers, but still few investigators
have attempted to address it (Fan et al., 2013; Kim et al., 2015; Gassner et al., 2015; Shou and Yang,
2015).
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Non-stationarity of landslide susceptibility may be also modelled in response to land cover or land use
changes. Meusburger and Alewell (2009) accounted for the temporal change of land cover by comparing
two different susceptibility maps from 1959 and 2000, with different land cover information. They
observed poor model performances of the 1959 model on the landslide inventory from 2000, concluding
that the temporal change of environmental factors chiefly influences the entire modelling process.
Reichenbach et al. (2014) found that a significant susceptibility spatial distribution variation was the
result of the decrease of the extent of bare soils in Sicily (Italy). Persichillo et al. (2016) elaborated
different scenarios to assess the influence of land use changes on shallow landslide susceptibility
modelling in three areas in NW Italy. In particular, they tested both land use modifications related to
natural evolution of the landscape and to human activity (e.g. cultivated land abandonment). The latter
was found to influence the increase of high susceptibility areas. Chen W. et al. (2019) ended up in similar
findings in SE China. Indeed, land use change from natural to human colonized lands was responsible
of increasing landslide susceptibility in the study area. Authors suggested that land use planning is vital

to tackle this increasing abundance of potentially unstable areas.

Samia et al. (2017a,2017b, 2018, 2020), Temme et al., (2020) and Lombardo et al. (2018, 2020) recently
raised an additional issue regarding landslide susceptibility modelling. Indeed, they discussed the
missing ability of traditional predictors to consider the spatial relationship among landslide occurrences
in different mapping units. More specifically, adjacent, neighbouring, and distant landslide are
considered equally by the models. Samia et al. (2017a, 2017b, 2018, 2020) in a study area in Umbria
(Italy) found that occurring landslides may attract future landslides, as the latter tend to occur inside or
in the immediate vicinity of the previous ones. They called this effect “path-dependency”, which was
inserted in their several works both as a spatial dependency and a spatio-temporal dependency. They
introduced these effects as predictors in a landslide susceptibility model, as a function of the spatio-
temporal distance of earlier and nearby landslides, by means of a space—time clustering (STC) measure
derived from Ripley’s space—time K function implemented on the available point-based multi-temporal
landslide inventory. The characteristic timescale of this effect was about 17 years, and the characteristic
spatial scale was about 60 m and was characterized by an exponential decay, observing a substantial
improvement of model performance. Based on their findings, Temme et al. (2020) formalized a new
nomenclature for landslide occurrence: (i) uncorrelated landsliding, when landslides are common but do
not imply a correlation with geo-environmental variables; (ii) correlated landslding, when landslides are
common and have correlation with geo-environmental variables; (ii1) path-dependent landsliding to
describe such situations where there is a correlation with previous landslides. This last category was

further classified in “reactivation” or “continuation” when the same material is involved in future
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landslides, “local activation” when a previous instability causes local changes leading to additional
instabilities, “remote activation” if a landslide causes changes in the landscape (not necessarily nearby)
that cause a later landslide. Lombardo et al. (2020) proposed a novel approach for spatio-temporal
prediction of landslides exploiting a Log-Gaussian Cox Process (LGCP), which considers each landslide
in a population as an individual realization from a continuous-space process, i.¢., landslides are the result
of a stochastic point process driven by an unknown intensity function. In other words, they exploited the
spatio-temporal clustering of the landslide process to consider the spatial, the temporal, and the spatio-
temporal landslide latent effects among adjacent terrain mapping units, same mapping units but
subsequent time intervals, and both conditions together, respectively. For latent effects, authors mean
effects not captured by the traditional geo-environmental predictors, observing that explicitly
introducing this latent component significantly improved the model performance. The approach was also
previously tested and applied successfully to model populations of rainfall-induced (Lombardo et al.,
2018, 2019b) and seismically—triggered (Lombardo et al., 2019a) landslides in terms for spatial
predictions only. However, as stated by the authors themselves, this approach needs a detailed and
accurate multi-temporal inventory and, at least when introducing the temporal component of the latent
effect, it introduces a borderline definition between landslide susceptibility and hazard, suggesting a

strong influence of time on the spatial occurrence of landslides.

2.3.5. Models

The functional relationship describing the interplay between the landslide inventory and the geo-
environmental predictors is analysed through a susceptibility model (Carrara, 1983; Chung and Fabbri,
2003; Guzzetti et al., 2006). Several statistical and machine learning models are available for this scope,
each with both advantages and shortcomings (Guzzetti et al., 1999, Brenning, 2005; Glade and Crozier,
2005). They can be broadly grouped in (Reichenbach et al., 2018; Merghadi et al., 2020): (1) Statistical
Methods s.s. such as Logistic Regression, which is the most popular (e.g., Steger et al., 2016b, 2017;
Rossi and Reichenbach, 2016; Lin, 2017; Cama, 2016; Wang, 2013; Lombardo and Mai, 2018),
Generalized Additive Models (e.g., Brenning, 2008, Jia et al., 2008, Park and Chi, 2008; Goetz, 2011,
2015; Muenchow, 2012; Petschko, 2012, 2014; Bordoni et al., 2020; Camera et al., 2021) and Weights
of Evidence (e.g., Sterlacchini et al., 2011; Thiery et al., 2007; Vakhshoori and Zare 2016; Roy et al,
2019; Kouli et al., 2014; Neuhéuser et al, 2012); (i1)) Machine Learning methods such as Support Vector
Machines and Tree-based Ensembles (e.g., Micheletti, 2014; Goetz et al., 2015; Chang et al., 2019; Dou
et al., 2020; Merghadi et al., 2020); (iv) Neural Networks (e.g. Ermini et al., 2005; Falaschi et al., 2009;
Wang et al., 2019; Caniani et al., 2008;Gomez and Kavzoglu, 2005); (v) Multicriteria decision analysis

(e.g. Castellanos Abella and Van Westen, 2008; Akgun, 2012; Feizizadeh and Blaschke, 2013;
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Feizizadeh et al., 2014;Lorentz et al., 2016). In multicriteria decision analysis a subjective component
in weighting factors may be present, Machine Learning algorithms provide high performance but often
tend to overfit, while linear models are not able to capture possible non-linearities in the functional
relationship between response and explanatory variables, as they have limited flexibility (Brenning,
2005; Goetz et al., 2011; Petschko et al., 2014). Reichenbach et al. (2018) observed a trend in the
research studies testing increasingly complex methods; however higher complexity does not guarantee
better or more sound results and rather may lead in misleading interpretations if done by non-expert

users.

Another recent common practice is to apply several modelling frameworks to the same dataset and
compare or combine the results. Model comparison is chiefly carried out in terms of model quantitative
performance (e.g., Pham et al., 2019, 2020; Althuwaynee et al., 2014; Abedini, 2019; Chen, 2019, 2020;
Pourghasemi and Rahmati, 2018) and less frequently by comparing more pragmatical metrics such as
model interpretability (Goetz et al., 2015) and geomorphological plausibility of the output map (Steger
et al., 2016b). The availability of different models and, consequently, different susceptibility zonation,
could hamper the effective and practical application of the models in land use planning and management;
indeed often, the qualitative performance is similar between models (Sterlacchini et al., 2011) and thus
not sufficient to establish the “best” model for an area (Huabin et al., 2005; Chacon et al., 2006;
Reichenbach et al., 2018). Conversely, more fruitful results may be obtained by combining models in
different ways rather than just comparing them, in order to offer an optimal version of susceptibility
zonation and both to reduce and quantitively describe uncertainties (e.g., Rossi et al., 2010; Di Napoli
et al., 2020; Chen, 2018; Youssef et al., 2015, Choi et al., 2012, Andan et al., 2020; Rossi and
Reichenbach, 2016).

In reality, there is not a “correct” model in a suite of competing models (Elith et al., 2002) and the choice
need to be guided by the specific objectives of the model along with quantitative measures. Goetz et al.
(2015) effectively summarized the possible criteria leading to an optimal model selection. Firstly, a good
quantitative performance is undoubtedly a necessary condition, which is influenced in turn by the
algorithm feature selection procedures, modelling parameter selection, sampling design and pre-
processing of predictors. Secondly, the interpretability of the model in terms of predictors behaviour is
an advisable requirement (Brenning et al., 2012b), especially when dealing with physically motivated
predictors introduced as causal factors (Goetz et al., 2011). Moreover, Goetz et al. (2015) pointed out
that the appearance of the susceptibility zonation may influence the perception of the end-user; generally,

a zonation characterized by a smoothed surface is preferred and gain higher trust rather than
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susceptibility maps characterized by spatial artefacts and more heterogeneous surfaces. Finally,
geomorphological plausibility in terms of spatial distribution of susceptibility values is of paramount
importance for the reliability of the results (Steger et al., 2016b). In the remaining part of this section,
Generalize Additive Models and Random Forest will be described in detail, as these two models were

employed in the present work.

Generalized Additive Models (GAM) are a semi-parametric extension of Generalized Linear Models
(GLM) - or Logistic Regression in the case of a binomial response as in landslide susceptibility -
introduced by Hastie and Tibshirani (1990). While GLMs can fit linear trends and are parametric in
nature, GAMs extend the parametric assumption by replacing some, or all, of the parametric terms with
smooth functions (Simpson, 2018). More specifically, each predictor variable in a GAM can be treated
as linear (untransformed) or nonlinear (transformed by smoothing splines). Both GLMs and GAMs are
used to study the relationship between a dichotomous response variable (absence/presence of landslides)
and a set of explanatory variables x, both categorical and numerical (Hosmer and Lemeshow, 2000).
The response variable is not modelled directly but by means of the logit of the conditional probability
p():

p(x)
1-pk)

logit(x) =In = In(odds) Eq. 2.7
The odds or likelihood ratio represents the ratio between the probability p that the dependent variable is
1 and the probability 1—p that the dependent variable is 0.

In GLMs logits are modelled linearly, while in GAMs they have a more general form (Brenning, 2007,
Figure 2.1):
logit(x) = f(x) Eq. 2.8

where f(x) is a non-linear transform of the explanatory variables and could be obtained by using smooth
functions. The flexible smooths describing the behaviour of a geo-environmental predictor in a GAM is
represented by a set (i.e., basis) of smaller functions (i.e., basis functions, which often are splines) that
collectively contains the true smoothing function or at least a close approximation to it (Simpson, 2018,

Figure 2.1).

The size of the basis is an upper limit on the expected complexity of the trend (Pya and Wood, 2016).
In simple terms, each smoothing function is the sum of a certain number of basis functions, each
multiplied by a coefficient, each of which is a parameter in the model. This means that a single

relationship between the response and the geo-environmental predictor has several coefficients (for each
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Figure 2.1 Given a set of data (grey dots)
with a dependent (x) and independent (y)
variable, a GLM model (red dashed line)
would not capture key aspects of the data
151 distribution, while the GAM model (black
line) performed captured the non-linear
behaviour of the relationship. The coloured
lines represent the different basis functions
constructing the smooth. (Modified from
“GAM in R” by Noam Ross
https://noamross.github.io/gams-in-r-
course/).

basis function) plus an intercept; conversely, in the Logistic Regression framework, each independent

predictor has a unique coefficient.

The goodness of fit of a GAM should be a trade-off between likelihood (i.e., the ability to reproduce the
trend) and wiggliness (i.e., the complexity of the curve), which may lead to model overfitting. For this
reason, the models are usually fit by a penalized likelihood maximization, in which the model likelihood
1s modified by the addition of a penalty for each smooth function (which penalizes its wiggliness). The
selection of the optimal smoothing parameters could be achieved through two different approaches
(Simpson, 2018): the first minimises the prediction error of the model and can be achieved by minimising
Akaike’s information criterion (AIC) or via cross-validation (CV) or generalised cross-validation
(GCV). The second approach is to treat the smooth as a random effect, in which the smoothing parameter
is treated as a variance parameter to be estimated using maximum likelihood (ML) or restricted
maximum likelihood (REML Wood, 2011; Wood et al., 2016). Therefore, each smoothing function is
the combination of several basis functions and smoothing coefficients and the complexity of the

smoothing function in its entirety may be expressed with the effective degrees of freedom (edf).

In each modelling procedure, it is crucial to optimize the model through a variable selection in order to
obtain a trade-off between a parsimonious model and a good performance. The selection of the
important, i.e. most influencing, independent variables in GAMs modelling could be carried out through
two different smoothing penalization or shrinkage approaches, able to modify smooths so they are
penalized to the zero function and thereby selected out of the model (Wood, 2017): (i) the use of

shrinkage smoothers, for which the smoothing penalty is modified with an additional small shrinkage
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term, so that for large enough smoothing parameters the smooth becomes identically zero; (ii) the use of
null space penalization, consisting in the construction of an extra penalty for each smooth, which
penalizes the space of functions of zero wiggliness according to its existing penalties. The advantage of
this approach is that it can be implemented automatically for any smooth, working as an automatic

variable selection.

A common problem in modelling with GAM is linked to concurvity, which refers to the generalization
of collinearity in the GAM setting. Concurvity ranges from 0 to 1 with 0 suggesting no collinearity, and
1 indicating that the function lies entirely in the space of one or more of the other smooth terms, meaning
that one or more variables may be redundant as it can be approximated by some combination of the
others and leading to unstable estimates., i.e., very sensitive to “small” variations in the model (Wood,

2017).

In the landslide susceptibility modelling field GAMs have proven to be less prone to overfitting in
geomorphological modelling than Machine learning models (Hastie and Tibshirani, 1990; Brenning,
2009; Goetz et al., 2011, Petschko et al., 2012), nevertheless being still a quite flexible and interpretable
model (Muenchow et al., 2012).

Random forest (RF) algorithm, firstly introduced by Breiman in 2001, is a nonparametric classification
and regression supervised learning model, which constructs prediction rules without making any prior
assumption on the association between the predictor features and the response variable (Probst et al.,
2019). RF is considered an ensemble of decision trees, which are made of two main components: nodes
and branches. Nodes could be further divided in decision nodes, used to make any decision and which
have multiple branches, and /eaf nodes, which are the output of those decisions and do not contain any
further branches. In particular, RF is a modification of bagged decision trees, building a large collection
of de-correlated trees to further improve predictive performance (Bohemke and Greenwell, 2019). The
decorrelation is ensured by the random selection of a subset of predictors for nodes splitting, which also
prevents over-training. Indeed, although a single decision tree is considered as a weak classifier, the
combination of multiple trees in a forest is a strong classifier: every classification tree in the forest casts
an unweighted vote for the sample and eventually the majority vote determines the final class of each
sample of the response variable (Touw et al., 2012). In terms of landslide susceptibility, at the terminal
node each tree in the forest casts a vote (e.g., landslide) and the proportion of “landslide” votes from all
votes is the final predicted level of susceptibility (from 0 to 1). Among the predictor subset, the optimal

predictor for node splitting (i.e., the process of dividing a node into multiple sub-nodes, according to
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given conditions, to create relatively pure nodes) is usually selected by means of the decrease in Gini
impurity (Boulesteix et al., 2012). This is linked to the Gini probability, i.e., the probability of correctly
labelling a randomly chosen element if it was randomly labelled according to the distribution of labels
previous the new split. The more often a predictor is selected as the best splitter in the random subset,

the higher would be its “variable importance”.

Another important feature of RF is that they are based on random bootstrap samples selected with
replacement (Efron and Tibshirani 1986): differently from cross-validation (e.g., k-fold, holdout or
leave-one-out), bootstrapping allows a data point to be selected several times in a particular training
subset, nevertheless maintaining approximately the same distribution of values as the original data set.
The original observations not contained in a particular bootstrap sample are the so called out-of-bag
(OOB), which is used to validate the model (Bohemke and Greenwell, 2019). A summary of how RF

works is presented synthetically in the workflow in Figure 2.2.

Lagomarsino et al. (2017) well summarized the advantages of the RF technique: i) it can handle both
categorical and continuous variables; ii) prior statistical assumption on data are not required; iii) it can
account for predictor variables mutual interactions and nonlinearities; iv) it is robust with respect to
changes in the dataset and to noise features; v) validation on OOB data minimizes overfitting; vi) it can

handle a large number of predictor variables.

RANDOM
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/ \ selected number of tree N / \ / \

OOB-error
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' Leaf node PO o i | | AGGREGATION of tree votes
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Figure 2.2 Workflow and steps of the Random Forest algorithm.
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An important step in RF is the hyperparameter tuning phase, i.e., finding an optimal combination of

model

parameters that should be a trade-off between performance and runtime (Bohemke and

Greenwell, 2019). However, the risk in selecting a parameter set leading to complex rules could end up

in model overfitting, too specific to the training data but worse performing on the validation set;

however, this also depends on the objective of the model, i.e., if it made for future prediction or for

explaining the relevance and the behaviour of the candidate predictor variables (Probst et al., 2019;

Shmueli, 2010). Several authors investigated the effects of hyperparameter tuning on model behaviour,

performance and runtime (Segal, 2004; Lin and Jeon, 2006; Strobl et al., 2007; Gromping, 2009;

Martinez-Muinoz and Suarez, 2010; Goldstein et al., 2011; Janitza et al., 2016; Wright and Ziegler,

2017).

According to Probst et al. (2019), who give a comprehensive review of hyperparameters and tuning

strategies, the most important hyperparameter are:

>

>

mtry — It controls the number of candidate variables randomly selected at each split during
trees growing. Even if the default value for classification set to mtry=Vp usually performs well,
this parameter selection should be a trade-off between stability and accuracy of each single
tree. Low values of mtry lead to less correlated trees, favouring stability during bagging;
however, it could lead to trees performing on average worse, because built on potential
suboptimal or non-important variables. When there are few relevant predictors a higher value
of mtry tends to perform better because the chance to select the strongest signal is higher.
However, the less influential variables (but still important for some sub-groups of samples)
could be masked by the strongest ones.

Sample size —This parameter determines how many observations are drawn for the training of
each tree. Theoretically, bootstrapping provides for the100% of the observations sampled with
replacement. However, decreasing the sample size leads to more diverse and thus more de-
correlated trees (i.e. higher difference in OOB samples in each tree), which nevertheless could
cause a decrease in the accuracy of the single trees since fewer observations are used for
training.

Node size — It controls tree complexity specifying the minimum number of observations in a
terminal node (i.e. increasing node size means a decreasing tree depth and complexity). In

addition, along with mtry, it is the parameter with the highest control on runtime.
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» ntree — The number of trees in the forest, although not technically a hyperparameter, controls
error rate (i.e. OOB error) and variable importance estimate. Even if with a consistent impact
on runtime, more trees are always better (Probst and Boulesteix, 2017).
The selection of the optimal hyperparameters could be performed both by k-fold cross validation
(Seibold et al., 2018) and by the OOB error minimization (Probst et al., 2019). Hyper-tuning strategies
are different, from the simple grid or random search, in which all possible combinations are respectively
tested from a given discrete parameter space or are randomly selected from an hyperparameter space to
more sophisticated techniques as sequential model-based optimization (Hutter et al., 2011), which relies

the future hyperparameter set to be tested on the results of the previously evaluated ones.

Random Forest technique has been widely used in many applications, including landslide susceptibility
(Brenning 2005; Catani et al., 2013; Paudel and Oguchi 2014; Segoni et al., 2015, 2020; Youssef et al.,
2016; Lagomarsino et al., 2017). Also, it often showed better quantitative performances when compared
with other more traditional methodologies such as logistic regression (e,g,, Trigila et al. 2013; Goetz et
al., 2015), as machine learning algorithms are specifically developed to predict with high accuracy
complex interactions (Elith et al., 2006). However, RF, as the majority of machine learning algorithms,
is considered as a black-box method, thus the interpretation of the model behaviour is more complex
(Elith and Leathwick, 2009). More traditional methods, such as logistic regression and Generalized
Additive models, provide more easily interpretable results, especially in presence of physically
motivated predictors, representing processes directly associated to landslides (Goetz et al., 2011, 2015;
Camera et al., 2021). Moreover, machine learning derived susceptibility maps could result more likely
affected by spatial artefacts and pixelation, affecting in a negative way the clear definition of the most
hazardous zone and the potential user perception of the method (Brenning, 2005, Brenning, 2012b,

Goetz et al., 2015).

In this framework, a possible way to overcome the complexity of RF, making this technique more
suitable for interpretation and for the understanding of predictors behaviour, consists in the use of the
SHapely Additive exPlanation (SHAP) framework introduced by Lundberg and Lee (2017). The SHAP
are based on Shapley values, initially proposed by Shapley (1953), a game theory concept: if the
prediction is considered as the game “payout”, and the feature (i.e., model predictor) values of the data
sample is considered as a “player”, Shapley values explain how to fairly distribute the “payout” among
the N features. In other words, the Shapley value is the expected average marginal contribution of adding
(or removing) a player i to the game; “average” is referred to the fact that the marginal value is averaged

considering the contribution of the addition (or exclusion) of the player i to all the possible combinations

42



Chapter 2 — Fundamentals of geospatial modelling and analysis

(or subsets) of the N-i remaining players in the game. A Shapley value could increase (positive effect)
or decrease (negative effect) the prediction of each data sample, contributing to the deviation from a
baseline (i.e., the average of all predictions or the average model output value over the training dataset).
These forces balance each other, resulting in the final prediction of an instance (i.e., a data sample) (Du

M. et al., 2019; Molnar, 2019).

Shapely values are exploited in the SHAP framework to calculate feature importance and are computed
by sequentially introducing each feature (i.e., predictor) into a conditional expectation function fx(S) of
the model’s output, attributing the change in expectation to the feature introduced, then averaging the
process over all possible feature orderings so that the features are fairly compared. This is crucial to
maintain consistency, since the order in which a model sees features can affect its predictions (Lundberg
et al.,2020). Two main features make SHAP values particularly suitable for RF models interpretation
(and in general machine learning models interpretation): (i) global interpretations are consistent with the
local explanations, since the Shapley values are the "atomic unit" of the global interpretations. In other
words, SHAP values allow both analysing each predictor variable effect, magnitude and direction on
model outputs at a global level and the specific effect of each predictor on each sample at the local level
(e.g., landslide and non-landslide points). (ii) they satisfy the additive property of game theory, which
guarantees that the average of the Shapley values of each feature (predictor) extracted from the

individual trees corresponds to the Shapely value of the feature in the forest (Molnar, 2019).

SHAP values implementation with tree-based machine learning techniques (e.g., Random Forest and
XGBoost) have recently gained popularity in different fields, such as medicine (Lundberg et al., 2020;
Li et al., 2020), finance (Mokhtari et al., 2019), engineering (Mangalathu et al., 2020) and even in the
field of geosciences (Lubo-Robles et al., 2020; Voltolina, 2021). However, until now, the usage of the
SHAP framework is very rare in the landslide susceptibility field, with a unique recent work by Can et

al. (2021) found in the literature.

2.3.6. Validation techniques and uncertainties evaluation

Susceptibility model performance is evaluated by means of different indices and metrics (Guzzetti et al.,
2006; Frattini et al., 2010; Rossi et al.,2010). The entire process of performance evaluation relies on the
preliminary individuation of a training set (i.e., a set of landslides employed to construct the
susceptibility model) and a test set (i.e., a set of landslides used to verify independently the model)
(Guzzetti et al., 2006). This leads to the necessity of a preliminary distinction between model fitting (i.e.,

success rate) and model prediction (i.e., prediction rate) performance (Reichenbach et al., 2018). The
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former refers to the ability of the model to match the distribution of landslides used to train the model
and to calibrate the functional relationships with the geo-environmental predictors; the latter refers to
the ability of the model to predict a set of landslides that are independent and were not used to construct
the model (i.e., a test set). It is important to highlight that any statistical classification provides better
results on the training set and performs less efficiently when applied to the validation set (Michie et al.,

1994; Guzzetti et al., 2006).

The identification of these two distinct sets is typically carried out through random, spatial and temporal
selection strategies. Some researchers focused on the influence of different training-test sets selections
on model performance both through random (e.g., Sameen et al., 2020; Kalantar et al., 2018) and spatial
guided selection (e.g., Erener et al., 2020) strategies. The temporal selection strategy specifically
requires either an event-based (e.g., Knevels et al., 2020) or a multitemporal inventory (e.g., Samia et
al., 2020; Lombardo et al., 2020). The most used ratios to split the available sample into training and
test subsets are 70/30 and 80/20 (Reichenbach et al., 2018; Nguyen et al., 2021). A 90/10 ratio may also
be used and proved to be reasonable especially in very complex modelling frameworks (e.g., Lombardo
et al., 2020). Frequently, single hold-out methods are used to split the data in a training and test sample.
This procedure however leads to a single estimate of the model performance, without providing a
measure of the metric precision; the performance indeed depends on the sample (randomly, spatially or
temporally selected) and on the peculiar characteristics of the test set (Petschko et al., 2014; Sameen et
al., 2020; Kalantar et al., 2018; Erener et al., 2020). This issue could be addressed by using repeated k-
fold cross-validations (Petschko et al., 2014; Goetz et al., 2015; Steger et al., 2016a,b; 2017; 2021;
Camera et al., 2021, Lombardo et al., 2020). In this framework, different subsets (i.e., folds) are used
either as the train and the test set, thus using the entire dataset both for evaluating the fitting and the
prediction performance of the model and reducing sampling variability (Brenning 2012a,b; Petschko et
al., 2014). Thus, instead of having just one performance metric for the training and for the test set, a
range of independent performance estimators would be obtained (in a quantity equal to the number of
selected folds times the number of repetitions). Moreover, this procedure may be applied both with a
random subsampling of folds and through a spatial subsampling (i.e., spatial cross-validation based on
k-means clustering of point coordinates) (Rufl and Brenning, 2010). A leave-one-out cross validation
has shown to be more appropriate when dealing with the temporal selections of folds, in this case

representing particular time intervals (Lombardo et al., 2020).
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The most frequently adopted metrics to evaluate model performance are (Chung and Fabbri, 2003;
Remondo et al., 2003; Melchiorre et al., 2011; Frattini et al., 2010; Corominas et al., 2014; Reichenbach
et al., 2018, Triglia et al., 2015):

» The Success and Prediction rate curves, calculated on the training and test subsets,
respectively. They display in descending order the susceptibility level on the x-axis and the
cumulative percent of landslide occurrence on the y-axis.

» Contingency tables or “Confusion matrix” (Jollifee and Stephenson, 2003), displaying the
amount of True Positives (TP), i.e. the match between observed landslides and predicted
unstable terrain units, True Negatives (TN) i.e., the match between observed non-landslides
and predicted stable terrain units, False Positives (FP), i.e., the mismatch between not-
observed landslides and predicted stable terrain units and False Negatives (FN), i.e., the
mismatch between observed landslides and predicted stable terrain units. Triglia et al. (2015)
argued that different mismatches may cause different issues: FP may lead to a loss of
economic value of some areas, while FN may determine a not socially acceptable cost in case
of casualties and damage to exposed elements.

» the ROC curve (Receiver Operating Characteristics Curve, Green and Swets, 1966;) plot, for
different susceptibility threshold values (between 0 and 1, and usually set to 0.5) the TP rate
(i.e., TP/TP+FN and also called Sensitivity) and the FP rate (i.e., FP/FP+TN and also
indicated as 1-Specificity).

» The Area Under the ROC Curve (AUC or AUROC), which varies from 0.5, indicating a pure
chance agreement between predictions and observations to 1, indicating a perfect model

capability in discriminating landslides.

To recall the previous Sections, the performance metrics are frequently used to evaluate different
classification algorithms (e.g., Goetz et al. 2015) and ensembles (e.g., Di Napoli et al., 2020), to optimize
predictors selection (Conoscenti et al. 2016; Amato et al., 2020; Camera et al., 2021), to evaluate the
spatial transferability of modelling results (Petschko et al. 2014; Lombardo et al. 2014), to quantify the
influence of sample sizes (Petschko et al. 2014; Hussin et al. 2016) and the effect of sampling strategies
(Petschko et al.,2013, 2016; Conoscenti et al. 2016; Hussin et al. 2016; Otzurk et al., 2020) and to
investigate discrepancies between validation results and geomorphological plausibility of the
susceptibility maps (Steger et al., 2016b). Regarding the plausibility of the susceptibility zonation, it is
of vital importance; even statistically high performing models may suffer from geomorphological errors,

which, in a risk management perspective, are often more severe than a model with a lower quantitative
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performance but a more physically reliable outputs (Carrara et al., 1991; Reichenbach et al., 2018). Also,
it should be remembered that models with very similar performance levels may produce very different

susceptibility maps (Triglia et al., 2013; Sterlacchini et al., 2011; Goetz et al., 2015).

Uncertainties intrinsically characterize every modelling effort to reproduce a natural system, a natural
process or a natural property, including landslide susceptibility. Uncertainties may be distinguished in
epistemic and aleatory (Oberkampf et al., 2004; Roy and Oberkampf, 2011). Epistemic uncertainty may
be referred as the imperfect understanding of the studied phenomenon and could be reduced by
improving the knowledge of the process and the governing parameters (Ardizzone et al., 2002; Petschko
etal., 2014). Aleatory uncertainty is unavoidable as it is linked with the inherent variability of the natural
systems and its randomness (Rougier, 2013). The evaluation and implementation of the epistemic
uncertainties in landslide modelling and their quantification gained attention only in recent years
(Reichenbach et al., 2018), but a standardize procedure is still missing. A benchmark work on this topic
was carried out by Petschko et al. (2014). Authors discussed the different sources of epistemic
uncertainty in landslide susceptibility modelling and recognized that uncertainty may arise during
different phases of the modelling process: uncertainty related to the input data, uncertainty related to the

model form and uncertainty on model predictions.

The first uncertainty source is related to input data, both from the inventory and from the geo-
environmental predictors. The estimation of landslide inventory completeness and the effects of
positional accuracy is a topic addressed by several authors (Zezere et al., 2009; Petschko et al., 2013,
2016; Steger et al., 2017; Conoscenti et al. 2016; Hussin et al. 2016; Otzurk et al., 2020). Geo-
environmental predictors related uncertainty is conversely analysed in terms of the effects of DEM
resolution (e.g., Chen Z. et al., 2020; Rabby et al., 2020a) or of elevation synthetically generated errors
(e.g., Murillo and Hunter, 1997; Qin et al., 2013). More recently, Huang et al. (2021) investigated the
influence of selecting the attribute interval numbers (AINs) when reclassifying continuous predictors in

categorical variables (a step sometimes required by some modelling algorithms).

The second source of uncertainties lean on the model itself and may be addressed by different indices
and validation procedures. For instance, preferring a cross-validation instead of an holdout validation
allows to obtain the precision of the performance (Brenning 2012a,b); opting for a spatial cross-
validation provide for spatial transferability measures of the model on surrounding areas, leading to

physically sounder results (Petschko et al., 2014); implementing in the cross-validation phase the
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calculation of indices such as variable selection frequency (Goetz et al., 2011) and thematic consistency

(Petschko et al., 2014) allows to verify the robustness of the modelled functional relationships.

Finally, prediction uncertainty derives from the fact that the individual probability values obtained as
output are, in reality, estimated conditional mean values of the predicted probability (Hosmer and
Lemeshow, 2000). Indeed, each susceptibility value carries with it a prediction uncertainty (i.e., a
probability range), which may be more or less wide. The analysis of this standard error was addressed
by several researchers, essentially working with Logistic Regression and GAMs (e.g., Guzzetti et al.,
2006; Rossi et al., 2010; Petschko et al., 2014). However, with the establishment of more complex
modelling algorithms belonging to the Machine Learning category, this statistical output (i.e., the
probability range) may be more difficult to obtain. To encompass this, Ensemble Modelling is becoming
popularly employed in classification problems and exploited to reduce uncertainty by combining
predictions yielded by multiple algorithms (e.g., Umar et al. 2014; Youssef et al. 2015; Pham et al. 2017;
Kim et al. 2018; Bueechi et al. 2019). More specifically, uncertainty is often assessed through the
calculation of the Coefficient of Variation (CV), which is the standard deviation of probabilities obtained
for each pixel, due to the agreement (or disagreement) level in predicting susceptibility amongst the

models used to produce the Ensemble (Kim et al, 2018; Di Napoli et al.,2020).
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Chapter 3

Valchiavenna Case Study

3.1. Research question and specific objectives

In geologically complex, large alpine areas, such as Valchiavenna (SO, Central Italian Alps), the
challenge is to identify differences in failure probability amongst adjacent cliffs, and to understand why
different portions of the same rock mass behave differently (Matasci et al., 2018). Where the climatic
and topographic contexts are similar, variability in rockfall activity should be investigated in terms of
geomechanical characteristics, stress state, and variations in hydrogeologic conditions of the rock walls
(Coe and Harp, 2007).

Regional-scale susceptibility approaches that only include topographic predictors may suffer from a too
strong generalization of the processes, as these phenomena reflect a complex interplay of numerous
processes acting at different spatial-temporal scales (Messenzehl et al., 2017). Nonetheless, including
other types of predictors, relevant to the landslide type and volume, is challenging. Geo-structural and
geomechanical properties are difficult to interpolate (Reichenbach et al., 2018), primarily due to the rare
availability and suitable coverage of these data over large areas. When available, these types of datasets
are not suitable for interpolation purposes, because they are prepared in relation to local problems or
clustered close to roads and infrastructures, thus not representative of the properties’ variability.
Therefore, strategies for the design of optimal sampling schemes (i.e., efficient and effective in terms of
time, budget, and quantity/quality of sampled points) to update or even create geological-environmental
datasets become necessary. Several of such options are available in the digital soil mapping literature
(see Brus, 2019 for a comprehensive review) and some of them are presented in Section 2.1.

Rock mass fracturing degree, weathering and hydrogeological properties are considered fundamental
parameters describing rock-mass mechanical conditions and quality, and therefore included in the most
widely used Rock Mass Classification systems (e.g., Rock mass Rating-RMR by Bieniawski, 1973; Q-
System by Barton et al., 1974). The presence of discontinuities of different origin in rock masses creates
an anisotropic strength dramatically affecting rock slope stability (Coe and Harp, 2007), and
deformability is more strongly influenced by joints than by intact-rock properties (Jaboyedoff et al.,
2004). Bedrock in-situ stresses induced by the complex interplay between exhumation, ongoing tectonic
processes, glacial unloading and micro-crack nucleation, play a key role in shaping the morphology of

Alpine valleys, driving the fracturing pattern of rock masses (Leith, 2012). Owing to these complex
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interacting mechanisms, the role of fracturing grade, at least when working at the rockfall scale, should
not be reduced to the traditionally used distance-from-fault predictor, being actually the spatial variation
of the geometrical characteristics of jointing the key issue for rockfall distribution at the regional scale
(Wang et al., 2021).

Weathering is another factor affecting the instability of rock slopes and rock mass quality (Eberhardt et
al., 2005; Ceryan et al., 2008; Zimmer et al., 2012; Miscevi¢ and Vlastelica, 2014; Krautblatter and
Moore, 2014). The degree of weathering is linked to slope strength and acts as a quasi-static preparatory
factor for instability, whereas weathering rate relates to stresses acting on the slope. More complex, non-
linear, interdependent relationships between weathering and slope instability could also originate within
the rock mass system (Viles et al., 2013; Krautblatter and Moore, 2014).

In crystalline rocks, where intact rock permeability is negligible, the fracture system dominates fluid
flow and the permeability of the rock mass system (Baghbanan and Jing, 2007). Rock mass permeability
influences slope stability in a complex dual relationship: time-dependent crack damage and fracture
growth enhance rock mass permeability (Riva et al., 2017; Gramiger et al., 2017), which in turn controls
infiltration, discharge, and pore pressure changes. Due to the difficulties in quantifying rock mass
hydrogeological conditions objectively, they are usually included in a qualitative way in most of the rock
mass classification systems, especially when applied to slope stability problems (Pantelidis, 2009).
Focusing on the acquisition of good quality and relevant geo-environmental predictors for landslide
susceptibility modelling, rather than experimenting with new modelling techniques, is a challenge that
needs to be addressed (Reichenbach et al., 2018). Embracing this suggestion, the overarching goal
underlying the Valchiavenna Case Study was to test the influence of some geomechanical properties on
rockfall susceptibility in an Alpine environment. Specific objectives, summarized in Figure 3.1, were:

(1) the update and review of an available geomechanical dataset for Valchiavenna through
the optimal selection of additional sampling points and the execution of the
geomechanical surveys;

(11) the calculation of three geomechanical properties, derived from the post-processing of
geomechanical surveys - namely Joint Volumetric Count (Jv), rock-mass weathering
index (W1) and rock-mass equivalent permeability (Keq), - and their regionalization over
the study area, comparing different regionalization techniques and domains;

(iii))  the implementation of the obtained regionalized geomechanical properties as predictors
in a rockfall susceptibility model, performed both using Generalized Additive Models
(GAM) and Random Forest (RF);
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(iv)  the integration of the GAM and RF resulting maps, with the aim of producing a
quantifiable and spatially distributed uncertainty measure of rockfall susceptibility;

(v) the integration of the rockfall susceptibility maps with satellite-derived ground
deformations, to produce easily readable operational tools, useful for environmental and
risk management planning.

Moreover, two threads guided the entire procedure: (i) the recognition of the uncertainties arising from
each step of the susceptibility model building, (ii) the evaluation of the geomorphogical-geological
plausibility of the outputs. Uncertainties may arise from the rockfall inventory (Zezere et al., 2009;
Petschko et al., 2013, 2016; Steger et al., 2017; Conoscenti et al. 2016; Hussin et al. 2016; Otzurk et al.,
2020). Uncertainties are also linked to the inherent flexibility of the modelling algorithm in explaining
predictors’ behaviour (Umar et al. 2014; Youssef et al. 2015; Pham et al. 2017; Kim et al. 2018; Bueechi
et al. 2019). Moreover, uncertainties quantification may be exploited to provide products necessary for
environmental planning and risk management (Petschko et al., 2014; Ciampalini et al., 2016; Di Napoli
et al., 2020). Plausibility of the outputs should be taken into account during the whole process, from the

geomechanical predictors regionalization to their behaviour in the susceptibility model, as well as the
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Figure 3.1 Workflow representing the main phases of the project.
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interpretability of the output maps (Brenning, 2005, 2012, Goetz et al., 2011, 2015; Steger et al., 2016b,
2021; Camera et al.,2021).
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3.2. Study area

Valchiavenna (northern Italy, Province of Sondrio) is a structural-glacial valley of about 275 km?,
located in the Central Alps (Figure 3.2a). It is characterized by the convergence of two orthogonal
tributary valleys in correspondence of the town of Chiavenna: San Giacomo Valley (N-S), and Bregaglia
Valley (E-W), both connecting Italy to Switzerland. These two valleys differ in terms of geo-structural
setting and slope morphology (Figure 3.2b and Figure 3.2c¢).

The San Giacomo Valley is predominantly characterized by the sub-horizontal contact between the

tabular gneissic bodies of the Tambo and Suretta Pennidic nappes. Both nappes are characterized by a

Spluga Pass (o A i?/ 4
_ S 2 o Adula V . & o/ -
,- : z ' g o g \ L"ﬁ \‘ as"?f’ ; .
S e 4hy a5 | Avers
Sl{rutm V
-

g + + -~ ™
%  Gruf , ‘Beirgéll i "
X 7

Switzerand

]

+ A o

L
Orobic Alps b) ){ Qg

Lineaments

A— Thrust

— Regional Faults
— Secondary Faults
— Tectonic Fractures

1| Suretta Nappe
—

Al Tambo Nappe
4% mm Basement
Spluga Syncline
‘&| MW Truzzo Varisic Granitoid
1 Adula

” km 7 W él il 407 '
— o a2l () NN G )

Figure 3.2 . a) Location of the study area (Lombardy region, Italy); b) geo-structural framework of the study area in the
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gently NE-dipping shistosity and by similar polycyclic and poly-metamorphic paragneiss lithologies,
intercalated with orthogneiss and ultramafic layers (Montrasio & Sciesa, 1988; Nussbaum et al., 1998).
The basement of Suretta Nappe could be further subdivided into two main units: the heterogeneous
polymetamorphic rock assemblage called Stella-Timun Complex, outcropping in the Southern part of
the Valley and the Permian igneous body of the Porphyric Roffna Complex (Scheiber et al., 2012). The
crystalline basements of the two nappes are separated by the Spluga Syncline Permo-Mesozoic
metasedimentary cover, showing the typical facies of the Brianconnais domain (Baudin et al., 1995)
with metapelites, carbonates and quartzites. These lithologies outcrop more frequently in the northern
part of the San Giacomo Valley, resulting in a wide, open morphology of the valley, with large flat
surfaces at mid-high elevations (1500-2000 m a.s.l.). Conversely, the southern part of the San Giacomo
Valley is shaped by the presence of the Varisican Truzzo Metagranite, intruded into the Tambo Nappe,
resulting in a narrow valley with steep slopes (Tantardini et al., 2013). The Alpine metamorphic grade
increases from the top of the Suretta nappe to the bottom of the Tambo nappe and from the North to the
South of nappes from greenshist facies to amphibolite facies (Baudin & Marquer, 1993). The structural
contact between the Tambo and Suretta nappes extends through the northern slope of the Bregaglia
Valley, where it is clearly visible at an elevation of around 2000 m a.s.l. The southern slope, in contrast,
is characterized by the presence of the Penninic granulite-migmatite Gruf Complex in structural contact
with the ultra-mafic Chiavenna Unit, marked by the sub-vertical mylonitic zone called Gruf Line (Galli
etal., 2013). In its south-eastern sector, the Gruf Complex is intruded in a compressional tectonic regime
(Berger et al., 1996) by the Periadriatic Bergell Pluton (Tibaldi and Pasquare, 2013). The Chiavenna
Unit is interpreted as the result of the youngest basic oceanic magmatism in the Alps (Liati et al., 2003)
originating from stripped subcontinental mantle tectonically exposed during progressive oceanization
(Huber and Marquer, 1998). This Unit consists mainly of metaperidotites, amphibolites, metagabbros,
and rare carbonate rocks and is tectonically located above the Gruf Complex and below the Tambo

Nappe (Liati et al., 2003).

The structural framework of the entire area is influenced by some main regional tectonic alignments: a
WNW-ESE system related to the Insurbric Line, a NW-SE system linked to the Forcola Fault, and a NE-
SW system associated with the Engadine Line (Ferrari et al., 2014). On the southern slope of the
Bregaglia Valley, the Gruf Line, interpreted as the brittle-ductile elongation of the Engadine Line (Wenk,
1984), dominates the structural setting. Moreover, a bundle of tensional joint sets, parallel to the valley
axes, are locally observable as a result of deglaciation related stress release (Ferrari et al., 2014),
superimposed on pre-existing weakness and acting in association with local stress state. In San Giacomo

Valley, the structural setting of the two Pennidic nappes is the result of five recognizable superimposed
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deformation phases (Wiederkehr et al., 2008; Scheiber, 2012). More specifically the main regional
shistosity marking the contact between the Suretta and Tambo Nappes is ascribable to the second
deformation phase, which induced the most penetrative ductile structures. These structures were cut by
subsequent ductile detachment zones and by late and post-alpine brittle-ductile deformation processes.
More recently, two late deformation phases overprinted and steepened the previous structures, producing
an extensive fracturing pattern expressed by normal faults (Ferrari et al., 2014). The structural setting of
Bregaglia Valley is dominated by the three main ductile shear zones of the Gruf Complex, carrying
identical mineral association suggesting a contemporaneous development (Galli et al., 2013): (1) a first
group striking ENE-WSW and steeply dipping towards NNW, also marking both the main foliation and
the structural contact between the Gruf Complex and the Chiavenna Unit; (ii) a second group steeply
North dipping with a dextral normal sense of shear; (iii) a third group of NW-SE striking shear zones

steeply dipping towards NE with a dextral normal sense of shear.

The interplay between the above-mentioned complex and polycyclic tectonic processes and glacial
cyclical de-buttressing (Gramiger et al., 2017), following the retreat of the Engadine-Bregaglia and San
Giacomo glaciers (Tantardini et al., 2013), is crucial in defining the present-day slope dynamics in the
study area (Figure 3.3). Both the San Giacomo and the Bregaglia Valley are characterized by several
DSGSD (Deep Seated Gravitational Slope Deformations) with different “maturity” and morpho-
structural evidence (Tantardini, 2016). Associated to these wider and slower processes, secondary more
rapid phenomena such as rock avalanches, rockslides and rockfalls could occur. In the study area, the
most ancient known events of such type are the Cimaganda rock avalanche in the San Giacomo Valley,
which probably occurred in the IX century (Mazzoccola, 1993), and the 1618 Piuro landslide on the
southern slope of Bregaglia Valley (Schuster and Highland, 2007). These big events aside, the
community living in Valchiavenna frequently faces several smaller instabilities and their associated
damages and risks. The most recent events are the Cimaganda reactivation in 2012 (Morcioni et al.,
2020), the Cengalo rockslide-rockfall in 2017 (Mergili et al., 2020) and the Gallivaggio rockfall in 2018
(Carla et al., 2019).
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Figure 3.3 Geomorphological framework of the study area: principal geomorpho-structures, DSGSDs and reconstructed
trimline, all based on field-survey evidence (data from the Valchiavenna Project, Tantardini et al., 2013 ad Tantardini,
2016).
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3.3. Data

3.3.1. Land surface data
In this study the Digital Terrain Model (DTM) made available by Regione Lombardia
(http://www.geoportale.regione.lombardia.it/) was used. It has a 5 m x 5 m horizontal resolution and is

the result of several airborne LiDAR survey campaigns (2008-2009; 2010-2011; 2013-2015).

The geological map for the study area was available at a 1:50,000 scale (Crop Project, Montrasio and
Sciesa, 1988), and reporting the main geo-structural domains together with a more detailed description

based on lithologic and mineralogic characteristics.

SqueeSAR™ data (TRE Altamira) were available for the study area and consist of permanent (PS) and
distributed (DS) scatterers, reporting line-of-sight (LOS) displacement rate. Data are available in both
ascending (track=15, mean LOS=40.64°) and descending (track=66, mean LOS=36.94° and track=168,
mean LOS=42.4°) geometries. In detail, for this study data derived from Sentinel 1A/B radar from
October 2014 to February 2021 were made available by Regione Lombardia within the framework of
the ongoing AMALPI Interreg Project (https://progetti.interreg-

italiasvizzera.eu/it/b/78/alpiinmovimentomovimentonellealpipiuro).

3.3.2. Rockfall data
Rockfall data were the result of the integration of two different rockfall inventories: (i) the freely

available IFFI dataset (Inventario Fenomeni Franosi in Italia, https://www.progettoiffi.isprambiente.it/)

where rockfalls are partly collected as polygons reporting both the source and the deposits area and as
points labelled as “historical events”. For the polygon type, the rockfall source points were extracted
from the publicly available dataset of the project ROCKtheALPS 2019 (alpine-
space.eu/projects/rockthealps/); (ii) a geomorphological dataset (from here on called UNIMI inventory),
comprising several additional rockfall scarps and deposits and covering also remote areas. The latter was
extracted from a detailed geomorphological-structural map of the area, derived from field surveys at a
1:10,000 scale, integrated with remote sensing, carried out from 2002 to 2020 in the framework of the
Valchiavenna Project (Sfondrini and Pasquare, 2011), several MSc theses, the Ph.D. studies of
Tantardini (2016), and within the ongoing A.M.AL.PI.18 Interreg Project.

3.3.3. Geomechanical data
A dataset of 128 geomechanical surveys was available for the study area (database of the geoengineering

research group of the Dept. of Earth Sciences, Universita degli Studi di Milano). Each record was
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acquired according to the International Society of Rock Mechanics (ISRM) Suggested Methods (ISRM,
1978), including both primary variables (e.g., Joint Roughness Coefficient JRC, Schmidt Hammer
rebounds, joint spacing, orientation, aperture, persistence) and derived rock mass quality indices (e.g.,
RMR, GSI). This dataset was the result of several detailed geomechanical campaigns carried out by
different surveyors (mainly MSc and PhD students) since 2000 and with different underlying objectives.
For this reason, although quite rich, the dataset came with different levels of information and

completeness and is clustered along the main roads (i.e., accessible areas).
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3.4. Methods

3.4.1. Geomechanical properties relevance for rockfalls and their calculation

Rock mass systems are defined as DIANE i.e., discontinuous, inhomogeneous, anisotropic and
nonlinearly elastic materials (Hudson and Harrison,1997; Krautblatter and Moore 2014), recording a
complex suite of thermal, hydrogeological, mechanical and chemical processes, which have been
interacting for millions of years (Jaboyedoff et al., 2011; Krautblatter and moore 2014). The great
variability in the spatial distribution of rock slope instabilities reflects rock mass local conditions. These
can vary in terms of strength and deformability of the intact rock, as well as in terms of fracture network
physical-mechanical properties (Loye et al., 2012; McColl, 2012). Indeed, rock mass conditions and
resulting mechanical behaviour derive from the interaction of topographic, tectonic, glacial loading-
unloading and exhumation generated stresses, acting at several spatial and temporal scales and
preferential directions (Ballantyne, 2002; Jaboyedoff et al., 2011; McColl, 2012; Loye et al., 2012;
Ballantyne and Stone, 2013; Ambrosi and Crosta, 2006, 2011; Leith et al, 2014). When the microclimate
is similar, and in absence of a clear external trigger, the stress distribution within the rock mass and the
consequent progressive damaging processes would define its resistance (Matasci et al., 2011; McColl,
2012). The stress history materializes in the rock mass geomechanical properties, primarily controlling
rock slope stability and long-term equilibrium (McColl, 2012). This explains why geomechanical
properties are more relevant than more readily available terrain attributes (e.g., lithology, aspect) for the

understating and modelling of rock slope degrading processes (Kratutblatter and Moore 2014).

Fracture density, water circulation and weathering conditions are widely recognized as the key crucial
geomechanical properties for rock slope instability (Moore et al., 2009; Ballantyne, 2002; Matasci et al.,
2011; Jaboyedoff et al., 2011; McColl, 2012; Wei Wei et al., 2014; Krautblatter and Moore, 2014; Scott
and Wohl, 2019; Hartmayer, 2020). These properties develop over time in a differential way,
individuating weakness zones (i.e., “critical paths”, Einstein, 1983) that might be profoundly different
from the surrounding rock masses (Hall et al., 2012). Geomechanical properties are the expression of
processes that coexist in the rock mass system, and sometimes generate complex and generally positive
feedbacks (i.e., with a mutual reinforcing mechanism - Viles, 2013; Krautblatter and Moore, 2014).
Fracture density and orientation control valley morphology and rock mass wasting processes (Loye et
al., 2012) and are considered not only the result of tectonic and exhumation stresses, but also of
paraglacial adjustments and consequent stress release (Augustinus 1992; 1995; Ballantyne, 2002). In
general, slopes with closely spaced fractures are more susceptible to rock slope instability (Scott and

Wohl, 2019). Commonly, in literature, distance from fault is used as a proxy for instability processes
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and is consequently included as a predictor in landslide susceptibility models (Reichenbach et al., 2018).
In the case of rock mass instabilities, and particularly of rockfalls, for which the dependence from the
local fracture pattern is crucial, this approach is likely to fail as the joint sets related to tectonic stresses
are only one component of the rock mass system. Indeed, the presence of non-tectonic joints is equally
important. They are mainly extensional fractures usually sub-parallel to the valley (Nichols, 1980), thus
relevant for rock mass detachments. Their genesis is potentially triggered by cyclical phases of glacial
loading and unloading, assumed that sufficient horizontal stresses had been developing during
glaciations through erosion, tectonic and lock-in stresses, and were maintained during ice retreat
(McColl, 2012). Rock masses are exposed to the atmosphere and therefore are subject to the combination
of physical, chemical, hydrological and biological processes. These processes act non-linearly in time
and may be referred as “multistage weathering”, which lead to the degradation of the intact rock
constituting rock bridges (De Vilder et al., 2017). In detail, “multistage weathering” acts extending the
existing micro-defects, nucleating new fractures and decreasing existing fractures toughness, cohesion
and frictional resistance (Ballantyne, 2002; Viles, 2013; Krautblatter and Moore, 2014). Therefore, the
process triggers a feedback loop, since it provides additional surfaces and opening ways for weathering
processes (McColl, 2012; Scott and Wohl, 2019). Of particular relevance in terms of fracture
propagation is the weathering that takes place at the interface between a rock bridge and a discontinuity,
as it is the zone where the stress concentrates most (Collins and Stock, 2016; De Vilder et al., 2017).
Moreover, these weakening processes and stress redistributions may lead to variations in hydraulic
conductivity and drainage patterns (Crosta et al., 2013; Wei Wei et al., 2014). Specific reasons for failure
linked to water circulation could be excess pressures in joints leading to fractures propagation and
opening; water freezing and thus drainage inhibition (McColl, 2012); frost cracking and frost weathering
(Hales and Roering 2007; Matsuoka 2008); ice segregation-induced subcritical cracking (Draebing and
Krautblatter, 2019).

As the goal was to produce a statistically-based susceptibility model, it was necessary to disentangle
these complex interactions and feedbacks and synthetize them in measurable and self-standing variables.
Among the several rock mass and joint metrics measurable on an outcrop, given the rationale above, the
focus was on three main target properties: Joint Volumetric Count Jv (fractures/m?), Weathering index
Wi (-), and Equivalent Permeability Keq (m/s), all representative of rather shallow conditions of the rock
masses and in this study measured on outcrops from 10 to 150 m wide (median length of surveyed
rockfall scarps: 126 m). Joint Volumetric Count represents the volumetric fracturing degree of a rock
mass and was defined as the number of joints intersecting a volume of 1 m? and is obtainable from the

measured average spacing of each set of joints (Palmstrom, 1982). It is independent from the
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discontinuity type, being a proxy not only of the tectonic history but also of the other stress redistribution
processes acting on rock slopes at a local level, relevant for the spatial scale of the investigated
instability, and contributing to define the observable fracture pattern. Weathering index represents the
rock mass weathering conditions. It is calculated as the ratio between Schmidt Hammer rebounds on
natural and abraded joint surfaces, following the well-known relationship between rebounds and surface
age of exposure (e.g., Stahl et al., 2013; Stahl and Tye, 2020). Weathering may seem the less suitable
process to be represented by a static property; however, it was quantified that a substantial amount of
weathering of rock bridges can occur before rock block failure, evolving over periods long enough for
weathering to take place (De Vilder, 2017), thus making Wi representative at the temporal scale of the
susceptibility map. In addition, it is crucial to concentrate on the weathering predisposition of the parent
material, which is strictly connected to rock mineralogy and weak planes, given similar microclimate
and topography (Hall et al., 2012). The property Wi may be referred to this predisposition as it is

measured on the same material, both on the natural surface and eliminating the weathered layer.

Keq was derived from the permeability tensor K introduced by Kiraly (1969) and modified by Coli et
al. (2008):

N
74 g —_— —
:m2ﬁ63i [I—annl] Eq31
i=1

where g is gravity (9.81 m/s®), v is the kinematic viscosity of water (3.2e m%s), N is the total number
of discontinuity sets, f'is the average frequency of the i set of discontinuities (m™), e is the average
hydraulic aperture of the i’ set of discontinuities (m), I is the identity matrix and 7i|n;, n,, ns| is the
dimensionless unitary vector normal to the average plane of the discontinuity set. Hydraulic aperture
was defined by Barton (2004a,b), where the physical measured aperture E is corrected with JRC (Joint
Roughness Coefficient) to find the hydraulic aperture e as:

E2

€= JRCZS’

Eq.3.2

Specifically, once obtained the tensor K, the three components of the principal diagonal were used to

calculate Keq as (Guo et al., 2015):

Keq = 31[k11k22k33 Eq. 3.3

As Keq calculation is strongly based on joint apertures, it consequently represents the hydrogeological

behaviour of the rock mass at the outcrop scale.
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3.4.2. Expansion of the geomechanical dataset: field survey optimization and realization

As the spatial distribution of the pre-existing geomechanical surveys was not fully suitable for
regionalization (clustering along roads), the addition of sampling points through an optimization strategy
was necessary. The model-based Spatial Simulated Annealing - SSA (Van Groeningen, 1999) algorithm
was adopted, adapting the steps proposed by Brus (2019). SSA is an iterative random search procedure
(Brus, 2019) that optimizes a custom target function based on the pre-existing points (a comprehensive
description of the method is given in Section 2.1). Due to the previously mentioned dataset
heterogeneity, Jv was found to be the only target property collected at all survey points. For this reason,
a preliminary regionalization of this property by ordinary kriging — already used for Jv and other
geomechanical parameters in the upper part of San Giacomo Valley by Ferrari et al. (2012, 2014) — was
carried out. The associated prediction error variance was used as the target function to obtain 25 new
survey locations. Initial temperature 70 is one of the most sensitive parameters in SSA to avoid local
minima (Ameur, 2004). To find a suitable 70, the minimum temperature corresponding to the probability
of acceptance of the initial iteration equal to 1 and 0.95 (Nunes et al, 2006) was computed, varying

cooling rate (i.e., 0.5, 0.8 and 0.95) and comparing running time and final point locations.

Detailed geomechanical field surveys were performed at the identified rock masses (minor offsets from
the exact SSA points were due to logistic choices) and some pre-existing points were contextually
revisited to acquire the necessary missing properties. Due to the high mountain environment involved in
the field work, in three cases the exact selected locations were unreachable: in such situation more easily
reachable areas with similar characteristics in terms of geological unit and slope aspect were alternatively
selected. Moreover, the multivariate environmental similarity surface (MESS; Elith et al., 2010), based
on several environmental covariates (elevation, aspect, slope, longitude, latitude), was calculated both
before and after the field survey, using the R package dismo (Hijmans, 2013). The goal was to attest if,
beyond kriging variance minimization, the newly acquired information would improve the
representativeness of the geomechanical dataset in a complex mountain environment. Additional details

on MESS are given in Section 2.1.

3.4.3. Regionalization of geomechanical predictors

The regionalization of the geomechanical properties was necessary as spatially distributed predictors are
required for susceptibility modelling. First of all, the pairwise correlations (Pearson’s correlation
coefficients and p-values of t-tests) among geomechanical properties and with environmental variables
such as elevation, latitude, longitude, slope and aspect — expressed in terms of northness = cos(aspect)

and eastness = sin(aspect) — were calculated and analysed to find preliminary patterns in the dataset.
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Secondly, different deterministic (inverse distance weighting - IDW, thin plate spline - TPS),
geostatistical (ordinary kriging, kriging with external drift) and regression (geographically weighted
regression - GWR) regionalization techniques were evaluated. Details on the regionalization techniques
can be found in Section 2.2. Each technique was applied testing either several model parameters or
covariates combinations. The analyses were performed in the R environment (https:/www.r-
project.org/) by means of the libraries gstat (Pebesma, 2004), fields (Nychka et al., 2017) and spgwr
(Bivand and Yu, 2021). For IDW, different powers were tested (i.e. 1.5, 2, 2.5, 3, 3.5, 4,4.5, 5). For
geostatistical techniques, different variogram models were evaluated (e.g., exponential, circular, spheric,
gaussian). For TPS, either coordinates alone or in combination with altitude, slope or aspect were tested
as covariates. For GWR, all the possible model parameters (i.e., fixed or adaptive bandwidth, gaussian
or bisquare kernel and CV or AIC method) and covariates combinations (one to all covariates) were

tested.

Model performances were assessed through a leave-one-out cross-validation (LOO-CV), calculating
goodness-of-fit and error metrics (correlation coefficient r of modelled and observed values, and
NMRSE). For geostatistical techniques, starting from the selected variogram model on the entire dataset
(i.e., “general model”), range and sill were automatically fitted on each cross validation set and for this
reason they may slightly differ; to verify the consistency and the maximum variation from the general
model, histogram of sill and range coming from the LOO-CV were calculated. Finally, for each property,
the results coming from each technique were presented and compared. The maps considered as the most
reliable based on performance indices and spatial patterns, were selected as subsequent susceptibility

model geomechanical predictors in the next steps.

The regionalization was performed both on the whole study area (i.e., Global Domain) and by splitting
the domains in two ways (Figure 3.4). The first split follows the topographic subdivision of the San
Giacomo and Bregaglia Valleys. The second relies on geo-structural borders: the Truzzo Granite Unit
and the zone where, approximately, the main structural lineaments direction varied from E-W to N-S
were set as the limiting criteria between the two domains. The first domain (Domain 1) comprises the
North-Central part of San Giacomo Valley where the structural lineaments are mainly directed N-S,
whereas the second domain (Domain 2) comprises Bregaglia Valley and the Southern part of San
Giacomo Valley, which was characterized by mainly E-W structural lineaments and included the Truzzo
Granite Unit. The rationale behind this procedure was to find the optimal regionalization domain, as a

trade-off between technique performance, physical-geological plausibility of properties values
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Figure 3.4 The three different regionalization domains.

distribution and, in case of subdivided domains, continuity of the spatial distribution across borders (i.e.,

without evident gaps and spatial artefacts at the domains contacts).

The regionalization was performed in R, at a 50 m x 50 m horizontal resolution, and a bilinear
interpolation for resampling to DTM resolution to the final selected maps was applied. A minimum cut-
off to the selected predicted Keq map was then added. Values lower than the typical values of intact rock
permeability (according to the underlying lithology) were substituted with the intact rock values, i.e.,
the lowest possible value for the rock mass. The intact rock permeability values were derived from
literature (Brace,1980; Kovacs, 1981; Morrow et al., 1994; Evans et al., 1997; Selvadurai et al., 2005;
Sperl and Trckova, 2008; Milsch et al., 2011; Najser et al., 2011; Leclere et al., 2015; Sen et al., 2015;
Duan et al., 2017; Sarout et al., 2017). All the resulting maps were reclassified using cut-offs
corresponding to the recognizable flexes of the CDF (Cumulative Distribution Function) related curve
(Figure 3.5).
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Figure 3.5 Cumulative Distribution Function related curves (blue lines) calculated for Jv, Wi and Keq datasets with the
“ksdensity” function of Matlab®. The selected cut-offs (vertical black lines) were selected in correspondence of flexes of
the CDF curves.
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3.4.4. Rockfall inventory and geo-environmental predictors for susceptibility modelling

To uniquely identify each rockfall, despite the different sources, each event was summarized in a point
feature. For the IFFI polygon-type dataset (49 events), the source point was extracted from the
ROCKtheALPS dataset
(https://www.arcgis.com/home/item.html?id=5304829878d04adeb4f1d1fa6fe707dc&view=list&sortO

rder=desc&sortField=defaultFSOrder) and it corresponded to the highest point of the available source

area polygon. For the IFFI point-type dataset (59 events), each point represented the georeferenced
highest point of the crown (https://www.progettoiffi.isprambiente.it/en/methodology/). For the UNIMI

dataset, 137 out of the 185 available rockfall events were associated with a mapped scarp or crown in
the geomorphological map; in such cases the representative rockfall point was chosen as the bisector of
the scarp. When this feature was not available (the remaining 48 out of 185), the point was placed in
correspondence of the highest elevation of the mapped rockfall body (Figure 3.6). Following e.g.,
Rotigliano et al. 2011; Lombardo et al. 2014; Cama et al. 2015, who defined the landslide source as the
point detecting site conditions responsible of previous failure, it was assumed that the rockfall deposit
upper part is located at the base of the scarp originating it, or at least with similar characteristic to the
unstable rock mass. This choice may introduce a possible positional inaccuracy for the 16.5% of the
inventory. However, some authors, e.g., Petschko et al., (2013), representing presence either as a point
from the main scarp or as a point randomly selected in a landslide body polygon, observed only small
differences in the susceptibility outputs. The inventory can be classified as a geomorphological inventory

(Guzzetti et al., 2012) and does not include dates of occurrence.

The binary response variable for rockfall susceptibility modelling (i.e., rockfall presence/absence) was
obtained from the synthesis of these two rockfall inventory sources integrated with absence points. As
absence sampling is equally crucial (Bornaetxea et al., 2018; Knevels et al., 2020), absence locations
were randomly extracted from all “eligible” areas, obtained from a preliminary masking of urban areas,
glaciers, water bodies and quaternary deposits (i.e., not-modellable areas) and subsequently excluding
areas within an 80-m buffer from rockfall points and scarp lines. This buffer represents the average
radius of the rockfall scarps surveyed in the study area. A 1:1 ratio was adopted for the extraction of
absence points, following the guidelines of Hong et al. (2019), who found that this ratio is optimal when
the “eligible” area approaches the 99% of the modelling domain (in the present case study the percentage

was 92.3%).
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Figure 3.6 a) The integrated rockfall inventory; b) Rockfall points selected as the highest source area point for the IFFI
inventory; c) rockfall points selected as the main scarp bisector for the UNIMI inventory.

Three groups of predictors were considered: topographic, geological, and geomechanical predictors. The

topographic ones are the most commonly used predictors in landslide susceptibility studies (Van Westen,

2008; Reichenbach et al., 2018) as they are considered effective indicators of the slope’s climatic,

hydrological, and stress conditions. Elevation, slope, northness, eastness, profile curvature, plan

curvature, and SAGA Topographic Wetness Index (SWI) were derived from the available DTM using

the RSAGA package (Brenning et al., 2018). Geomechanical predictors were the previously regionalized

Jv, Wi and Keq properties. Given their role in expressing rock mass geomechanical behaviour in terms

of instability (see Section 3.4.1), it is expected that Jv and Wi would have a direct, and almost linear,
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relationship with rockfall occurrence (i.e., more fractured and weathered rock masses are more
susceptible to rockfalls). For what concerns Keq, its behaviour in the statistical model is expected to be
characterized by a higher ambiguity than the other two. Indeed, high permeability may lead either to a
more readily and quick dissipation of excess joint-water pressure or to high circulation of water in joints,
thus influencing available moisture and chemical-physical weathering. Conversely, low permeability
would mean both a more pronounced water run-off at the surface (i.e., lower infiltration) but also a rapid
increase of excess joint-water pressure, favouring damage and coalescence of micro-defects, especially
at the crack tips and at rock bridges surfaces. It is noteworthy to point out that these predictors represent
a source of uncertainty in the model, as they were derived from the regionalization of point data.
Nevertheless, the associated regionalization errors were quantified with the aim of communicating them

to potential users of the final product.

To consider the hydrogeological component on rock mass instability at different spatial scale, the
infiltration density predictor was introduced too. It was defined as the density of geomorphological-
structural elements prone to infiltration, such as regional lineaments, trenches and counterscarps, and
sinkholes. This information was derived from the detailed structural-geomorphological map (1:10000
scale) of the area and calculated on a 5m x 5m pixel basis to be consistent with the resolution of the other
predictors. This predictor may be interpreted as a proxy for the infiltration and draining behaviour of
slopes, linked to the broad environmental context in which rock cliffs are located. Indeed, lineaments
and morpho-structures can be interpreted as weaknesses where geomorphic and gravitational processes
are preferentially initiated and propagated (Selby, 1982; Cruden, 2003; Loye et al., 2012). Moreover,
areas characterized by channels and concentration of flow and infiltration may localize mass wasting
processes that, at the local scale, enhance joint weathering and water supply to the rock mass (Walter et
al., 2012; Wei Wei et al., 2014; Scott and Wohl, 2019). Topographic predictors and infiltration density

are shown in Figure 3.7.

Geology was introduced as a categorical predictor with five classes based on the geological map
available for the study area (Section 3.3.1). The distinction adopted followed a lithological criterion,
which is the most used in landslide susceptibility literature, as different lithologies have different ranges
of strength (Catani et al. 2005; Segoni et al. 2018; 2020). The lithologies recognized in the study area
include: (i) Paragneiss, (i1) Granites, (iii) Orthogneiss (iv), Shists and metasedimentary lithologies, (V)
Ultramafic rocks. The class adopted as the modelling reference class was the most abundant in the study
area, i.e., the paragneiss lithology. As pointed out by Segoni et al. (2020) the drawback in using this

distinction may be that lithological homogenous rock-masses could differ in terms of weathering and

67



Chapter 3 — Valchiavenna Case Study

structures. Therefore, they proposed to use multiple and independent classifications of the geological
component as models’ predictors (i.e., lithologic, chronologic, structural, paleogeographic, and genetic
units). In this study, since geomechanical properties, i.e., Jv, Wi and Keq, were introduced as
independent predictors to enhance the spatial differentiation of rock masses at the local scale, a single
lithological classification based on the protolith seemed appropriate as a descriptor of the intact rock (or

rock bridges) properties.
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Figure 3.7 Topographic predictors and infiltration density predictor.
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3.4.5. Rockfall susceptibility modelling with Generalized Additive Models

3.4.5.1 Model setup and performance assessment

Rockfall susceptibility was performed using Generalized Additive Models (GAMs), able to represent
non-linear predictor-response relationships while maintaining interpretability through their additive
structure (Goetz et al., 2011, 2015). Interpretability was necessary to assess the behaviour and

plausibility of geomechanical predictors. Analyses were performed in R using the mgcv package (Wood,

2017).

Three models were built using different groups of predictors: a topographic model (TOPO), a
topographic-geomechanical model (GM), and a topographic-geomechanical-geological model
(GM+GEOQ). To achieve a good trade-off between model size and fit, variable selection through
shrinkagewas carried out. Shrinkage allows penalizing out of the model predictors with low or no
influence. Topographic predictors that were removed from the TOPO model were not further considered
in the successive GM and GM+GEO models. The relationships between rockfall occurrence and
predictors were analysed through the associated smoothing functions by means of CSF (Component
Smoothing Function) plots and odds ratios for geology categories. Odds ratios represent the chance of
an outcome, given a certain class in comparison to a reference one. A class with an odds ratio<l
represents a lower chance of a modelled outcome (rockfalls) in comparison to the reference class, an

odds ratio>1 a higher chance, and an odds ratio around 1 means no relationship (Knevels et al., 2020).

The performance of the three models was assessed and compared through a spatial k-fold cross-
validation (sCV) and the estimation of the area under the receiver operating characteristic curve
(AUROC), a widely applied performance measure for landslide susceptibility models (Corominas et al.,
2014; Reichenbach et al., 2018). Spatial cross-validation is preferable when dealing with spatial data,
which are often subject to spatial autocorrelation (Brenning, 2005, 2012b). A spatial partitioning based
on k-means clustering of coordinates was applied to derive k=5 folds and, to obtain results that are
independent of a particular partitioning, the procedure was repeated r=100 times. Spatial CV was
implemented using the R package sperrorest (Brenning, 2012a). As a measure of spatial transferability,
the interquartile range (IQR) of the test-set AUROC values (Petschko et al., 2014) was analysed.
Furthermore, the predictors’ CSF from each cross-validation run were compared with the corresponding
CSF obtained on the entire dataset, to assess coherency and robustness of their behaviour. For the
GM+GEO model, the variability of geology odds ratios estimated in the different CV runs was assessed
too. To investigate the importance of predictors, the penalization frequency coming from the application

of the shrinkage option (i.e., percentage of CV runs in which the effective degrees of freedom, i.e., edf,
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much lower than 1, here we used a 0.7 threshold) and the mean decrease in deviance explained (mDD%),
calculated as in Knevels et al. (2020), were combined. Moreover, concurvity between the smoothers,
i.e., the generalization of multicollinearity to non-parametric functions was calculated; high concurvity

values may lead to poor and unstable parameter estimation (Amodio et al., 2014).

3.4.5.2 Susceptibility map and geomorphological plausibility

The three output maps were reclassified into five susceptibility classes (0.0-0.3 “very low”, 0.3-0.5
“low”, 0.5-0.7 “medium”, 0.7-0.9 “high”, 0.9-1.0 “very high”). Following previous studies (e.g.,
Sterlacchini et al., 2011; Goetz et al., 2015; Steger et al., 2016a), spatial patterns in susceptibility maps
in terms of geomorphological plausibility were critically analysed. Two variation maps were produced,
resulting from the difference between the TOPO and GM original susceptibility maps (i.e., before
reclassification) and between the GM+GEO and GM susceptibility maps, respectively. The variation
maps allowed the identification of areas where susceptibility values changed due to a modification in
the predictor set and, by qualitatively comparing them with the geomorphological and geo-structural

features of the area, whether they are physically plausible and coherent.

To explore the physical plausibility of the derived maps, a comparison with Sentinel-1 SAR data (PS/DS
mean annual velocities) was carried out. Although these types of data are mainly suitable for the
investigation of slow deformations, in particular deep-seated gravitational slope deformation (DSGSD;
Frattini et al., 2018), they could also be useful to study more rapid phenomena such as rockfalls. This is
feasible if the slow deformations are considered as proxies for various processes relevant for slope
stability (e.g., hydrogeological circulation, creep, neotectonics). In addition, active DSGSD are usually
linked to the nucleation of secondary, shallower instabilities (Crippa et al., 2020), and the presence of

DSGSD was even implemented as predictor for secondary landslides (Carrara et al., 1991).

3.4.5.3 Uncertainties related to the inventory

As the rockfall inventory integrated two different sources, it was possible to evaluate the effects of
potential biases in the official inventory. Indeed, the IFFI inventory (see Section 3.3.2) was compiled
starting from administration reports and multi-temporal aerial photographs, therefore it could be affected
by an underrepresentation of rockfalls in remote areas (Guzzetti et al., 1999; Steger et al., 2016a) and by
an obliteration of geomorphic features in forested areas (Steger et al., 2017). Model performance, the
behaviour of predictors, and predicted susceptibility patterns of the GM and GM+GEO models using

the IFFI inventory as the training set and the UNIMI inventory as an independent test set were calculated
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and analysed. The two IFFI-based models were cross validated as in Section 3.4.5.1 to assess model

performance as well.

3.4.6. Rockfall susceptibility modelling with Random Forest

3.4.6.1 Model setup and performance assessment

Random Forest (RF) is another frequently used algorithm for landslide susceptibility, resulting in very
high performing models (e.g., Brenning 2005; Catani et al., 2013; Paudel and Oguchi 2014; Segoni et
al., 2015, 2020; Youssef et al., 2016; Lagomarsino et al., 2017; Trigila et al. 2013) thanks to its ability
to manage complex interactions and collinearity issues. Moreover, it is a common practice to apply
several modelling algorithms to the same case study to compare results in terms of quantitative
performance (e.g., Pham et al., 2019,2020, Althuwaynee et al., 2014, Abedini, 2019, Chen W. et al.,
2019,2020; Pourghasemi and Rahmati, 2018), interpretability and map user perception (Goetz et al.,
2015), and geomorphological plausibility (Steger et al., 2016b). Also, the combination of models is
applied to reduce the uncertainty related to the predicted susceptibility by producing ensembles (e.g.,
Rossi et al., 2010; Di Napoli et al., 2020; Chen W. et al., 2018; Youssef et al., 2015; Choi et al., 2012;
Andan et al., 2020; Rossi and Reichenbach, 2016). With these objectives, RF was applied to model
rockfall susceptibility in the study area, for sake of comparison with the GAM models in terms of
predictors behaviour interpretability, quantitative performance, geomorphological plausibility, and to
reduce uncertainty (or, in other words, to reveal areas of discordance and agreement between the two

model outputs in a risk management perspective).

As the GM and GM+GEO models derived applying GAMs only carried on the topographic variables
not excluded by shrinkage, it was deemed appropriate to develop a totally independent RF model,
without preconceptions linked to previous results on which variables have to be included. For this reason,
a single comprehensive model was tested, which included all the predictor variables: elevation, slope,
northness, eastness, profile curvature, plan curvature, SWI, geomechanical predictors, infiltration

density and geology as a categorical predictor.

Analyses were performed in R using the ranger package (Wright and Ziegler, 2017) for RF
implementation and, combined with the sperrorest package (Brenning, 2012a), for hyperparameter
tuning (refer to Chapter 2, Section 2.3.5). The selection of the optimal hyperparameters set was based
on the optimization of two different performance measures: OOB error and AUROC, the latter derived
from a spatial 5-fold cross-validation repeated r=100 times, as previously done for the GAM models.

The final optimal hyperparameter set would be a trade-off between the two. The tuning procedure
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adopted was the grid search, starting from a list of discrete values, following the suggested strategy of
Bohemke and Greenwell (2019) for the selection of each hyperparameter set (Table 3.1), for a total of
750 possible combinations. Regarding the number of trees, a preliminary analysis of the OOB error

stabilization was carried out to find the maximum ntree to be tested.

Table 3.1 Hyperparameter values tested during the grid search optimization procedure.

Hyperparameter Tested values for the grid search optimization
mtry 3,5,7,9,11

Node size 2,4,6,8,10

Sample Size 0.632 (ranger default), 0.7, 0.8

ntree 100 to 1000 with step=100

3.4.6.2 SHAP values for model interpretation

Despite the usually high performing models deriving from the application of RF, some researchers
expressed concerns regarding both predictors behaviour interpretability and user-friendly usability and
readability of the derived susceptibility maps (e.g., Brenning, 2005, Brenning, 2012, Goetz et al., 2015).
To overcome these issues, the relationship between rockfall occurrence and predictors was assessed
through the application of the SHAP framework, by means of the R packages treeshap (Komisarczyk et
al., 2021) and SHAPforxgboost (Liu and Just, 2021). Both packages allowed to calculate SHAP for each
individual prediction of the response variable and to combine them into global explanation. Explanation

plots (examples from literature in Figure 3.8) include (Molnar, 2019; Lundberg et al., 2020):

» Feature importance plot: it represents the SHAP-based feature importance coming from the

SHAP value of each predictor averaged on all observations.

» Summary plot: it combines feature importance with feature effects. Each point is an
observation Shapley value for a predictor. The position on the y-axis is determined by the
predictor importance and on the x-axis by the relative Shapley value. The colour represents the

value of the predictor from low to high.

» Force plot: This plot stacks the SHAP values for each observation, with different colours

depending on the predictor, showing how the final prediction was obtained as the sum of
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predictors’ SHAPs. This plot is useful to reveal possible exceptions to the global SHAP

behaviour of predictors.
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Figures in panel a,b,d,e were extracted from the study of Lundberg et al., 2019 (arXiv:1905.04610). Their

study dealt with the impact of a set of health conditions on mortality in an US population sample. a) feature importance
plot showing age and sex having the highest impact on mortality. b) summary plot showing both the importance of
variables on mortality, and their behaviour. For example, old people, with high systolic blood pressure (BP) are linked to
an increased mortality. c) the force plot example was extracted from Liu and Just (2020), authors of the package
SHAPforxgboost: (https://github.com/liuyanguu/SHAPforxgboost/). The SHAP force plot stacks the SHAP values for
each observation showing how the final prediction was obtained as the sum of predictors’ SHAPs. d) dependence plot of
the predictor systolic blood pressure, showing its contribution to mortality in Lundberg et al., 2019 (arXiv:1905.04610).
These plots may be also coloured with a second predictor, in this case age- otherwise predictors may be viewed singularly.
e) Interaction effect plot between systolic blood pressure and age. A high systolic BP is more concerning in terms of
mortality in the young population.
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> Dependence plot: It plots the SHAP values against the observation values for each variable.
This plot could be interpretable as the analogue of the CSF plots in the GAM modelling
framework. A second variable could be added as the points colour to interpret possible

correlation between predictors.

» Interaction effects plot: This plot separates the impact of a variable into main effects (equal to
the dependence plot) and pure interaction effects. It could be interpreted as the difference
between the SHAP values for feature i when feature j is present and the SHAP values for

feature i when feature j is absent.

3.4.6.3 Uncertainties related to the model selection: comparing GAM and RF

All the global explanation plots mentioned in the previous Section will be discussed in terms of physical
plausibility of predictors behaviour and compared to the CSF plots derived from the GAM models.
Besides predictors behaviour, the comparison between the GM+GEO models derived from GAM and
RF was carried out at the level of final susceptibility maps and performance. AUROC and IQR of both
models were compared to declare the best performing and transferable one, at least at the quantitative
level. The RF derived output map was reclassified into the same five susceptibility classes adopted for
the GAM based maps (i.e., 0.0-0.3 “very low”, 0.3-0.5 “low”, 0.5-0.7 “medium”, 0.7-0.9 “high”, 0.9-
1.0 “very high”). Susceptibility maps were compared in terms of susceptibility difference and
susceptibility class change. Moreover, adopting the strategy from Di Napoli et al. (2020), the technique
of the Averaging Committee with two different susceptibility cut-offs, namely 0.5 (i.e., more
conservative) and 0.7 (i.e., more suitable for prioritize intervention) was applied. Firstly, the GAM and
the RF derived susceptibility maps were transformed into binary data (e.g., for the 0.5 cut-off, a value
of 0 was attributed to susceptibility values<0.5 and a value of 1 was attributed to susceptibility values
>0.5); in this way, depending on the cut-off, each model votes for the landslides being either present or
absent. This measure gives both a prediction and a measure of uncertainty. When the prediction is 0 or
1, it means that all the models agree to predict low or high susceptibility respectively; when the

prediction is 0.5, it means that the two models disagree in predicting susceptibility.

3.4.7. Combining susceptibility and SAR with operational purposes

False negative errors in landslide susceptibility modelling (i.e., unstable terrains misclassified as stable)
could be related, in a risk management perspective, to high social and economic costs, as those areas
may be incorrectly used without restrictions (Frattini et al., 2010; Ciampalini et al., 2016). In an
operational perspective, Ciampalini et al. (2016) proposed a procedure to integrate landslide

susceptibility modelling results and SAR data in terms of mean annual PS/DS velocity, to update and
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increase the reliability of the susceptibility map, by means of an empirical contingency matrix. These
data are especially suitable for slow or very slow-moving landslides (Ferretti et al., 2000, 2001),
theoretically preventing the application of the integration strategy of Ciampalini et al. (2016) to analyse
fast phenomena as rockfalls. Nevertheless, active slope deformations, in complex alpine contexts, are
often associated with rock mass related processes such as slope hydrogeological circulation and
drainage, neotectonics, progressive deformation and fracturing, which indirectly individuate active
contexts suitable for rockfalls occurrence. More specifically, the presence and activity state of morpho-
structural features associated to slow slope deformations play a crucial role in the dissection of the rock
masses and are mainly responsible of the changes in the hydro-mechanical properties of the slope system
(Crosta et al., 2013). Moreover, the morphological response types of paraglacial rock slopes (i.e., large-
scale catastrophic failure, slow and progressive rock mass deformations and periodic small-scale
rockfalls) are not mutually exclusive, making the limit between these categories “blurred” (Ballantyne,
2002). Assuming these dynamic relationships between slow deformations and rockfalls, the use of SAR
products for rapid phenomena might induce both an underestimation and overestimation of rockfall
activity, depending on the characteristics of the area. An underestimation may be expected as rockfall
occurrence is not necessary linked only to DSGSD; an overestimation, although in favour of safety, may
be expected in DSGSD active contexts, as rockfalls are not always necessary present, even though a very
common feature. With these possible mismatches in mind, the procedure of Ciampalini et al. (2016) was
applied to the Valchiavenna case study. The objectives were to: (1) integrate the Mean Ensemble rockfall
susceptibility map (i.e., the average between the GAM and RF output maps) by means of a contingency
matrix including susceptibility classes and SAR velocities; (ii) give an operative connotation to the
Average Committee map; (ii1) verify if the procedure is applicable to rapid phenomena by considering
an active context as a proxy for rockfall occurrence; (iv) anchor the susceptibility map to a precise time-

frame, resulting in potential updates at different temporal scales.

The procedure, which follows the steps proposed by Notti et al. (2014), updated by Ciampalini et al.
(2016) and adapted to the present case study, is based on the Sentinel-1 derived SAR data available both
in ascending and descending geometries, from October 2014 to February 2021. The procedure was

implemented in the ArcGIS® 10.2.2 software and is summarized below:

Step 1: Slope (S) and aspect (4) were derived from the available DTM (5 m x 5 m) and transformed in

radians.
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Step 2: Vios (i.e., the average annual velocity of PS and DS in the satellite LOS direction), both related
to the ascending and the descending geometries, were transformed from point data to raster layers,
averaging the values in cells 100 m x 100 m. The resulting raster where then resampled by a bilinear

interpolation to match the susceptibility map resolution.

Step 3: The C coefficient (Colesanti and Wasowski, 2006; Plank et al.,2012; Notti et al., 2014),
representing the suitability of the SAR sensor geometry to record a slope movement, was calculated as:

C = (nlos cos (S )sin(A — 1.571)) + elos(—1 cos(S) cos(A — 1.571)) + (hlos sin(S))) Eq.3.4

Where nlos, hlos and elos are the direction cosines of the LOS, obtainable from the incidence angle 0
and LOS azimuth 6 in radians, thus exclusively depending on the satellite sensors orbit (see Figure 3.9
and Table 3.2 for details). Positive values of C indicate the suitability of the SAR sensor geometry to

capture the landslide movement.

Step 4: Vios velocity was projected in the direction of the steepest slope to obtain a Vslope layer for
each acquisition geometry (i.e., ascending or descending). Indeed, the most reliable displacement can be
measured in the direction of the local maximum slope gradient, which could be considered as the most
probable direction for a slope movement (Cascini et al., 2010; Notti et al., 2010; Bianchini et al., 2013;
Herrera et al., 2013; Ciampalini et al., 2016). For this reason, the Vslope parameter is especially suitable
for phenomena where the landslide principal movement is parallel to the slope. Rockfalls, before free
falling, are usually linked to the dislocation along traction planes, parallel to the slope. Vslope is
represented by the ratio between Vios and the coefficient C. To reduce the exaggeration of the
projections when C tends towards 0, the correction proposed by Notti et al. (2014) was applied: C = —
0.2 when —0.2 < C <0 and C = 0.2 when 0 < C <0.2. Moreover, when Vslope>0, the raster pixel of the
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Figure 3.9 Details on satellite orbit configuration: a) incidence angle; b) LOS azimuth; c) nlos, hlos and vlos direction
cosines.
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resulting map was set null. Reasons are that Vslope can be positive either if the SAR sensor geometry is
suitable to catch the slope movements (i.e., C>0) but Vros is positive (i.e., the landslide is going up the
slope, which is a very improbable condition), or when the SAR sensor geometry is not suitable to catch

the slope movement (i.e., C<0) although Vi os is negative Notti et al. (2014).

Step 5: the ascending and descending data sets were combined by merging the Vslope rasters calculating

their average value.

Step 6: the final Vslope layer was masked in the same way as the susceptibility map, obtaining the values

only on rock outcrops (i.e., the “eligible area” in Section 3.3.4).

Table 3.2 Details on values of director cosines, incidence angle and LOS azimuth for each geometry and track.

Geometry and track nlos hlos elos Incidence LOS
angle azimuth
Ascending T15 -0.116 0.759 -0.641 40.64° 10.23°
Descending East -0.102 0.749 0.655 41.49° 8.89°
Descending West -0.108 0.799 0.591 36.94° 10.38°

The final Vslope layer was then combined in two ways with two different ensemble susceptibility maps,
deriving from the integration of the GAM and RF results. The first product was named SAR Integrated
Susceptibility Map, which was obtained following Ciampalini et al. (2016), through the integration and
verification of the classified Mean Ensemble rockfall susceptibility map, by means of an empirical
contingency matrix (Figure 3.10) based on Vslope values. The aim of this map was to increase the
susceptibility degree of active areas, while maintaining unmodified the cells already characterized by
high susceptibility degree. Indeed, the absence of active movements does not necessary imply not
susceptible areas, as the SAR data are related to a particular time frame. To create the contingency
matrix, Vslope values were reclassified into five intervals (i.e., the same number of susceptibility

classes), which were based on multiples of the standard deviation of Vslope (6=3.7 mm/year).

Figure 3.10 The empirical
contingency matrix used to
combine susceptibility classes
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The second product was named Intervention Priority map and was derived as the integration between
the Averaging Committee Ensemble map (0.5 susceptibility cut-off) with the Vslope values, by means
of an Intervention Index matrix (Figure 3.11). For this second matrix, Vslope was reclassified with the
same five intervals used to derive the SAR Integrated Susceptibility Map. The rationale behind the
Intervention Priority map was to furnish practical suggestions in managing the uncertainties related to
the model ensemble agreement (i.e., 1 or O classes) and disagreement (i.e., 0.5 class), by updating the

map with slope activity evidence.

For instance, in those areas where the GAM and RF showed a disagreement (i.e., high ensemble
uncertainty), but active deformations are recorded, local analysis to deepen the knowledge of the area
and causes of activity may be required. Conversely, in areas where the two models showed agreement
in classifying the location as highly susceptible (i.e., class 1) and active deformation are recorded,

monitoring measures of the slopes are recommended.

Vslope (mm/y)
Intervention |0-3.7 3.7-11.1 |11.1-185 |18.5-25.9 =259
Index (0-16)  |(10-30)
.§ NI
£ 0
£
O
O NI
o 0.5
o
[}
z 1 MP
Legend

NI = No Intervention required.

CE = Check of local processes responsible of detected movement or
possible errors in the LSM.

MP = Models agree in High Susceptibility, no actual detected movements.
Careful observation of the evolution of the slope is recommended.

HP-1 = Models agree in High Susceptibility + detected active deformation.
Monitoring measures recommended.

HP-2 = Models disagree in High Susceptibility + detected active deformation.
Local analysis to solve uncertainty are recommended.

Figure 3.11 The intervention index matrix used to combine the Averaging Committee
ensemble and Vslope.
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3.5. Results

3.5.1. Geomechanical properties: sampling and regionalization

The preliminary results of the Jv regionalization, performed by means of ordinary kriging, are shown in
Figure 3.12a and Figure 3.12b and were used as input data for the optimal selection of new survey points.
The variography related to ordinary kriging performed on Jv before dataset updating resulted in an
anisotropic variogram of gaussian type with a lag equal to 1000 m and a maximum range of 11929 m in
the SW-NE direction, approximately parallel to the main shistosity dip direction, which denoted the
main orogenic stress direction. The associated kriging variance was used as the minimization function
for the SSA algorithm. The sensitivity analysis on TO resulted in a T0=0.1 and T0=0.002 for a probability
of acceptance of the initial iteration equal to 1 and 0.95, respectively. However, as small differences in
terms of point locations and running time (probably related to the small size of sampling, i.e., 25 points)
were observed, the configuration linked to the highest initial temperature (i.e., the most conservative
choice, with both slightly higher running time and precision) was preferred. Figure 3.12c¢ shows the

SSA-selected points and the survey locations consequently used in addition to the old dataset.
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Figure 3.12 a) Jv prediction by ordinary kriging pre-field survey; b) Jv associated kriging variance

pre-field survey; c¢) map showing old database locations, SSA selected locations, new survey
locations; d) and e) MESS values before and after field survey.
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Regarding the MESS resulting maps, the updated inventory enhanced the similarity and the
representativeness of the geomechanical dataset, particularly on the southern slope of Bregaglia Valley
and the upper western slope of San Giacomo Valley (Figure 3.12d and Figure 3.12¢). The addition of
the new points limited negative values of MESS to 15.9% of the study area in comparison to the 26.2%
associated to the original dataset. The new surveyed points allowed the geomechanical dataset to be

updated and homogenized for the regionalization phase.

After field survey completion, the procedure consisted of regionalization of the three selected target
properties, both in the global and in the split domains. The results on the divided domains were quite
similar to the whole domain regionalization, both in terms of model performance and spatial pattern,
even if in some cases (but alternatively, only for one of the two domains) they resulted in a slightly better
performance than for the Global Domain. However, with the domains subdivision, some inconsistencies
in values continuity at the domain borders were frequently observed. For the topographic subdivision,
the main difference at the domain borders was represented by the slope aspect and consequently to
possible insulation and thermal differences, which may explain differences in weathering but not in joint
frequency and aperture. For the geological domain subdivision, contrasts at the borders are more
physically plausible as may explain differential strength, fracturing and weathering behaviour. However,
the continuity of the structural regional lineaments across the two domains and the juxtaposition, at the
domains’ borders, of granitoids (Truzzo Granite Unit) and gneissic bodies of the Tambo basement
hampers the rising of extremely contrasting values, more likely attributable to interpolation-linked
artefacts rather than to real physical contrasts. Therefore, the Global Domain regionalization was
preferred for three reasons. First, since the spatial pattern is mainly preserved amongst the subdivided
domains and the Global Domain, with only slight performance and error oscillations, the Global Domain
may be considered as the optimal domain for regionalization of the geomechanical target properties.
Second, even with their peculiarities, which led to both a topographic and a geological domains
delineation, the two orthogonal valleys share a common geological, structural, and geomorphological
history and evolution, thus a Global Domain is still a reasonable and physically sound choice. Last, the
Global Domain regionalization was carried out on a higher number of data than for the subdivided
domains, thus being more statistically representative of the analysed population than the sub-domains.
Following, performance metrics and best maps for each property and for each regionalization domain

are presented giving more emphasis to the results of the Global Domain.

For Jv, ordinary kriging outperformed the other techniques in the Global Domain (Figure 3.13a,b and

Table 3.3). The variogram (Figure 3.13¢) was best fit by an anisotropic exponential model with a nugget
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effect of 0.14, a partial sill of 0.41, a maximum range of 12 km in the NW-SE direction, and a selected
lag of 1000 m. LOO-CV correlation between observations and predictions increased from 0.43 (pre-
field survey) to 0.49 (post-field survey), while NMRSE decreased from 14.1% to 13.7%. The range and
sill deviations from the ones of the general model remained quite low during the LOO-CV, confirming
the robustness of the selected variogram model and parameters (Figure 3.13d). Globally, the associated
variance decreased too, mainly due to an increase performance at high altitudes and in the Bregaglia
Valley. In comparison with the pre-field kriging variance (Figure 3.12b), a slight increase can be noticed

only locally, in the NE part of the San Giacomo Valley (Figure 3.13b).

These results demonstrated that the adopted sampling strategy was successful in reducing the uncertainty
associated to this predictor. The change in the maximum range direction is not surprising since new
spatial patterns could be revealed introducing new data. Indeed, in most cases, the model adopted for

sampling and the model for subsequent statistical inference (i.e., regionalization) differ, as the new
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Figure 3.13 a) Jv map derived from the anisotropic ordinary kriging applied on the Global Domain and b) associated
variance; c¢) experimental variograms of Jv (points) and variogram models (lines) in the 0,45,90 and 135 degrees
directions; d) histograms representing the variations of Sill and Range coming from the different LOOV-CV sets. Having
Jv a lognormal distribution, semivariance values in in ¢) and sill values in d) are in lognormal scale.
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sampled data are used to update the postulated preliminary model used for the sampling design (Brus,
2019). Moreover, the new anisotropy direction was the same reported for Jv data limited to the upper
San Giacomo Valley by Ferrari et al. (2012) and it is geologically meaningful as it is sub-parallel to the
Forcola fault system, and to the tensional joints resulting from glaciers retreat in the San Giacomo

Valley.

Table 3.3 Regionalization model parametrization, performance and error metrics results for Jv in the Global Domain.

Technique Parametrization r coefficient NMRSE
IDW Idp=3 0.28 0.165
TPS Covariate=coordinates+elevation 0.37 0.148
GWR Bisquare kernel, adaptive 0.27 0.150

bandwitdth, AIC criterion

Covariate=Latitude
GWR-+IDW on Bisquare kernel, adaptive 0.31 0.157
residuals bandwitdth, AIC criterion

Covariate=Latitude

Idp=2

OK Exponential 0.48 0.138
Isotropic
Lag=1000 m

OK Exponential 0.49 0.137
Directional 135°
Lag=1000 m

Regarding the results on the topographic domain subdivision (Table 3.4 and Table 3.5), a GWR
technique with the Latitude covariate and an additional IDW on residuals resulted in the best fit for San
Giacomo Valley Domain, followed by OK, which resulted in the same performance both with an
isotropic and anisotropic (direction 135°) variogram of Gaussian type. In the Bregaglia Valley
topographic Domain, the model performance was quite poor, with the best performances obtained with
OK, with an anisotropic (direction 135°) variogram performing slightly better than the isotropic one

(both of Gaussian type).
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Table 3.4 Regionalization model parametrization, performance and error metrics results for Jv in the San Giacomo Valley
Topographic domain.

Technique Parametrization r correlation NMRSE

coefficient observed-

simulated

San Giacomo Valley
IDW Idp=2 0.55 0.160
TPS Covariates=coordinates  0.48 0.164
GWR Bisquare kernel, 0.51 0.162
adaptive bandwitdth,

AIC criterion
Covariate=Latitude

GWR-+IDW on Bisquare kernel, 0.57 0.156
residuals adaptive bandwitdth,
AIC criterion
Covariate=Latitude
Idp=2
OK Gaussian 0.52 0.159
Isotropic
Lag=750 m
OK Gaussian 0.52 0.159
Directional 135°
Lag=750 m

Table 3.5 Regionalization model parametrization, performance and error metrics results for Jv in the Bregaglia Valley
Topographic domain.

Technique Parametrization r coefficient NMRSE

Bregaglia Valley

IDW *Negative correlations for different idp (1.5,2,3,4)
TPS Covariates=coordinates+elevations 0.31 0.178
GWR Bisquare kernel, adaptive bandwitdth,  0.135 0.185

AIC criterion
Covariate=Latitude

OK Gaussian 0.35 0.157
Isotropic
Lag=500 m
OK* Gaussian 0.4 0.155
*in the LOOVCY the Directional 135°
same variogram (i.e. the
general Lag:5 00 m

variogram,SILL=0.2,
Nuggett=0.05,
Range=1000) was applied
for each fold, as no
convergence in some fold
was experienced during
the automatic procedure.
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For what concerns the geo-structural domains subdivision, performances resulted always poorer than the
Global Domain (Table 3.6 and Table 3.7). The best performing techniques were IDW for the Domain 1
and TPS for Domain 2. The combinations of the best performing maps in the different domains are
shown in Figure 3.14. They revealed contrasting values at the borders, up to a difference of 30 in the Jv
value. Nevertheless, the spatial pattern was coherent with the one obtained on the Global Domain,

especially for the maps in Figure 3.14b and Figure 3.14c, obtained with the OK technique on both the

domains.

Table 3.6 Regionalization model parametrization, performance and error metrics results for Jv in the geo-structural Domain

1.

Technique Parametrization r coefficient NMRSE
Domain 1
IDW Idp=2 0.48 0.193
TPS Covariates=coordinates 0.26 0.200
GWR Bisquare kernel, adaptive 0.24 0.213
bandwitdth, AIC criterion
Covariate=Longitude+elevation
GWR-+IDW on Bisquare kernel, adaptive 0.45 0.200
residuals bandwitdth, AIC criterion
Covariate=Longitude+elevation
Idp=2
OK Circular 0.42 0.217
Isotropic
Lag=1300 m
OK Spheric 0.43 0.216
Directional 135°
Lag=500 m

Table 3.7 Regionalization model parametrization, performance and error metrics results for Jv in the geo-structural Domain

2.
Technique Parametrization r coefficient NMRSE
Domain 2

IDW *correlations always<0.1 for different idp (1.5,2,3,4)

TPS Covariates=coordinates+elevations 0.35 0.173

GWR Bisquare kernel, adaptive bandwitdth, AIC  0.26 0.179
criterion
Covariate=Latitude+Longitude+Elevation

OK Gaussian 0.31 0.179
Isotropic
Lag=500 m
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Figure 3.14. Topographic domains: a) Jv map deriving from GWR+IDW in San Giacomo Valley and anisotropic OK in
Bregaglia Valley b) Jv map deriving from anisotropic OK in San Giacomo Valley and anisotropic OK in Bregaglia Valley c)
Jv map deriving from isotropic OK in San Giacomo Valley and isotropic OK in Bregaglia Valley. Geo-structural domains:
d) Jv map deriving from IDW in San Giacomo Valley and TPS in Bregaglia Valley.

For the regionalization of the weathering index in the Global Domain, even if the best performance
(Table 3.8) was obtained adopting a GWR technique that included the latitude covariate, the resulting
map showed an unrealistically homogeneous spatial distribution of the values (Figure 3.15). For this

reason, the map obtained applying an isotropic ordinary kriging (Figure 3.16a-d) was considered more

reliable, despite a slightly worse performance (r=0.47, NMRSE=14.5%)).
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Table 3.8 Regionalization model parametrization, performance and error metrics results for Wi in the Global Domain.

Technique Parametrization r coefficient NMRSE
IDW Idp=2 0.44 0.147
TPS Covariate=coordinates 0.44 0.152
GWR Bisquare kernel, adaptive 0.51 0.140
bandwitdth, AIC criterion
Covariate=Latitude
OK Exponential 0.47 0.145
Isotropic
Lag=750 m
Weathering Index
[ 0.47 - 0.5 High
I o5-055
[o.55-0.59
[]0.59-0.63
[l063-067
[los7-07
% g:; 007:5 Figure 3.15 Wi regionalizartion deriving from the application
[l085-093 of the GWR technique with the latitude covariate.
[0.93-1
1.0-1.2Low

5 e

—Jkm & 5@%\ ,

The variography of Wi (Figure 3.16c) resulted in an isotropic spherical variogram with a nugget effect
0t 0.0075 and a partial sill of 0.008. It is noteworthy that the nugget and the partial sill were very similar,
thus being Wi at the edge of the definition of regionalized variable. The shorter range (i.e., 3125 m) and
lag (i.e., 750 m) in comparison to Jv confirmed the expected more local connotation of this property in
relation to the fracturing grade, as Wi may express the local microclimate, while Jv is the reflection, at
the outcrop scale, of the regional structural and tectonic framework. Sill and range values remained

consistent amongst the LOOV-CV sets (Figure 3.16d). These results are geologically plausible, as no

evidence of a weathering grade anisotropy was ever observed or reported in field surveys.
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Figure 3.16. a) Wi map deriving from the isotropic ordinary kriging applied on the Global Domain and b) associated variance

map. ¢) experimental variograms of Wi (points) and variogram models (line) d) histograms representing the variations of Sill

and Range coming from the different LOOV-CV sets.

Regarding the topographic domain subdivision, for the San Giacomo Valley Domain a KED technique

with the Latitude covariate performed best, followed by a GWR technique with the Latitude covariate

and an additional IDW on the residuals (Table 3.9). In the Bregaglia Valley topographic Domain (Table

3.10), a KED technique with the Elevation covariate performed best, followed by a GWR technique with

the Elevation covariate.
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Table 3.9 Regionalization model parametrization, performance and error metrics results for Wi in the San Giacomo Valley
Topographic domain.

Technique Parametrization r coefficient NMRSE

San Giacomo Valley

IDW Idp=2 0.50 0.175

TPS Covariates=coordinates  0.42 0.189

GWR Bisquare kernel, 0.47 0.178
adaptive bandwitdth,

AIC criterion
Covariate=Latitude

GWR+IDW on Bisquare kernel, 0.51 0.176
residuals adaptive bandwitdth,
AIC criterion
Covariate=Latitude
Idp=2
OK Exponential 0.47 0.179
Isotropic
Lag=500 m
KED Exponential 0.52 0.173
Isotropic
Lag=500 m
Covariate=Latitude

Table 3.10 Regionalization model parametrization, performance and error metrics results for Wi in the Bregaglia Valley
Topographic domain.

Technique Parametrization r correlation NMRSE
coefficient
observed-
simulated

Bregaglia Valley

IDW Idp=5 0.24 0.199
TPS Covariates=coordinates+elevations 0.45 0.167
GWR Gaussian kernel, adaptive bandwitdth, 0.51 0.156

AIC criterion
Covariate=Elevation

OK No variogram model converged. Evident drift in the experimental variogram (i.e.
linear trend)

KED Exponential 0.56 0.151
Isotropic
Lag=300 m

Covariate=elevation
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For what concerns the geo-structural domains subdivision, in Domain 1 a GWR technique with the
Latitude covariate and an additional IDW on residuals performed best, followed by a IDW technique
(Table 3.11). In Domain 2, a KED technique with the Elevation covariate performed best, followed by
a GWR technique with the Elevation covariate (Table 3.12).

Table 3.11 Regionalization model parametrization, performance and error metrics results for Wi in the geo-structural Domain
1.

Technique Parametrization r coefficient NMRSE
Domain 1

IDW Idp=2.5 0.55 0.176

TPS Covariates=coordinates 0.51 0.180

GWR Gaussian kernel, adaptive 0.45 0.200

bandwitdth, AIC criterion
Covariate=Latitude
GWR-+IDW on Gaussian kernel, adaptive 0.57 0.174
residuals bandwitdth, AIC criterion
Covariate=Latitude
Idp=2
OK Circular 0.50 0.181
Isotropic
Lag=600 m

Table 3.12 Regionalization model parametrization, performance and error metrics results for Wi in the geo-structural Domain
2.

Technique Parametrization r coefficient NMRSE
Domain 2

IDW *correlations always<0.1 for different idp (1.5,2,3,4)

TPS Covariates=coordinates+elevation 0.35 0.185

GWR Gaussian kernel, adaptive bandwitdth, 0.46 0.166

CV criterion
Covariate=Elevation

OK Gaussian 0.25 0.188
Isotropic

Lag=500 m
KED Exponential 0.47 0.166
Isotropic
Lag=300 m
Covariate=elevation
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The combinations between the best performing maps consisted of four maps for the Topographic

subdivision (Figure 3.17) and four maps for the geo-structural subdivision (Figure 3.18).
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Figure 3.17. Topographic domains: a) Wi map deriving from the application of GWR in San Giacomo Valley and GWR in
Bregaglia Valley b) Wi map deriving from the application of KED in San Giacomo Valley and KED in Bregaglia Valley c)
Wi map deriving from the application of GWR in San Giacomo Valley and KED in Bregaglia Valley. d) Wi map deriving
from the application of KED in San Giacomo Valley and GWR in Bregaglia Valley.

The spatial patterns of the combined Wi maps revealed less visible, although still present, incoherencies
at the domain borders than Jv maps. In general, all the maps resulted very similar both mutually and if
compared to the Global Domain maps. Independently from the regionalization domain, the weathering
index, especially in Bregaglia Valley, showed a clear increasing trend with elevation, which was
interpreted as the result of a combination of exposure to freeze-thaw cycles, scarce vegetation, and
glacial history. During the LGM, the glacier did not reach the slopes at the highest elevations, which
remained exposed to climate agents.
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Figure 3.18. Geo-structural domains: a) Wi map deriving from the application of IDW in San Giacomo Valley and GWR in
Bregaglia Valley b) Wi map deriving from the application of GWR in San Giacomo Valley and GWR in Bregaglia Valley c)
Wi map deriving from the application of GWR in San Giacomo Valley and KED in Bregaglia Valley. d) Wi map deriving
from the application of IDW in San Giacomo Valley and KED in Bregaglia Valley.

The regionalization of the Keq index showed the poorest performance and the highest uncertainty among
the three properties analysed in this study. This result was consistent considering both the global and the
split domains. This may be attributed to the joints’ aperture, which is included in the Keq tensor
calculation. Variability in aperture is one of the most challenging problem in slope design and
management (Price, 2016) and it cannot be considered neither constant nor scale invariant (Baghbanan
and Jing, 2008). Aperture is known to vary on short distances, even among the same joint family and
along the same joint, especially because of roughness effects along joint surfaces. Its best output on the
Global Domain (Table 3.13 and Figure 3.19) was obtained through a TPS method including altitude as
covariate (r=0.16, NMRSE=18.5%).
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Table 3.13. Regionalization model parametrization, performance and error metrics results for Keq in the Global Domain.

Technique Parametrization r coefficient NMRSE
IDW Idp=2 0.14 0.178
TPS Covariate=coordinates+elevation 0.16 0.185
GWR Gaussian kernel, fixed bandwitdth,  0.09 0.180
AIC criterion
Covariate=Longitude+Elevation
GWR-+IDW on Gaussian kernel, fixed bandwitdth,  0.15 0.183
residuals AIC criterion
Covariate=Longitude+Elevation
Idp=2
OK Exponential 0.09 0.180
Isotropic
Lag=600 m
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Regarding the topographic subdivision, for San Giacomo Valley, the best performance, although very
poor, was obtained using a GWR with Latitude (Table 3.14), but the spatial pattern was physically
implausible, with an almost vertical gradient from W to E and a strong mismatch at the border with the
Bregaglia Valley domain (Figure 3.20a). Conversely, for Bregaglia Valley Domain (Table 3.15), both
TPS with altitude as a covariate and IDW yielded maps with a correlation coefficient (r) larger than 0.5.

Over the Bregaglia Valley, the spatial pattern was very similar to that obtained working with the Global
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Domain and TPS (Figure 3.20a). Thus, the poor performance obtained on the Global domain could be

mostly imputed to the San Giacomo Valley Domain related poor regionalization performance.

Table 3.14. Regionalization model parametrization, performance and error metrics results for Keq in the San Giacomo Valley

Topographic domain.

Technique Parametrization r coefficient NMRSE
San Giacomo Valley
IDW *correlations always negative for different idp (1.5,2,3,4)
TPS Covariates=coordinates+slope 0.17 0.198
GWR Gaussian kernel, adaptive 0.23 0.190
bandwitdth, CV criterion
Covariate=Longitude
GWR-+IDW on Gaussian kernel, adaptive 0.13 0.203
residuals bandwitdth, CV criterion
Covariate=Longitude
Idp=1.5
OK *correlations always negative for different variogram models and lags.

Table 3.15. Regionalization model parametrization, performance and error metrics results for Keq in the Bregaglia Valley

Topographic domain.

Technique Parametrization r coefficient NMRSE
Bregaglia Valley
IDW Idp=5 0.55 0.200
TPS Covariates=coordinates+elevations 0.53 0.190
GWR Bisquare kernel, adaptive bandwitdth,  0.30 0.218
AIC criterion
Covariate=Latitude+Aspect
GWR-+IDW on Bisquare kernel, adaptive bandwitdth, 0.44 0.252
residuals AIC criterion
Covariate=Latitude+Aspect
Idp=6
OK No variogram model converged.
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Figure 3.20. Topographic domains: a) Keq map deriving map deriving from the application of GWR in San Giacomo Valley
and IDW in Bregaglia Valley. Geo-structural domains: b) Keq map deriving map deriving from the application of TPS in
Domain 1 and IDW in Domain 2.

Regarding the geo-structural subdivision, the only significant result was obtained combining TPS with
Elevation as covariate for Domain 1 (Table 3.16) and IDW for Domain 2 (Table 3.17). The spatial pattern
for both domains approximated well the Global Domain (Figure 3.20b). Furthermore, the performance
resulted similar (slightly better for Domain 2 while slightly scarcer for Domain 1), if compared to the
performance of the Global Domain regionalization.

Table 3.16. Regionalization model parametrization, performance and error metrics results for Keq in the geo-structural
Domain 1.

Technique Parametrization r coeffient NMRSE
Domain 1

IDW *correlations always <0.1 for different idp (1.5,2,3,4)

TPS Covariates=coordinates+elevation 0.13 0.230

GWR *correlations always negative for different covariates and model parameters
combinations

OK *correlations always negative for different variogram models and lags
combinations
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Table 3.17 Regionalization model parametrization, performance and error metrics results for Keq in the geo-structural
Domain 2.

Technique Parametrization r coefficient NMRSE
Domain 2

IDW Idp=2 0.24 0.18

TPS Covariates=coordinates+elevation 0.153 0.192

GWR *correlations always negative for different covariates and model parameters
combinations

OK Gaussian 0.11 0.183
Isotropic
Lag=500 m

In summary, the regionalized geomechanical properties, chosen as predictors for the consequent rockfall
susceptibility model, were the ones related to the Global Domain. For Jv, the map associated with the
anisotropic ordinary kriging was selected, while for Wi the one associated with the isotropic ordinary

kriging. For Keq, the map associated with a TPS with the altitude covariate was chosen.
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3.5.2. Rockfall susceptibility modelling with Generalized Additive Models

3.5.2.1 Predictors response relationships

Variable penalization resulted in the exclusion of the predictors eastness and plan curvature from the
TOPO model fitted on all data and in most sCV runs (selection frequencies 33.0% and 13.4%,
respectively). Therefore, these predictors were excluded from the successive GM and GM+GEO models.
A focus on the GM+GEO model results is presented in the current section, while the observed
differences between the two models would be discussed at the end of the Section. For the discussion
below, refer to Figure 3.21 for predictors component smoothing functions (CSF), and Figure 3.22 for

edf (used for the calculation of the penalization frequency, see Section 3.4.5.1) and the mDD% variations

amongst the different CV runs.
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Figure 3.21Smoothing functions and odds ratios extracted from all the sCV runs (grey lines —light blue for Wi — for
smoothing functions and boxplot for odds ratios) and from the model fitted on all data (black line — blue for infden —
for smoothing functions and black dots for odds ratios). a) Smoothing function for the predictors included in the
GM+GEO Model b) odds ratios for the geological predictor ¢) Wi and Infiltration density smoothing functions from

all the sCV runs and from the model fitted on all data for the GM Model
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The predictor-response relationships (Figure 3.21a) of the morphometric predictors, Jv and Keq were
maintained through the GM and the GM+GEO models, while some variations in Wi and Infiltration

Density behaviour between the two models were observed (Figure 3.21c¢).

In the GM+GEO model, elevation and slope were the most important predictors with high selection
frequencies of 100% and 80.4%, and mDD% values of 24.5% and 17.7% on the entire dataset. Rockfall
susceptibility decreased quite strongly towards higher elevations consistently with the wvalley
morphology, which is highly incised, with active rock walls at the bottom (Figure 3.23). Indeed, in
deglaciated valley, glacial erosion may steepen rock slopes, increasing overburden and deepening scarp-
foot locations (Ballantyne, 2002); on the other hand, deglaciation induced compression along the valley

bottom increasing differential stresses and causing rock damage.

The secondary small increase of susceptibility between 2000 and 2200 m a.s.l. could be linked to the
transition between glacial terraces, characterized by soil-dominated slopes, and high elevation sub-
vertical rock walls. Coherently, rockfall susceptibility increased towards higher slope angles. Profile
curvature, SWI and northness were almost always included (100%, 100%, and 80.4%, respectively) and
showed a mDD% in the all-points based model around and 11% for both profile curvature and SWI and
10% for northness. Regarding geomechanical predictors, rockfall susceptibility increased linearly with
increasing Jv, both in the all-points-based model and in the sCV runs (sCV selection frequency 96.4%,
mDD% 7.5% using all data). Rock mass fracturing degree therefore had a quite strong influence on
rockfall susceptibility predictions, comparable to topographic predictors other than elevation and slope.
The modelled functional relationship remained stable across sCV runs, indicating that the relationship

is spatially transferable within the study area.
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Figure 3.23 Photographs and location of some active rockwalls at the valley bottoms.

Wi and Keq demonstrated a more unstable behaviour. They were penalized out of the model using all
data (edf equal to 0), and in the 93.4% and 100% of the sCV runs respectively (respect to the fixed
threshold of edf<0.7). The exceptions are represented by the outliers with edf > 0 in Figure 3.22a.

The mDD% consistently showed values below 10%, although never approaching zero. Overall, these
two predictors can be considered of minor importance. Although Wi regionalization had a good
performance, its values showed a limited range (from 0.5 to 1.0), which may indicate that the area was
not subject to a sufficient differential weathering to influence globally rockfall occurrence. On the other
hand, the influence of the proximity to Last Glacial Maximum trimlines (refer to Figure 3.3 in Section
3.2), which usually causes high weathering (Matasci et al., 2011), may be masked by the presence of the
elevation predictor. Its secondary peak is indeed compatible with the trimline location. Nonetheless, the
trend of the predictor smoothing function in the few sCV runs where Wi was not penalized was not
physically reliable, as it showed higher susceptibility for less weathered areas (note that Wi—> 1 means
low weathering). For Keq, the model was not able to capture the multifaceted aspect of the processes
associated to the property (see Section 3.4.4 for details). Also, Keq may be more suitable for local-scale
analyses rather than for regional scale generalizations, especially because its calculation is based on the
hydraulic aperture of the joints, which could be highly variable over short distances, due to the presence

of asperities at different scales modulating the effective volume available for water flow. However, it
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was still possible to consider the hydrogeological influence on rockfall susceptibility using the
infiltration density predictor. This variable was included in almost all sCV runs (selection frequency
94.8%) and achieved an mDD% of 5.8% using all data (Figure 3.22a and Figure 3.22b). The associated
smoothing function showed an increasing behaviour for low to medium values and the reaching of a
plateau at a value of approximately 3x107 number of elements per m? both for the all-points-based model
and for most of the sCV runs. In few cases the curve resulted in a bell shape, not physically meaningful

and possibly attributable to the train-test splitting (Figure 3.21a).

Considering the geological predictor, with an odds ratio of 2.5 in all-points-based model, orthogneiss
lithology was associated with a statistically significative (p-value of 0.002) higher chance of rockfall
occurrence than the most abundant category (i.e., paragneiss). All the other lithologies showed odds
ratios close to 1 meaning a similar chance of rockfall occurrence as the paragneiss lithology (Figure
3.21b). Consequently, the overall mDD% of geology was relatively low (2.3% with all data, up to 7.4%
in sCV runs). One may argue that orthogneiss are in general a more resistant lithology than paragneiss.
However, in the study area, orthogneisses mainly belong to the Gruf Complex, which has peculiar
petrographic and structural characteristics. It is a poly-metamorphic highly foliated migmatitic body,
with different facies and deformation structures both at the meso- and micro-scale (Galli et al., 2013).
This led to inherent mechanical and mineralogical contrasts, as well as weak zones, probably not fully
captured by the Jv predictor. As demonstrated by the recent work by De Vilder et al. (2017), not only
the wider geology but also the local scale lithological and mineralogical variability controls rock mass
wasting processes, as observed in the Gruf Complex. Moreover, the presence of the Gruf Line in this

area represents a pervasive weak zone particularly prone to instability.

Within the GM+GEO model, the concurvity among continuous predictors resulted to be acceptable, with
a maximum value of 0.59. Although almost identical to the GM+GEO model discussed above, the GM
model was characterized by two differences in terms of predictors behaviour (Figure 3.21¢). Firstly, in
some sCV runs the Wi predictor had an opposite behaviour in comparison to the GM+GEO model and
in this case the curve trend was physically coherent with the process (i.e., higher susceptibility for more
weathered areas). Secondly, the infiltration density predictor was characterized by the prevalence of a
bell shape, even if the plateau-type shape observed in the GM+GEO model was preserved in some sCV
runs. This may be attributable to a large variability of the dataset at the highest values, potentially
smoothed with the introduction of geology, rather than to a real physical meaning. Furthermore, all the
geomechanical predictors and infiltration density had a higher deviance explained than in the GM+GEO
model (of the order of 2-3% higher).
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3.5.2.2 Model performance

Figure 3.24 shows the performance of the three models. The prediction performance of the TOPO model
(mean AUROC of 0.68 in sCV) indicated a poor discrimination capacity, while those of the GM and
GM+GEO models (mean AUROC of 0.71 and 0.72, respectively) can be regarded as acceptable,
according to Hosmer et al. (2013) guidelines. Considering the IQR of AUROC across sCV runs, the GM
model showed the best spatial transferability, followed by GM+GEOQO. This may be linked to the fact that
the geology in the study area is spatially compartmentalized, leading to a higher heterogeneity between
training and test samples and thus to a lower transferability (Guzzetti et al., 2006; Petschko et al., 2014).
Besides the governing role of gravity in rockfall occurrence, these results highlighted that geomechanical
(Jv) and geomorphological-hydrogeological (infiltration density) predictors improved model
performance, allowing a deeper and more process-oriented understanding of the phenomena, crucial for

the practical use of susceptibility maps.
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3.5.2.3 Susceptibility map and geomorphological plausibility

The three output susceptibility maps are shown in Figure 3.25. The susceptibility spatial pattern in the
TOPO model showed a concentration of the “very high” and “high” susceptibility classes along the cliffs
located at the base of the principal valley bottoms. The percentages of the “very high” and “high” classes
in the GM model remained almost equal to the TOPO model. However, their spatial distribution
changed, including also some lateral valleys and rock walls and ridges at higher elevations. The spatial
pattern in the GM+GEOQO model was very similar to the previous GM model, except for a slightly higher
susceptibility in correspondence of the Gruf Complex in the southern slope of the Bregaglia Valley. Both
the GM and GM+GEO models showed a better discrimination than the TOPO model, as the “medium”
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susceptibility class, which can be considered as the most ambiguous, was less widespread in both

models.

By qualitatively comparing the GM model output map with the rock walls defined as “active” and the
rock masses defined as “very shattered” in the available geomorphological maps of the area, in most
cases a good agreement with the “very high” and “high” susceptibility classes was observed Figure
3.25d-1). Some mismatches were still present, probably due to the different scales of the survey
(1:10,000) and the geological map used to discriminate rock masses and quaternary deposits (1:50,000).
In some areas, limitations related to restricted visibility (e.g., complex topography, dense vegetation)

may also have affected field mapping.

a) TOPO Model b) GM Model C) GM+GEO Model

Susceptibility Class

[ Joo03VeryLow [ ]0.3-0.5Low [ 0.5-0.7 Medium
—_— _ -

e 3
& 15

B o709nigh [l 0.7-0.9 very High

|2

%Surveyed active rockwall/shattered rock mass

Figure 3.25 Susceptibility maps obtained from a) topographic (TOPO), b) geomechanical (GM), and c) geomechanical -
geological (GM+GEO) models; d)-1) zoom-in of the geomechanical (GM) susceptibility map with superimposed active rock
walls surveyed in the field.
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Figure 3.26a shows the differences between the maps obtained with the TOPO and GM models (GM-
TOPO). This map pointed out how the introduction of the geomechanical predictors led to an increased
susceptibility in some geomorphologically peculiar areas. The first of these areas is in proximity to the
DSGSD of the Febbraro and Vamlera secondary valleys, located in the upper western part of San
Giacomo Valley (Figure 3.26¢c-d-e). The second area is located along the ridge drawn by Mt. Emet
(Figure 3.26f) and Mt. Mater, located in the upper Eastern part of the San Giacomo Valley. This area is
well-known and monitored from an engineering geology point of view, since it is characterized by two
interacting DSGSDs, associated to secondary rockslides and rock glaciers (Crippa et al.,2020). The last
area crosses the regional thrust separating the Suretta and Tambo nappes on the northern slope of the
Bregaglia Valley (Figure 3.26g). The decrease in susceptibility in the central-lower part of San Giacomo
Valley is linked either to a combination of low fracturing grades and to very low infiltration density
values or to the low confidence of the model for very high infiltration density values (see Section
3.5.2.1). In particular, the decrease in susceptibility in the SW part of the study area may be referred to

low values of Jv (i.e., more massive rock masses) modelled (and observed) in this part of the territory.
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Figure 3.26. a) Difference map between GM model and TOPO model b) Difference map between GM+GEO model and GM
model c),d),e),f),g),h),i) photograph of the mentioned locations, courtesy of the Geoengineering group of University of Milan.

From a geological-geomechanical point of view, this area corresponds to a pervasive and continuous
presence of the Truzzo Granite, which has a variable structure from mesoscopic lenses of undeformed
granite to highly strained orthogneiss (Marquer et al. 1994; Carla et al., 2019). The occurrence of low-
medium values of Jv are probably associated to the prevalence of this second facies. However, as

highlighted in Figure 3.25, this does not mean that these slopes are totally not susceptible, with portions
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still in the “medium” and “high” classes, rather that, in relative terms, the geomechanical component of
the model favours stability. Figure 3.26b shows the variation map between the GM and the GM+GEO
models. This map highlighted a further increase of susceptibility in the southern part of the Bregaglia
Valley, due to the peculiar characteristics (mylonitic rocks, ductile shear zones, mechanical contrasts)

of the Gruf Complex (Figure 3.26 h-i), already discussed in Section 3.2.

The comparison between the difference map between the TOPO and GM models with the PS/DS mean
annual velocities, obtained from SqueeSAR™ data for the period 2014-2021 (Figure 3.27a-c), showed

that all the above-mentioned areas are associated with recent deformation and displacements along the
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LOS line. Mean annual velocities can overcome 10mm/y along some morpho-structures such as
trenches, counterscarps, and structural lineaments. Due to the less favourable exposure of the Bregaglia
Valley to the satellites, evidence of movement can be detected only on the northern slope, especially on
west dipping facets (Figure 3.27b). These present-day deformation patterns are a good clue for the
identification of gravitationally active contexts, in which large and small instabilities coexist, further

validating the rockfall susceptibility maps.

3.5.2.4 Uncertainties related to the inventory

The GM and GM+GEO models constructed using the IFFI inventory as input showed a predictive
performance in terms of mean AUROC for training and test of 0.77 and 0.75, respectively. Despite these
quite good performances, physically distorted, unrealistic relationships between the Jv and infiltration
density predictors and susceptibility (Figure 3.28a and Figure 3.28b) were observed. The smoothing
functions showed a behaviour opposite to the expected one. Limiting the training set to the IFFI database
affected also the relationships between rockfall susceptibility and lithology. The orthogneiss category
(Figure 3.28c) became the least susceptible lithology within this model, contrary to the results obtained
with the complete inventory. Moreover, implausible rockfall susceptibility maps were obtained, with the
highest susceptibility values grouped mainly near the valley bottoms (Figure 3.28d). Finally, the use of
the UNIMI inventory as an independent test set led to rather low AUROC values for both the GM and
GM+GEO models, 0.69 and 0.61, respectively.
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According to the IFFI-based models, the highest fractured rock mass corresponded the lowest rockfall
susceptibility level; moreover, the geological peculiar framework of the Gruf Complex seemed not to
play a significant role in rockfall occurrence. These distorted outcomes, and implausible susceptibility
spatial patterns, revealed a bias in the IFFI inventory. It was prepared with operational purposes and thus
linked to damage reported and elements at risk. The additional UNIMI inventory was conversely
prepared with geomorphological purposes, independently from the vicinity to vulnerable areas with an
accurate and extensive mapping campaign of the area. These results are in line with the findings of
Steger et al. (2021) in the Eastern Italian Alps. They observed that, when building models on public
reports related inventories, susceptibility outputs clearly reproduced a data collection effects rather than
physically driven processes. Similarly, the institutional IFFI inventory was not suitable to produce a
reliable rockfall susceptibility map in the study area. Indeed, it cannot satisfactorily and completely
capture the dynamics driving the physical processes. This may lead to a misinterpretation of the most

critical areas, resulting in challenges for environmental management and planning.

3.5.3. Rockfall susceptibility modelling with Random Forest

3.5.3.1 Hyperparameters and model performance

The best hyperparameters set from the tuning phase was represented by ntree=700, mtry=9, node size=10
and sample size=0.63; this set represented the best trade-off between OOB error and AUROC, which
showed values of 0.258 and 0.734, respectively. All the 750 combinations of OOB error and AUROC

are shown in Figure 3.29.

0.74 ‘ . .
0.735 | / . .
o8 Boa H 8 088 ©
82@@85 hgBegs.
073 © 88 B8HERHBERAHoSS 83°
85068 g g§88888 . o
) o @8683200 &)
0.725 5% cl2gds, ¢ ° ¢ .
' 00 8883@ 86 g o Figure 3.29 OOB error and AUROC for
8 o Soog © 000 . each one of the 750 hyperparameter
x 072°f 8o °§O 30@8"@ o . combinations tested.
o o0 g° e o ©
= ° 8°§°808259§§38§8
0.715} ° 929%800995% °®
© o © g 80 OOO
071' . ]
o [e]
0.705
©
07 L L 1 L L
0.25 0.26 0.27 0.28 0.29 0.3 0.31
OOB error

105



Chapter 3 — Valchiavenna Case Study

It is important to highlight that these two measures are intrinsically different, as the OOB error comes
from a sampling with replacement, while the k-fold cross validation AUROC from a sampling without
replacement; for this reason, the lowest OOB error may not necessarily correspond to the highest
AUROC. Spatial transferability calculated as the IQR of AUROC values on the test set resulted in 0.019.
Comparing the performance of the RF model with the GM+GEO model derived from GAM, it is possible
to conclude that the two models performed very similarly, with a slightly better AUROC for RF (0.6%).
However, the GAM model showed a higher spatial transferability, with a lower IQR of 0.010. This result
can be referred to the capability of RF to model more complex interactions than the smoothing functions
of GAM; accounting even for relationships between less strong predictors and sub-groups of
observations; it follows that some relationships could be more local, thus reducing their transferability

on the entire data population.

3.5.3.2 Predictors response relationships

The predictors importance (Figure 3.30a) and physical meaning (Figure 3.30b) derived from the SHAP
framework resulted in a good accordance with the GAM smoothing functions and deviance explained,
although with some differences. Regarding the topographic predictors, elevation, slope and SWI resulted
to be the three most important parameters, followed by profile curvature and northness, whose
importance is comparable to each other. SWI acquired more importance than slope in the RF model,
while it was at the same level of profile curvature and northness in the GAM model. Plan curvature and
eastness were confirmed as the topographic predictors with the lowest importance in the RF model (they
were penalized in the GAM model). Summary plots (Figure 3.30b), allowing the analysis of predictors

behaviour, also confirmed the same relationships descripted by the GAM smoothing functions.

Regarding the geomechanical predictors, some differences can be observed. While infiltration density
and Jv resulted the two most important geomechanical properties, with a direct correlation between
feature values and SHAP — coherent with their physical significant behaviour, already observed in the
GAM smoothing functions — Keq showed an importance equal to Jv, whereas it was penalized in the
GAM model. Moreover, the summary plots (Figure 3.30b) showed a quite clear direct behaviour
between medium-high Keq values and SHAP (i.e., high rock mass permeability corresponds to a strong
positive impact on susceptibility). Nonetheless, the SHAP behaviour for Keq low-medium values
remained quite variable and of difficult interpretation. Among the geomechanical predictors, Wi is
placed last in terms of importance. Also, consistently with the GAM model results, the summary plot
did not show a clear trend between its values and SHAP so that it could be linked to any physical process.

However, it resulted more important than plan curvature, eastness and geology.

106



Chapter 3 — Valchiavenna Case Study

Geology showed the same behaviour observed in the GAM model. Orthogneiss (i.e., geo 3 in Figure
3.30) resulted to be the most impacting lithology in terms of susceptibility, consistently with the
particular geological-structural framework of the study area, already discussed in Section 3.5.2.3.
However, as already seen in the mDD% plots of the GAM model, geology resulted in a small general

impact on susceptibility.
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Figure 3.30 a) SHAP feature importance plot; b) SHAP summary plot; c) SHAP force plot. The first half represent rockfall
presence, while the second half represent rockfall absence. Abbreviations: SWI=SAGA (i.e., topographic) Wetness Index;
profcurv=profile curvature; north=northness; infden=infiltration density; east=eastness; plancurv=planar curvature;
geol=paragneiss; geo2=granitoids; geo3=orthogneiss; geo4=shists geoS=ultramafic rocks.
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The force plot in Figure 3.30c confirmed that the most important topographic predictors (elevation, SWI,
slope, profile curvature, northness) had the highest impact on the final SHAP value of each observation.
Also, it suggested that geomechanical predictors (infiltration density, Keq, Jv) have a medium impact
and helped in differentiating, even locally, the Shapely values, while Wi, eastness, planar curvature and
geology could be seen generally as noise in the model, with little and localized impact only on the final
Shapley value of few observations. An even more intuitive representation of each single predictor
behaviour than the summary plot is represented by the dependence plots (Figure 3.31 and Figure 3.32),
which allowed a direct comparison with the GAM model CSF plots shown in Figure 3.21. The two series
of plots were similar and comparable. For example, elevation showed a secondary peak between 2000
and 2200 m a.s.l. Slope, Jv and SWI showed both a quite linear monotonic behaviour, direct for the
former two and inverse for the latter. Northness and profile curvature exhibited a direct increasing
behaviour, both showing a not perfectly linear trend for low (i.e., negative) values. Eastness, planar
curvature and Wi were essentially characterized by the absence of a clear trend and of a differentiation
of predictor values in terms of SHAPs. A brief mention to Keq behaviour is necessary, as it acquired
more importance in the RF model. The dependence plot of this predictor seemed to show a cut-off,
separating negative and positive impact on susceptibility, at a value approximately of log10(Keq)=-6
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