Rheumatology

21

22 23

24

25

26 27

28

29

30 31

32

33

34

38

39 40

41

42

43 44

45

46

47 48

51

54

55 56

57

THE ROLE OF CHEST CT IN DECIPHERING INTERSTITIAL LUNG INVOLVEMENT: SYSTEMIC SCLEROSIS VERSUS COVID-19

Martina Orlandi¹, Nicholas Landini^{2,3}, Gianluca Sambataro^{4,5}, Cosimo Nardi², Lorenzo Tofani,¹, Cosimo Bruni, MD¹, Silvia Bellando- Randone¹, Jelena Blagojevic¹, Daniela Melchiorre¹, Michael Hughes⁶, Christopher P. Denton⁷, Fabrizio Luppi⁸, Barbara Ruaro⁹, Francesca della Casa¹⁰, Francesca W. Rossi¹⁰, Giacomo De Luca¹¹, Corrado Campochiaro¹¹, Michele Spinicci¹², Lorenzo Zammarchi¹², Sara Tomassetti¹³, Antonella Caminati¹⁴, Edoardo Cavigli¹⁵, Marco Albanesi¹⁵, Fabio Melchiorre¹⁶, Stefano Palmucci¹⁷, Virginia Vegni¹⁸, Serena Guiducci¹, Alberto Moggi-Pignone¹⁹, Yannick Allanore²⁰, Alessandro Bartoloni¹², Marco Confalonieri⁹, Lorenzo Dagna¹¹, Francesco De Cobelli²¹, Amato de Paulis¹⁰, Sergio Harari^{14,22}, Dinesh Khanna²³, Masataka Kuwana²⁴, Gloria Taliani²⁵, Federico Lavorini¹³, Vittorio Miele¹⁵, Giovanni Morana³, Alberto Pesci⁸, Carlo Vancheri⁴, Stefano Colagrande², Marco Matucci-Cerinic^{1,11}.

- 1 Department of Clinical and Experimental Medicine, University of Florence, University of Florence, Division of Rheumatology AOUC, Florence, Italy.
- 2 Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - AOUC, Largo Brambilla 3, 50134, Florence, Italy.
- 3 Department of Radiology, Ca' Foncello General Hospital, Piazzale Ospedale, 1, 31100, Treviso, Italy.
- 4 Regional Referral Centre for Rare Lung Diseases, A. O. U. "Policlinico G. Rodolico - San Marco" Dept. of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- 5 Artroreuma S.R.L., Rheumatology Outpatient Clinic Associated with the National Health System, Mascalucia (Catania), Italy.
- 6 Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, 35 36 United Kingdom. 37
 - 7 UCL Division of Medicine Royal Free Hospital, London, United Kingdom.
 - 8 Respiratory Unit, University of Milano-Bicocca, S. Gerardo Hospital, Monza, Italy.
 - 9 Department of Pulmonology, University Hospital of Cattinara, Trieste, Italy.
 - 10 Division of Autoimmune & Allergic Diseases, Department of Translational Medical Sciences. University of Naples Federico II, Napoli, Italy.
 - 11Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy.
 - 12 Department of Experimental and Clinical Medicine, University of Florence, and Infectious and Tropical Diseases Unit, AOUC, Florence, Italy.
- 49 13 Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy. 50
 - 14 U.O. di Pneumologia, Ospedale San Giuseppe MultiMedica, IRCCS.
- 52 15 SOD Radiodiagnostica Emergenza-Urgenza, AOU Careggi, Florence, Italy. 53
 - 16 Department of Radiology Sant'Andrea Hospital Vercelli, ASLVC Italy.
 - 17 Radiodiagnostic and Radiotherapy Unit, Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Italy.
 - 18 Radiology Unit, Rugani Hospital, Siena, Italy.
- 58 19 Department of Experimental and Clinical Medicine, AOU Careggi Hospital, University of 59 60 Florence Medical School, Florence, Italy.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 202

- ²⁰ Department of Rheumatology A, Descartes University, APHP, Cochin Hospital, Paris, France.
- ²¹ Department of Radiology IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
- ²² Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy.
- ²³ Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
- ²⁴ Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan.
 - ²⁵ Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.

CORRESPONDING AUTHOR

Martina Orlandi

Department of Clinical and Experimental Medicine, University of Florence, & Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence, Italy. Padiglione 28c Ponte Nuovo, piano 1. Via delle Oblate, 4, Firenze

Padiglione 28c Ponte Nuovo, piano 1. Via delle Oblat

Tel. 055 794 7066

ORCID ID: 0000-0001-6784-2235

martina.orlandi@unifi.it

ABSTRACT

Objective: To identify the main computed tomography (CT) features that may help distinguishing a progression of interstitial lung disease (ILD) secondary to Systemic sclerosis (SSc) from COVID-19 pneumonia.

Methods: This multicentric study included 22 international readers divided in the radiologist group (RAD) and non-radiologist group (nRAD). A total of 99 patients, 52 with COVID-19 and 47 with SSc-ILD, were included in the study.

Results: Fibrosis inside focal ground glass opacities (GGO) in the upper lobes; fibrosis in the lower lobe GGO; reticulations in lower lobes (especially if bilateral and symmetrical or associated with signs of fibrosis) were the CT features most frequently associated with SSc-ILD. The CT features most frequently associated with COVID- 19 pneumonia were: consolidation (CONS) in the lower lobes, CONS with peripheral (both central/peripheral or patchy distributions), anterior and posterior CONS and rounded-shaped GGOs in the lower lobes. After multivariate analysis, the presence of CONS in the lower lobes (p < 0.0001) and signs of fibrosis in GGO in the lower lobes (p < 0.0001) remained independently associated with COVID-19 pneumonia or SSc-ILD, respectively. A predictive score was created which resulted positively associated with the COVID-19 diagnosis (96.1% sensitivity and 83.3% specificity).

Conclusion: The CT differential diagnosis between COVID-19 pneumonia and SSc-ILD is possible through the combination the proposed score and the radiologic expertise. The presence of consolidation in the lower lobes may suggest a COVID-19 pneumonia while the presence of fibrosis inside GGO may indicate a SSc-ILD.

Keywords: COVID-19, COVID-19 pneumonia, interstitial lung disease, systemic sclerosis, lung CT scan.

Key messages:

CT differential diagnosis between COVID-19 pneumonia and interstitial lung disease secondary to Systemic sclerosis (SSc-ILD) is possible.

The presence of fibrosis inside ground glass opacities may indicate a SSc-ILD.

The presence of consolidation in the lower lobes may indicate a COVID-19 infection.

INTRODUCTION

The COVID-19 pandemic is characterised by an interstitial pneumonia and vascular damage that may lead to a severe and sometimes fatal outcome [1]. In systemic sclerosis (SSc), interstitial lung disease (ILD) is one of the main features of the disease [2-3] During the last few months, it has clearly emerged that COVID-19 and SSc may share similar radiological features [4]. Recently we raised the question of whether, in SSc, the onset of bilateral and subpleural lung alterations in chest HRCT were due to the rapid onset, acute exacerbation or progression of SSc-ILD or the overlap of COVID19 pneumonia [5]. In both diseases, the presence of bilateral and subpleural ground glass opacities (GGO), with or without consolidations, are the most frequent radiological alterations [6]. In SSc-ILD, the most common radiological pattern is non-specific interstitial pneumonia (NSIP) with peripheral, bibasilar distribution of GGO and a lower proportion of reticulation, while usual interstitial pneumonia (UIP) may be present in up to a third of patients [7-12]. In COVID-19 patients, ILD pneumonia is characterized by bilateral GGO, evolving into consolidations, with a peripheral distribution mostly involving lower lung areas [13]. Although none of the CT features of COVID-19 seems to be specific, lung CT has a fundamental role in the diagnostic algorithm for COVID-19 pneumonia. Recently, the Radiological Society of North America proposed a radiologic classification of COVID19 pneumonia which focused the attention on the fact that also a typical COVID-19 CT pattern may be found in other ILDs, such as that found in connective tissue diseases [14]. Therefore, the differential diagnosis between the two diseases is a real challenge in practice. Drawing parallels between SSc-ILD and COVID-19 offers potential insight into both diseases as well as being of practical clinical relevance.

Considering this background, the primary goal of our study was to identify the main CT features of
COVID-19 pneumonia and SSc-ILD that may help distinguishing both diseases. The secondary
endpoint was to evaluate the ability and concordance between radiologists and nonradiologists/clinicians, on chest CT, in differentiating SSc-ILD from COVID-19 pneumonia, based
on their CT expertise reading.

 Patients and images selection

COVID-19 pneumonia and SSc-ILD patients were eligible for the study. The COVID-19 group included patients with both positive by RT-PCR for COVID-19 and available chest CT imaging, performed within two weeks since the PT-PCR diagnosis. COVID-19 patients were retrospectively recruited from Florence and Treviso hospital from March 1 to May 30, 2020. The COVID CTs were acquired at the hospital admission or within 3 days, for functional deterioration. For each COVID-19 patient, we tried to identify a SSc-ILD gender- and age-matched patient fulfilling the 2013 ACR/EULAR criteria for SSc [15] with CT images acquired before 2019. The identified CT scans were directly downloaded from the hospital Picture Archiving and Communications Systems. All CT scans had slice thickness ranging from 1.0 to 1.5 mm. All CT were scanned at full Inspirations in supine position. Some additional prone CT were acquired in SSc patients, as it may be occasionally performed for ILD assessment [16]. However, these additional CT were excluded from the analysis to avoid any lecture bias, since CT in COVID patients were acquired only in supine position. Images were anonymized and randomized. Patients were identified with an alpha numeric code, in the respect of the privacy rules. The CT scans were saved as DICOM files, sent to the readers through a password-protected sharing platform (Dropbox business). A free DICOM viewer (Radiant DICOM Viewer 2020.1) was also suggested.

Methods and Study design

This retrospective, observational, multicentric, international study was approved by the Institutional Ethics Committee of Florence Careggi hospital (protocol number 17104_oss).

Phase I - the gold standard

Two chest radiologists (NL and EC) with more than 5 years' experience in chest imaging evaluated all CTs: disagreements were solved by a senior chest radiologist with more than 10 years of experience (SC). These evaluations were considered as the gold standard for analysis of the correctness and definition of the predictive capacity of the various CT features elements.

Phase II – Image evaluation

This multicentric study included 22 international readers (NL, EC, MA, FM, SP, VV, FDC, GS, CB, SBR, JB, MH, CD, FL, BR, FDC, GDL, LZ, MS, ST, AC), including radiologists (RAD) and non-radiologists (nRAD). The RAD group included 7 radiologists of whom 4 chest radiologists, with at least more than 5 years of experience. The non-RAD group included 15 specialists, including 6 rheumatologists, 3 immunologists, 2 infectious disease specialists, 4 pulmonologists. Detailed information about reader's medical speciality, location of practice, SSc specific training, years of practice, COVID-19 specific training are shown in Supplementary Data S1, available at *Rheumatology* online. Each reader reviewed the images of all patients using Picture Archiving and Communications Systems independently and was blinded to diagnosis, laboratory assay results and demographic information including patient name, hospital of origin of the CTs and date of CT examination.

Image analysis

Each reader was asked to fill an electronic database giving single (i.e. yes / no) or multiple (i.e. mostly anterior, mostly posterior / no prevalence) answers. The definition of all CT lesions and

Rheumatology

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

anatomical references requested in the assessment follows the definitions of the Fleischner society [17,18] and are available in Supplementary Data S2, available at *Rheumatology* online. CT evaluation was performed at three different levels of detail in order to reach the study's objectives: a first basic level of analysis, common for RAD and nRAD, a second advanced level, specific only for RAD and a third deeper analysis, made by the 4 chest radiologists only, as follows. The 1st level included the analysis of 56 CT features. CT images were assessed for presence/absence of lung disease, as well as for side (monolateral/bilateral-asymmetric/bilateralsymmetric), prevalent distribution (anterior/posterior/no prevalence, central/peripheral/no prevalence/patchy). Parenchymal lesions assessment was also performed with the same variables, for upper and lower zones. The CT lesions were categorised as: consolidations (CONS), GGO, crazy paving (CP), reticulations (RET) and honey combing (HC). As regards the whole disease, the prevalent localisation (upper/lower/no prevalence), involved lobes and the most extended lesion (CONS, GGO, CP, RET or HC) were also assessed. Air bronchogram inside CONS (always present/not always present/never present), were analysed, too. Lastly, pleural effusion, pericardial effusion, lymphadenopathy and oesophagus dilatation were assessed in terms of absence/presence. The 2nd level included 14 additional CT features: presence/absence of aspects resembling organizing pneumonia in CONS, as well as signs of fibrosis (defined by architectural distortions or bronchiectasis) in CONS, GGO and RET, finally pleural thickenings in the whole lung fields. The 3rd level assessed other 8 CT features: disease pattern (monofocal/multifocal/diffuse/focal and diffuse or white lung), GGO pattern (focal, diffuse or both) presence/absence of rounded GGO and presence /absence of fibrosis inside focal GGO. (Supplementary Figure S1, available at Rheumatology online).

Each reader, finally, was invited to propose a diagnosis of COVID-19 pneumonia or SSc-ILD. *Statistical analysis and score derivation*

Each categorical variable was described as absolute and relative frequencies for each category stratified by diagnosis. In order to evaluate the interreader agreement Cohen's Kappa (K) adjusted for multiple readers and its 95% confidence interval were used. A K > 0.4, 0.6, 0.8 was considered discrete, good and excellent, respectively. To assess the association between each CT feature and the diagnosis a simple logistic regression model was used and OR and its 95% confidence interval were reported. According to the presence of association the predictive capability was described by AUROC and its 95% confidence interval. An AUROC ≥ 0.8 was considered good while ≥ 0.9 , excellent. In order to reach the best predictive performance with the most economical model a multiple logistic regression model with backward selection method for CT features with excellent predictive capability and good interreader agreement was used. According to the multiple logistic model results a score weighted using log (OR) of each selected CT feature was created. Using the AUROC a cut-off was selected, and its sensibility, specificity, positive predictive value and negative predictive value were reported. No external validation of the score cut-off was performed. The significant level was set to 5% for each analysis. Once obtained the results from the RAD analysis, we compared them with the reference results in order to evaluate which could be the features with significantly discriminating capability and subsequently we validated this with a regression model and with multivariate analysis. Lastly, we tried to obtain an incremental score positively associated with the COVID-19 diagnosis.

RESULTS

A total of 99 patients were included in this study: 52 COVID-19 pneumonia patients and 47 SSc-ILD patients. Mean age was $62.4 (\pm 7)$ and $60.3 (\pm 6)$ in COVID-19 and SSc-ILD, respectively, with 19 female patients in the SSc-ILD group and 23 in the COVID-19 group.

1.Interreader agreement

The full detailed results about interreader agreement are available in Supplementary Table S1, available at *Rheumatology* online.

1.1 nRAD interreader agreement

The interreader agreement for the evaluation of all the different items was scarce (0.03-0.36). For this reason, this was not considered relevant for the subsequent evaluations. (Supplementary Table S2, available at *Rheumatology* online).

1.2.RAD interreader agreement

In the RADs group, a discrete-good agreement for 47% of the items (33/70) was detected, with a K Cohen from 0.60 to 0.71. When readers were divided according to the skill concerning chest CT, chest RAD showed a better concordance for the items considered 68.4% (52/76), and the K Cohen between non-chest RAD and chest RAD was significantly different (p < 0.05) in 51.4% of items (36/70), and in 35.71% of variables (25/70) p-values was < 0.005 (Supplementary Table S1, available at *Rheumatology* online). Considering chest RAD, the agreement was good, with a K Cohen value from 0.62 e to 0.74. Out of 70 CT features proposed to RAD readers for analysis, 39 showed a discrete and 33 a good intrareader agreement: only the latter were considered suitable for subsequent evaluations.

2. Diagnostic performance

2.1 nRAD diagnostic performance

The nRAD made a correct diagnosis (COVID-19 pneumonia or SSc) in 77.5% (IC95%: 75.13-79.74). In particular, a correct diagnosis was achieved in 75.95% COVID-19 patients (499/657 evaluations) and 78.95% SSc patients (510/646 evaluations) (Table 1).

2.2 RAD diagnostic performance

The RAD made a correct diagnosis in 83.92% of cases (80.95%-86.59% CI): 86.61% COVID-19 pneumonia patients and 81.08% SSc subjects (Table 1). Diagnostic performance between nRAD and RAD were statistically different (p = 0.0008) (Table 1). The correct diagnosis was done (all, COVID-19 pneumonia or SSc-ILD) respectively: chest RAD group, in 86.53% (83.18% -89.43% CI); 88.40% (221/250); 84.58% (67/93) patients; non-chest RAD group in 72.04% (70.77-83.01 % CI); 82.18% (82/101); 72.04% (203/240) patients. A significant difference between chest and non-chest RAD was found (p =0.0034) (Table 1).

3. Diagnostic predictive value CT features

Given the scarce concordance in nRAD group and the significant difference in concordance between chest-RAD and non-chest-RAD, only those parameters for which radiologists had shown good or excellent concordance (Table 2) were considered as possible discriminating parameters and so accepted as relevant for differential diagnosis between COVID-19 and SSc-ILD. The complete CT features predictive values were reported (Supplementary Table S2, available at *Rheumatology* online).

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 202

4. Discriminating CT features

We identified main CT features of COVID-19 pneumonia and SSc-ILD, considering only those showing good concordance and good/excellent discriminating capability. CT features most likely associated with SSc-ILD were: fibrosis inside focal GGO in the upper lobes; fibrosis in lower lobe GGO; RET in lower lobes, especially if bilateral/symmetrical or with signs of fibrosis; while those associated with COVID-19 pneumonia were: CONS in the lower lobes; CONS with peripheral, both central/peripheral or patchy distributions; both anterior and posterior CONS; rounded-shaped GGOs in the lower lobes. (Table 2).

5. Model derivation

A multivariate regression model was developed to select variables independently related to the diagnosis of COVID-19 pneumonia. Out of 99 patients involved, the 5 most significant associated predictors were, according to clinical decision, feasibility, good reproducibility and good/excellent predictive ability: CONS in lower zone, rounded GGO in lower zone (both predictive for COVID-19 pneumonia), fibrosis in GGO in lower zone, inside focal GGO fibrosis in the upper zone and lower lobes RET (all predictive for SSc-ILD). Otherwise, only lower lobes CONS (p <0.0001) and signs of fibrosis in GGO lower lobes (p <0.0001) resulted as independent predictors (Table 3). On this basis we proposed a score which might identify the CT associated with the COVID-19 diagnosis (OR: 2.67, IC95%: 1.76-4.07), as follows: CONS: 4 points if presents, 0 if absent; GGO: 5 points if present without fibrosis, 0 if present with fibrosis, 3 if absent. This score showed an excellent predictive capability, with area under the ROC curve of 0.97 (0.94-1.00 CI) (Table 3 and Supplementary Figure 2, available at Rheumatology online). The score cut of

1.00 CI) (Table 3 and Supplementary Figure 2, available at Rheumatology online). The score cut off was 4 (chosen in order to guarantee greater sensitivity and specificity to the score) and, if \geq 4, it is associated with a diagnosis of COVID-19. The score diagnostic performance was 96.1% sensitivity (86.5% -99.5% CI) and 83.3% specificity (69.8% -92.5% CI). The negative predictive value was 95.2% (83.8% -99.4% CI), and the positive predictive value was 86.0% (74.2% -93.7% CI).

3

4

5

6 7

8

9

53

54

55 56

57

58

59 60

DISCUSSION

Our data show, as far as we know for the first time, that a differential diagnosis between COVID-19 and SSc-ILD is possible in practice, employing the CT images; the presence of consolidations and fibrosis inside GGO in the lower lobes, are independent CT diagnostic feature for COVID-19 pneumonia and SSc-ILD diagnosis, respectively (Figure 1).

This differential diagnosis represents a new challenge for clinicians and radiologists [19,20]. Recently, the RSNA [14] identified 3 CT patterns of COVID19 pneumonia: peripheral and bilateral 10 11 GGO, regardless the coexistence of consolidation; CP or multifocal rounded GGO, regardless the 12 coexistence of consolidation or CP; findings of organizing pneumonia. However, these features of 13 COVID-19 pneumonia can also be found in other lung diseases, such as those related to connective 14 15 tissue diseases [7,14]. The most common radiological pattern in SSc-ILD is NSIP with peripheral, 16 bibasilar distribution of GGO and a lower proportion of coarse reticulation [4,8-12]. On top of 17 radiological similarities, the clinical presentation is similar in both diseases, as well. Otherwise, 18 19 fever and rapid onset shortness of breath are peculiar for COVID-19 pneumonia [21-23]. However, 20 suspicion for a SARS-CoV-2 infection in symptomatic SSc patients should be raised also in the 21 absence of fever, since in most of these patients, fever is absent due to treatment with 22 23 immunosuppressors. So, in the COVID-19 era, it was hard for clinicians to provide an accurate 24 diagnosis and lung CT has played a pivotal role in the creation of a diagnostic algorithm for patients 25 with suspected COVID-19 pneumonia and a predictive CT score may be useful. We evaluated the 26 27 main CT features related to COVID-19 pneumonia and SSc-ILD, trying to identify the specific 28 lesions that could help in differential diagnosis. We decided on a multi-step evaluation of CT 29 alterations considering the relative expertise of all the readers, to highlight the relevance of a 30 31 specific expertise in chest CT for imaging evaluation. Surprisingly, we found low agreement among 32 chest RAD in distinguishing between prevalent anterior/posterior (or no prevalence) distribution of 33 lung disease and of lower zones GGO, regardless of the clear anatomic landmarks. This may 34 suggest that the presence of more than one alteration may produce confusion in the interpretation of 35 36 the general disease distribution. In fact, all the CT features, considered one-by-one, obtained a 37 higher agreement on both lung zones for anterior-posterior distribution, except for lower zones 38 GGO. In SSc-ILD, GGO can be considered either inflammatory or fibrotic, while RET is usually 39 40 interpreted as a fibrotic alteration [24]. Thus, we believe that GGO could have been occasionally 41 interpreted as thin RET, and vice versa. This can explain the low agreement of RET presence in 42 upper zones, where fibrotic fine RET may be less represented and considered as GGO. Following 43 44 the same rationale, CP, defined as GGO superimposed on RET, may suffer for different evaluation 45 in lower zones, where fibrotic alterations can be more pronounced and all considered as RET, 46 instead of CP. The definition of multifocal and diffuse pattern (Supplementary Figure 1, available at 47 48 *Rheumatology* online) we proposed, as well as the recent identification of vessel thickening as a 49 feature of COVID-19 pneumonia, may have partially caused the low agreement for upper zones 50 GGO pattern and vessel thickening. 51 52

On the upper zones, where lung alterations may have more frequently a patchy-irregular distribution, the interpretation between focal and diffuse disease may represent an additional challenge. In fact, GGO may have blurred margins, making hard to define shape and dimensions. This can justify the lower agreement in GGO pattern assessment in upper zones. Moreover, HC showed a low agreement on upper fields, as expected, since HC and paraseptal emphysema are in differential diagnosis and may be misinterpreted (Supplementary Figure 3, available at Rheumatology online) [25]. It should be noted that the only 2 cases of SSc ILD and COVID-19 pneumonia were

Rheumatology

1 2

3

4

5

6 7

8

9

10

11

12

13

14 15

16

17

18 19

20

21

22 23

24

25

26 27

28

29

30 31

32

33

34 35

36

37

38 39

40

41

42 43

44

45

46 47

48

49

50

51 52

53

54

55 56

57

58

59 60 misdiagnosed by most of nRAD, RAD and chest RAD readers (Figure 2), while, in some subjects the coexistence of both diseases was wrongly suggested by chest RAD. Hence, regarding the RSNA statement [14], we can suppose that the radiologic differential diagnosis is reliable on "pure" lung disease. However, in the latter environment, where there are no clinical doubts between COVID-19 and SSc-ILD, the relevance of CT evaluation in differential diagnosis is less significant, becoming on the contrary, relevant in the identification of the lung disease in COVID infected SSc patients. This is confirmed by our results, and the only aspects that may help in differential diagnosis are consolidation for COVID-19 pneumonia is (Supplementary Figure 4, available at Rheumatology online), and fibrosis inside GGO for SSc-ILD (Figure 3). However, consolidations can be absent, especially during the early phase of COVID-19, when a clinical decision may be relevant and GGO is the only main CT feature and a prompt therapy is mandatory. In fact, consolidations were absent in the only subject with coexistence of both disease and few readers made the right diagnosis. This is in line with the few reports present in literature. Cheng et al. [25] observed a COVID-19 pneumonia superimposed on SSc-ILD, with GGO as main manifestations, suggesting a specific care should be used when only GGO is present. In fact, though associated signs of fibrosis may be suggestive for SSc-ILD alone, GGO without fibrosis may potentially represent both diseases. On the other hand, Mariano et al. [26] made a diagnosis of COVID-19 pneumonia on SSc-ILD thanks to the presence of a consolidation superimposed on a UIP pattern in the right lower lobe. Fibrosis in focal GGO in upper zones and RET in lower zones did not result as independent predictor of SSc-ILD, as well as rounded GGO in lower zones for COVID-19 pneumonia (Supplementary Figure 5, available at *Rheumatology* online). In fact, in both diseases the absence of fibrosis in focal alteration as well as lower rounded GGO may be encountered. Thus, on an SSc-ILD background, the appearance of rounded GGO may raise the suspicion of a COVID-19 overlapping on SSc-ILD. This is because fibrotic alterations are not present during the acute phase of COVID-19 pneumonia and could be referred only to SSc-ILD (Figure 3), though we cannot exclude that an acute focal manifestation of COVID-19 pneumonia may appear over focal signs of fibrosis. Furthermore, RET are less frequent in COVID-19 pneumonia (Figure 1). The two principal items (presence of CONS and presence of GGO without fibrosis (Figure 3) in the lower lobes) were included in a predictive score positively associated with the COVID-19 diagnosis (Figure 1), as follows: high risk for COVID-19 pneumonia (5-9 points); probable overlap COVID-19 pneumonia in SSc-ILD (4 points); low risk for COVID-19 pneumonia (0-3 points). The score showed an excellent diagnostic accuracy with high sensibility and specificity (Supplementary Figure 2, available at Rheumatology online) and could therefore be useful in the clinical routine. However, we recommend considering that GGO without fibrosis may be expression of non-fibrotic NSIP. We strongly suggest to consider the presence of both consolidations and non-

of non-fibrotic NSIP. We strongly suggest to consider the presence of both consolidations and nonfibrotic GGO as signs of COVID-19 pneumonia alone only in presence of other suggestive signs (i.e. rounded shape) and absence of typical SSc-ILD abnormalities (i.e. RET).

The strength of this study is the number of patients that were examined, and the high number of readers and of the considered variables. However, it is important to consider that our aim was not to compare the two patterns in order to find the main features that may then help differentiating the two diseases when superimposed. In this work, only a few cases of COVID-19 superimposed on SSc-ILD were analysed, while COVID-19 and SSc ILD CT images at different stages of the diseases with diverse disease duration and ILD stage were studied.

In conclusion, our study shows that the CT differential diagnosis between COVID-19 pneumonia and SSc-ILD might be successfully achieved in practice. This could be performed also by the

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
- 20	
21	
22	
22	
∠3 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
J4 2⊑	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

58 59 60

Our results, and in particular the presence of consolidations in the lower lobes and of fibrosis inside

GGO, may help in differentiating the diseases and drive the physician toward an early diagnosis either of SSc-ILD progression or of an overlap of COVID-19 in SSc-ILD. In the future, our results

should be confirmed on a much larger cohort of patients where both diseases coexist.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

Contributors

MO, MMC, SG, SC and AMP were involved in the study design. MO, NL, MMC, EC, VV and GC decided the methodology. NL, GS, CB, SBR, JB, DM, MH, CPD, FL, BR, FDC, GDL, MS, LZ, ST, AC, EC, MA, FM, SP, VV, GC, FDC, CV were CTs readers. MO, NL, CN made data collection. LT, MO and NL made statistical analysis.MO, NL, FWR, CC, GS, LT, SC and MMC did the results interpretation. MO, NL did the initial manuscript drafting. MMC and SC made the first revision and, then, YA, AB, MC, LD, MDP, SH, DK, MK, GT, FL, VM, GM, AP made other revisions.

All Authors had full access to the database and the statistical analysis.

All Authors approved the final version of the manuscript.

Declaration of interests

- Stefano Colagrande reports personal fees from NOVARTIS-SANOFI-LILLY-CELTHER-PFIZER-JANSSEN, outside the submitted work;

- Masataka Kuwana reports grants and personal fees from Boehringer-Ingelheim, personal fees from Corbus, grants and personal fees from Chugai, grants and personal fees from Ono Pharmeceuticals, personal fees from Tanabe-Mitsubishi, personal fees from Astellas, personal fees from Gilead, personal fees from Mochida, outside the submitted work;

-Sara Tomassetti reports personal fees from Boehringer Ingelheim, personal fees from Roche, outside the submitted work;

- Gianluca Sambataro reports personal fees from Boehringer Ingelheim, outside the submitted work;

- Cosimo Bruni reports personal fees from Actelion, personal fees from Eli Lilly, grants from European Scleroderma Trial and Research (EUSTAR) group, grants from New Horizon Fellowship, grants from Foundation for Research in Rheumatology (FOREUM), grants from Fondazione Italiana per la Ricerca sull'Artrite (FIRA), outside the submitted work ;

- Carlo Vancheri reports grants and personal fees from Boehringer Ingelheim, grants and personal fees from F. Hoffmann-La Roche Ltd. , outside the submitted work;

- Fabrizio Luppi reports lectures fee from Roche and from Boehringer-Ingelheim;

- Christopher P. Denton reports grants and personal fees from GSK, personal fees from Boerhinger Ingelheim, grants from Servier, grants and personal fees from Inventiva, grants and personal fees from Arxx Therapeutics, personal fees from Corbus, personal fees from Sanofi, personal fees from Roche, outside the submitted work ;

- Federico Lavorini reports grants and personal fees from GSK, personal fees from Boehringer Ingelheim, personal fees from Orion Pharma, personal fees from AstraZeneca, grants from MSD, personal fees from HIKMA, personal fees from Trudell International, grants and personal fees from Chiesi Farmaceutici, personal fees from Novartis Pharma, outside the submitted work ;

Rheumatology

- Dinesh Khanna reports personal fees from Actelion, grants and personal fees from Bayer, grants and personal fees from Boehringer Ingelhem, personal fees from CSL Behring, grants and personal fees from Horizon, grants from Pfizer, personal fees from Corbus, grants and personal fees from BMS, outside the submitted work; and Dr Khanna is the Chief Medical officer of Eicos Sciences Inc and has stock options, outside the submitted work

All other authors have declared no competing interests.

Financial support

No specific funding was received from any bodies in the public, commercial or not-for-profit sectors to carry out the work described in this article.

Data sharing

A deidentified dataset will be made available upon request to the corresponding author at least 1 year after the publication of this study. The request must include a statistical analysis plan.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

TABLES

TABLE 1. READERS DIAGNOSTIC PERFORMANCE

		CORRECT I	DIAGNOSIS	RAD vs nRAD	Chest-RAD vs non -chest RAD
READERS	COVID-19	SSc-ILD	TOT (CI)		
nRAD	75.95%	78.95%	77.5% (75.13%-	p=0.0008	
	(499/657)	(510/646)	79.74%)		
RAD	86.61%	81.06%	83.92% (80.95%-	-	
	(304/351)	(270/333)	86.59%)		
Chest-RAD	88.40%	84.58%	86.53% (83.18%-		p=0.0034
	(221/250)	(203/240)	89.43%)		
Non-Chest-	82.18%	72.04%	77.32% (70.77%-		
RAD	(83/101)	(67/93)	83.01%)		

Legend

nRAD: non radiologist clinicians; RAD: radiologists; Chest-RAD: chest radiologists, with at least more than 5 years of experience in chest imaging, Non-Chest-RAD: radiologists without experience in chest imaging.

CI: Confidence Interval

Rheumatology

CT PARAMETER	LEVEL	COVID-19	SSC-ILD	OR (95%CI)	p-VALUE	AUC (95%CI)	PREDICTI VE CAPABILI TY	
FOCAL GGO	Absence	14(27.45%)	34(70.83%)	Reference				
with FIBROSIS UPPER ZONE	No	37(72.55%)	6(12.5%)	0.07 (0.03 - 0.21)	<.0001*	0.82 (0.75 - 0.90)	Good	
	Yes	0(0%)	8(16.67%)	7.15 (0.33 - 156.76)	0.2120			
GGO with	Absence	5(9.8%)	4(8.33%)	Reference				Associated with SSc- ILD
FIBROSIS LOWER ZONES	No	42(82.35%)	4(8.33%)	0.129 (0.025 - 0.667)	0.0145	0.908 (0.849 - 0.967)	Excellent	
	Yes	4(7.84%)	40(83.33%)	11 (2.131 - 56.794)	0.0042			
RETICULATIO	No	49(96.08%)	7(14.58%)	Reference				
NS LOWER ZONE	Yes	2(3.92%)	41(85.42%)	109.59 (24.31 - 494.08)	<.0001*	0.91 (0.85 - 0.96)	Excellent	
RETICULATIO NS SIDE LOWER ZONE	Absence	49(96.08%)	7(14.58%)	Reference				
	Bilateral, asymmetric	0(0%)	2(4.17%)	33.02 (0.74 - 1474.71)	0.0712	0.91 (0.85 - 0.96)	Excellent	-
	Bilateral, symmetric	2(3.92%)	39(81.25%)	104.28 (23.08 - 471.10)	<.0001*			
RET with	Absence	49(96.08%)	7(14.58%)	Reference				1

FIBROSIS LOWER ZONE	No	1(1.96%)	2(4.17%)	11 (0.94 - 129.11)	0.0563	0.92 (0.86 - 0.97)	Excellent	
	Yes	1(1.96%)	39(81.25%)	173.8 (28.06 - 1076.39)	<.0001*			
			1	· · · · · ·				
CONSOLIDATI	No	8(15.69%)	44(91.67%)	Reference				
ON LOWER ZONE	Yes	43(84.31%)	4(8.33%)	0.02 (0.00 - 0.07)	<.0001*	0.88 (0.82 - 0.94)	Good	
CONSOLIDATI	Absence	8(15.69%)	44(91.67%)	Reference				
ON SIDE LOWER ZONE	Unilateral	10(19.61%)	3(6.25%)	0.06 (0.01 - 0.27)	0.0002*	0.90 (0.84 - 0.96)	Excellent	
	Bilateral, asymmetric	16(31.37%)	0(0%)	0.01 (0 - 0.11)	0.0007*			
	Bilateral, symmetric	17(33.33%)	1(2.08%)	0.02(0.00 - 0.11)	<.0001*			Associate with
CONSOLIDATI	Absence	8(15.69%)	44(91.67%)	Reference				COVID-1
ON C/P DISTRIBUTION LOWER ZONE	Central	1(1.96%)	0(0%)	0.06 (0.00 - 6.24)	0.2402	0.89 (0.82 - 0.95)	Good	
LOWERZONE	Peripherical	32(62.75%)	3(6.25%)	0.02 (0.00 - 0.08)	<.0001*			
	No prevalence	5(9.8%)	0(0%)	0.02 (0.00 - 0.45)	0.0147*			
	Patchy	5(9.8%)	1(2.08%)	0.05 (0.01 - 0.42)	0.0055*			
CONSOLIDATI	Absence	8(15.69%)	44(91.67%)	Reference				
ON A/P	mostly anterior	4(7.84%)	0(0%)	0.02 (0.00 - 0.60)	0.0242*	0.88 (0.82 -	Good	

DISTRIBUTION						0.95)	
LOWER ZONE	mostly posterior	33(64.71%)	3(6.25%)	0.02 (0.00 - 0.08)	<.0001*		
	no predominance	6(11.76%)	1(2.08%)	0.04 (0.01 - 0.34)	0.0027*		
GGO ROUNDED LOWER ZONE	Absence	5(9.8%)	4(8.33%)	3.32 (0.74 - 14.81)	0.1165	0.81 (0.73 - 0.89)	Good
	Rounded	38(74.51%)	9(18.75%)	Reference			
	Non rounded	8(15.69%)	35(72.92%)	16.93 (5.96 - 48.04)	<.0001*		

Legend:

Detailed results of all CT parameters analysed.

*P<0.05

SSC-ILD: interstitial lung disease secondary to Systemic sclerosis; OR : Odds Ratio; CI :Confidence Interval; AUC: Area under Curve; C/P: Central /Peripheral; A/P: Anterior/Posterior; GGO: Ground glass opacities; Absence: absence of the alteration for which the sub analysis should

have been performed.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

TABLE 3. MULTIVARIATE ANALYSIS WITH BACKWARD SELECTION METHOD RESULTS

CT PARAMETER	LEVEL	OR (95%CI)	p- VALUE	AUC (95%CI)
CONSOLIDATION	No	reference		
LOWER ZONE	Yes	69.41 (7.81- 616.801)	0.0001*	0.97 (0.94-1.00 CI)
GGO with FIBROSIS LOWER ZONE	Absence	21.65 (1.51- 310.0)	0.0236*	(0.94-1.00 CI)
	No	119 .61 (12.13- 999.99)	<0.0001 *	
	Yes	reference		-
FOCAL GGO with FIBROSIS UPPER ZONE		excluded	0.99	
RETICULATIONS LOWER ZONE		excluded	0.89	
ROUNDED GGO LOWER ZONE		excluded	0.97	

	GO: Ground glass opacities; Absence: Absence of the alterations for which the sub analysis should have been performed. R : Odds Ratio ; CI: Confidence Interval; AUC: Area under Curve
*P.	<0.05
FI	GURES
	GURE 1. THE CLINICAL INTERPRETATION OF THE COVID-19 PNEUMONIA PREDICTIVE SCORE.
A-	C: High probability for COVID-19 pneumonia; D: Probably COVID-19 pneumonia in SSc-ILD; E-F: Low probability for COVID-19 eumonia.
Ssc	c: systemic sclerosis; ILD: interstitial lung disease; GGO: ground glass opacities; RET: reticulations, HC: honeycombing.
FI	GURE 2. COVID-19 PNEUMONIA IN PATIENT WITH SSc-ILD
	gend
	ovid pneumonia in SSc patients. Basal smooth RET (white arrow), in presence of pleural effusion, and GGO (black arrows), were consider anifestation of disease other than Covid pneumonia and/or SSc-ILD (pulmonary edema), by most of readers.
	c: systemic sclerosis; ILD: interstitial lung disease; GGO: ground glass opacities; RET: reticulations.
FI	GURE 3. FOCAL FIBROSIS INSIDE GGO, GGO WITH AND WITHOUT FIBROSIS
-	gend
A:	Ssc-ILD, right lung, upper zone. Focal alteration with bronchiectasis at the periphery of upper lobe, configuring signs of fibrosis (white a SSc-ILD, lower zone. Bilateral diffuse GGO with bronchiectasis, configuring signs of fibrosis (white arrow)

Rheumatology

C: COVID-19, lower right lobe: GGO without fibrosis (white arrow).

SSc: systemic sclerosis; ILD: interstitial lung disease; GGO: ground glass opacities.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

REFERENCES

1 CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12-March 28, 2020. *MMWR Morb Mortal Wkly Rep* 2020; 69: 382-6

2 Orlandi M, Lepri G, Damiani A, Barsotti S, Di Battista M, Codullo V, et al. One year in review 2020: systemic sclerosis. *Clin Exp Rheumatol.* 2020;38 Suppl 125(3):3-17.

3 Volkmann ER. Natural history of systemic sclerosis–related interstitial lung disease: How to identify a progressive fibrosing phenotype. *J Scleroderma Relet Disord* 2020; 5(2S): 31-40.

4 Fujita J, Yoshinouchi T, Ohtsuki Y, Tokuda M, Yang Y, Yamadori I, et al. Non-specific interstitial pneumonia as pulmonary involvement of systemic sclerosis. *Ann Rheum Dis.* 2001;60(3):281-3.

5 Orlandi M, Lepri G, Bruni C, Wang Y, Bartoloni A, Zammarchi L, et al. The systemic sclerosis patient in the COVID-19 era: the challenging crossroad between immunosuppression, differential diagnosis and long-term psychological distress. *Clin Rheumatol.* 2020;39(7):2043-2047.

6 Orlandi M, Landini N, Bruni C, Colagrande S, Matucci-Cerinic M, Kuwana M. Infection or Autoimmunity? The Clinical Challenge of Interstitial Lung Disease in Systemic Sclerosis During the COVID-19 Pandemic. *J Rheumatol*. 2020 Dec 1:jrheum.200832.

7 Landini N, Orlandi M, Fusaro M, Ciet P, Nardi C, Bertolo S, et al. The Role of Imaging in COVID-19 Pneumonia Diagnosis and Management: Main Positions of the Experts, Key Imaging Features and Open Answers. *J Cardiovasc Echogr*. 2020;30(Suppl 2):S25-S30.

8 Goldin JG, Lynch DA, Strollo DC, Suh RD, Schraufnagel DE, Clements PJ, et al. Highresolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease. *Chest.* 2008;134(2):358-367.

9 Volkmann ER. Natural history of systemic sclerosis-related interstitial lung disease: How to identify a progressive fibrosing phenotype. *Journal of Scleroderma and Related Disorders*. 2020;5(2_suppl):31-40.

10 Launay D, Remy-Jardin M, Michon-Pasturel U, Mastora I, Hachulla E, Lambert M, et al. High resolution computed tomography in fibrosing alveolitis associated with systemic sclerosis. *J Rheumatol.* 2006;33(9):1789-801. PMID: 16960939.

11 Desai SR, Veeraraghavan S, Hansell DM, Nikolakopolou A, Goh NS, Nicholson AG, et al. CT features of lung disease in patients with systemic sclerosis: comparison with idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia. *Radiology*. 2004;232(2):560-7.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

 12 King TE Jr. Nonspecific interstitial pneumonia and systemic sclerosis. *Am J Respir Crit Care Med.* 2002; 165:1578–9.

13 Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. *Radiology*. 2020 Jul;296(1):172-180.

14 Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA -Secondary Publication. *J Thorac Imaging*. 2020;35(4):219-227.

15 van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. *Arthritis Rheum*. 2013;65(11):2737-47.

16 Prosch H, Schaefer-Prokop CM, Eisenhuber E, Kienzl D, Herold CJ. CT protocols in interstitial lung diseases--a survey among members of the European Society of Thoracic Imaging and a review of the literature. Eur Radiol. 2013 Jun;23(6):1553-63.

17 Nishino M, Itoh H, Hatabu H. A practical approach to high-resolution CT of diffuse lung disease. *Eur J Radiol*. 2014;83(1):6-19.

18 Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. *Radiology*. 2008;246(3):697-722.

19 Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. *Radiology*. 2020;296(2):E46-E54.

20 Calabrò L, Peters S, Soria JC, Di Giacomo AM, Barlesi F, Covre A, et al. Challenges in lung cancer therapy during the COVID-19 pandemic. *Lancet Respir Med.* 2020;8(6):542-544.

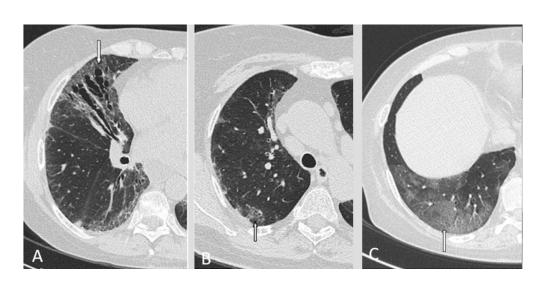
21 Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. *Travel Med Infect Dis.* 2020;34:101623.

22 Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. *Int J Infect Dis*. 2020;94:91-95.

23 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet.* 2020;395(10223):507-513.

2
3
4
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
55
55 56
F (

24 Capobianco J, Grimberg A, Thompson BM, Antunes VB, Jasinowodolinski D, Meirelles GS. Thoracic manifestations of collagen vascular diseases. *Radiographics*. 2012;32(1):33-50.

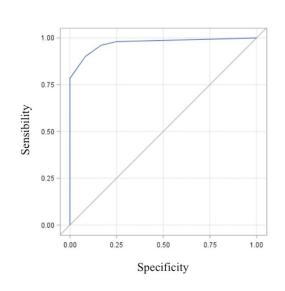

25 Cheng C, Li C, Zhao T, Yue J, Yang F, Yan Y, et al. COVID-19 with rheumatic diseases: a report of 5 cases. *Clin Rheumatol*. 2020;39(7):2025-2029.

26 Mariano RZ, Rio APTD, Reis F. Covid-19 overlapping with systemic sclerosis. *Rev Soc Bras Med Trop.* 2020 Sep 21;53:e20200450.

CT IMAGES	LEGEND	TOTAL CT SCORE	Р	CT IMAGES	LEGEND	TOTAL CT SCORE	Р
	Presence of CONS in lower zone (4 points) Presence of GGO without fibrosis in lower zone (5 points)	4+5= 9			Presence of CONS (4 points) in lower zone Presence of GGO with fibrosis in lower zone	4	4 points: PROBABLY COVID-19 PNEUMONIA in SSC-ILD
50	Presence of CONS in lower zone (4 points) Absence of GGO in lower zone (3 points)	4+3= 7	5-9 points: HIGH PROBABILITY for COVID -19 PNEUMONIA		Absence of GGO (3 points) in lower zone, presence of HC and RET.	3	0-3 points:
	Presence of GGO without fibrosis in lower zone (5 points) Absence of CONS in lower zone	5			Absence CONS in lower zone (0 point), GGO with fibrosis in lower zone (0 point)	0	LOW PROBABILITY for COVID-19 PNEUMONIA
		160x	106mm (300 x 300 DPI)			

159x61mm (300 x 300 DPI)

119x58mm (300 x 300 DPI)

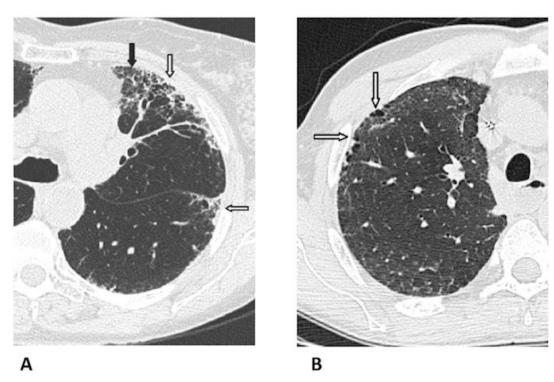

Legend

Covid 19 pneumonia presenting with multifocal and diffuse pattern. Peripheral alterations with irregural shape and a maximum diameter > 3cm configure a diffuse pattern (black stars). Focal alterations are also present (white arrow).

Supplementary Figure S2.

SCORE PREDICTIVE CAPABILITY IN COVID-19 DIAGNOSIS

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021



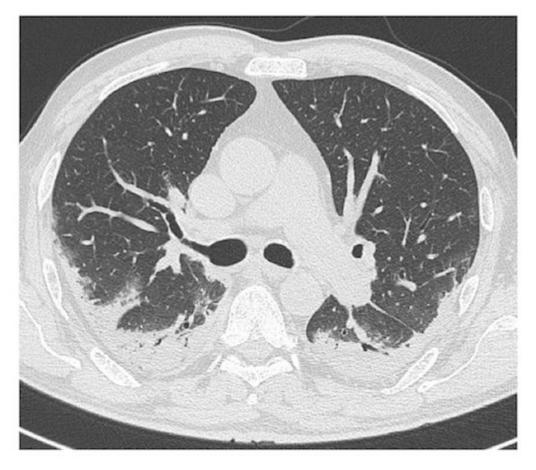
Legend

The probability of making a correct COVID -19 pneumonia diagnosis increases with the increment of the score. The score identified has an excellent predictive ability: the area under the ROC curve is 0.97 (0.97-1.00 CI).

Supplementary Figure S3.

RAD INTER-READER LOW AGREEMENT FOR HC AND RET DETECTION IN UPPER ZONE

Legend

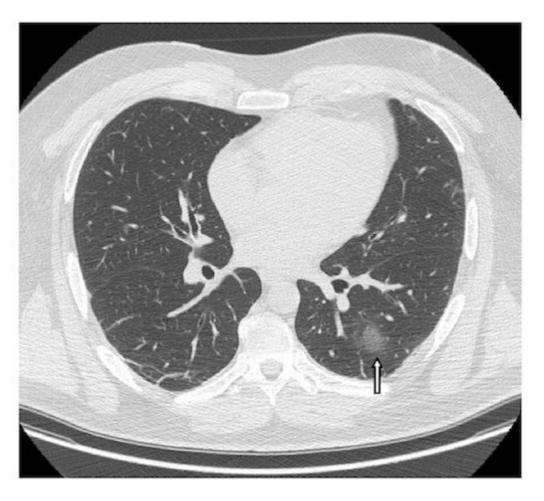

A: SSc-ILD, right lung, upper zone. Chest RAD may interpret peripheral alterations in the right upper lobe (white arrow) as HC or paraseptal emphysema.

B: SSc-ILD, left lung, upper zone. Peripheral RET (white arrows). Some lesion may be differently considered as GGO or tiny RET by chest RAD readers (black arrow).

SSc: systemic sclerosis; ILD: interstitial lung disease; RET: Reticulations; HC: honeycombing; GGO: ground glass opacities; RAD: radiologist group.

Supplementary Figure S4.

CONSOLIDATION IN LOWER ZONES



Covid 19 pneumonia, lower zone. Bilateral, symmetric, peripheral consolidations.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

Supplementary Figure S5.

ROUNDED GGO

Legend

Covid 19 pneumonia. Rounded focal GGO in the left lower lobe, lower zone (white arrow).

GGO: ground glass opacities

Supplementary Table S1. Inter-reader agreement

CT PARAMETER	nRAD COHEN'S K (LCL95%-UCL95%)	RAD COHEN'S K (LCL95%-UCL95%)	nRAD VS RAD p-VALUE	Chest RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD VS chest-RAD p-VALUE
	·	WHOLE LUNG F	ARENCHYMA		· · · · · ·	
Pattern	-	0.48(0.41-0.56)*		0.48(0.41-0.56)*	-	
Upper/Lower	0.19(0.18-0.2)	0.31(0.27-0.34)	<.0001	0.41(0.36-0.47)*	0.14(0-0.29)	0.0006
Bilateral/Simmetrical	0.26(0.25-0.28)	0.46(0.42-0.49)*	<.0001	0.51(0.46-0.57)*	0.38(0.24-0.53)	0.0984
Right lung involvement	0.15(0.14-0.16)	0.60(0.58-0.63)**	<.0001	0.63(0.6-0.67)**	0.64(0.53-0.75)**	0.9221
Left lung involvement	0.19(0.18-0.21)	0.50(0.47-0.53)*	<.0001	0.57(0.52-0.62)*	0.47(0.34-0.6)*	0.1632
Central vs Peripheral	0.16(0.14-0.17)	0.27(0.24-0.29)	<.0001	0.43(0.39-0.47)*	0.15(0.02-0.28)	<.0001
Anterior vs Posterior	0.18(0.17-0.19)	0.28(0.24-0.31)	<.0001	0.34(0.29-0.4)	0.27(0.11-0.42)	0.3576
		UPPER	ZONE			
CONSOLIDATION						
Presence	0.25(0.24-0.27)	0.60(0.56-0.64)*	<.0001	0.66(0.6-0.72)**	0.39(0.2-0.58)	0.0081
Bilateral/Simmetrical	0.09(0.08-0.11)	0.48(0.45-0.5)*	<.0001	0.57(0.53-0.61)*	0.27(0.14-0.4)	<.0001
Central/Peripheral	0.11(0.1-0.12)	0.49(0.46-0.52) *	<.0001	0.57(0.52-0.61)*	0.31(0.15-0.47)	0.0023
Anterior/Posterior	0.11(0.1-0.12)	0.52(0.49-0.55) *	<.0001	0.60(0.56-0.64)*	0.32(0.16-0.47)	0.0004
Air bronchogram	0.08(0.07-0.09)	0.43(0.4-0.46) *	<.0001	0.51(0.46-0.55)*	0.24(0.11-0.37)	0.0002
Organising pneumonia	-	0.27(0.24-0.3)		0.51(0.46-0.55)*	0.59(0.43-0.74)*	0.3160
Fibrosis	-	0.35(0.32-0.39)	•	0.63(0.58-0.68)**	0.35(0.21-0.48)	0.0001
GGO						
Presence	0.21(0.19-0.22)	0.48(0.44-0.52) *	<.0001	0.54(0.48-0.6)*	0.36(0.18-0.54)	0.0619
Pattern	-	0.39(0.32-0.45)		0.39(0.32-0.45)	-	•
Bilateral/Simmetrical	0.15(0.14-0.16)	0.45(0.42-0.47) *	<.0001	0.52(0.48-0.56)*	0.32(0.2-0.44)	0.0018

Rheumatology

CT PARAMETER	nRAD COHEN'S K (LCL95%-UCL95%)	RAD COHEN'S K (LCL95%-UCL95%)	nRAD VS RAD p-VALUE	Chest RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAI VS chest-RAD p-VALUE
Central/Peripheral	0.12(0.11-0.13)	0.34(0.31-0.36)	<.0001	0.47(0.43-0.5)*	0.21(0.08-0.34)	0.0001
Anterior/Posterior	0.14(0.13-0.15)	0.41(0.38-0.43) *	<.0001	0.48(0.44-0.52)*	0.33(0.21-0.45)	0.0275
Rounded/Non rounded	-	0.48(0.4-0.57) *		0.48(0.4-0.57)*		
Fibrosis	-	0.41(0.38-0.44) *		0.54(0.49-0.58)*	0.23(0.08-0.38)	<.0001
Fibrosis in focal lesions	-	0.63(0.53-0.73) **		0.63(0.53-0.73)**		
CRAZY PAVING					· · · · · ·	
Presence	0.14(0.13-0.15)	0.36(0.32-0.4)	<.0001	0.47(0.41-0.53)*	0.3(0.12-0.48)	0.0885
Bilateral/Simmetrical	0.04(0.03-0.05)	0.27(0.24-0.3)	<.0001	0.35(0.3-0.39)	0.25(0.12-0.39)	0.2001
Central/Peripheral	0.03(0.01-0.04)	0.31(0.28-0.34)	<.0001	0.44(0.4-0.48)*	0.20(0.06-0.34)	0.0014
Anterior/posterior	0.03(0.02-0.04)	0.31(0.28-0.34)	<.0001	0.40(0.36-0.45)*	0.25(0.1-0.4)	0.0554
RETICULATIONS					·	
Presence	0.18(0.17-0.2)	0.45(0.41-0.49)*	<.0001	0.38(0.32-0.44)	0.57(0.37-0.76)*	0.0717
Bilateral/Simmetrical	0.11(0.1-0.12)	0.55(0.51-0.58)*	<.0001	0.56(0.51-0.61)*	0.51(0.36-0.66)*	0.5490
Central/Peripheral	0.12(0.11-0.13)	0.60(0.56-0.64)**	<.0001	0.61(0.55-0.66)**	0.59(0.41-0.78)*	0.8741
Anterior/Posterior	0.09(0.08-0.1)	0.51(0.48-0.54)*	<.0001	0.55(0.51-0.6)*	0.39(0.26-0.52)	0.0201
Fibrosis	-	0.46(0.43-0.49)*		0.65(0.6-0.7)**	0.45(0.31-0.58)*	0.0065
HONEY COMBING						
Presence	0.16(0.15-0.18)	0.39(0.35-0.43)	<.0001	0.39(0.33-0.45)	0.37(0.18-0.56)	0.8314
Bilateral/Simmetrical	0.07(0.05-0.08)	0.35(0.31-0.38)	<.0001	0.34(0.29-0.38)	0.34(0.2-0.49)	0.9309
Central/Peripheral	0.05(0.03-0.06)	0.36(0.32-0.39)	<.0001	0.36(0.31-0.42)	0.35(0.17-0.53)	0.8514
Anterior/posterior	0.03(0.01-0.04)	0.31(0.28-0.34)	<.0001	0.36(0.32-0.41)	0.26(0.11-0.4)	0.1693
VESSEL TICKENING	-	0.09(0.05-0.13)		0.27(0.21-0.33)	0.46(0.27-0.64)*	0.0677
SUBPLEURAL LINES	-	0.28(0.23-0.32)		0.34(0.28-0.4)	0.09(0-0.26)	0.0078

Rheumatology

CT PARAMETER	nRAD COHEN'S K (LCL95%-UCL95%)	RAD COHEN'S K (LCL95%-UCL95%)	nRAD VS RAD p-VALUE	Chest RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAE VS chest-RAD p-VALUE
		LOWER	ZONE	•	·	
CONSOLIDATION						
Presence	0.28(0.27-0.3)	0.62(0.58-0.66)**	<.0001	0.71(0.65-0.77)**	0.46(0.27-0.64)*	0.0124
Bilateral/Simmetrical	0.14(0.13-0.15)	0.52(0.49-0.54)*	<.0001	0.59(0.55-0.63)*	0.38(0.25-0.5)	0.0017
Central/Peripheral	0.15(0.14-0.16)	0.55(0.52-0.59)*	<.0001	0.62(0.57-0.67)**	0.46(0.28-0.63)*	0.0755
Anterior/Posterior	0.17(0.16-0.18)	0.56(0.52-0.59)*	<.0001	0.62(0.57-0.67)**	0.47(0.31-0.63)*	0.0968
Air bronchogram	0.14(0.13-0.15)	0.43(0.4-0.46)*	<.0001	0.51(0.47-0.55)*	0.26(0.12-0.4)	0.0005
Organising pneumonia	-	0.31(0.28-0.34)		0.52(0.47-0.56)*	0.36(0.21-0.5)	0.0352
Fibrosis	-	0.20(0.17-0.23)		0.27(0.22-0.31)	0.31(0.17-0.44)	0.5832
GROUND GLASS OPACITY						
Presence	0.15(0.14-0.17)	0.31(0.27-0.35)	<.0001	0.45(0.39-0.51)*	0.16(0-0.35)	0.0036
	-	0.47(0.4-0.55)*		0.47(0.4-0.55)*	-	
Pattern	-	0.47(0.4-0.55)	-	0.47(0.4-0.55)	-	
Bilateral/Simmetrical	0.12(0.11-0.14)	0.41(0.38-0.44)*	<.0001	0.52(0.48-0.57)*	0.17(0.05-0.3)	<.0001
Central/Peripheral	0.10(0.09-0.11)	0.22(0.19-0.24)	<.0001	0.34(0.3-0.37)	0.11(0-0.24)	0.0012
Anterior/Posterior	0.09(0.08-0.1)	0.30(0.27-0.33)	<.0001	0.37(0.33-0.42)	0.18(0.05-0.31)	0.0063
Rounded/Not rounded	-	0.62(0.53-0.72) **		0.62(0.53-0.72)**		
Fibrosis	-	0.46(0.42-0.49) *	•	0.64(0.59-0.69)**	0.09(0-0.26)	<.0001
Fibrosis in focal lesions	-	0.56(0.46-0.65) *		0.56(0.46-0.65)*		
CRAZY PAVING					· · · · · ·	
Presence	0.11(0.1-0.13)	0.26(0.22-0.3)	<.0001	0.39(0.33-0.45)	0.07(0-0.25)	0.0010
Bilateral/Simmetrical	0.05(0.04-0.06)	0.21(0.18-0.24)	<.0001	0.30(0.26-0.35)	0.11(0-0.26)	0.0120

Rheumatology

CT PARAMETER nRAD COHEN'S K (LCL95%-UCL95%)		RAD COHEN'S K (LCL95%-UCL95%)	nRAD VS RAD p-VALUE	Chest RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD VS chest-RAD p-VALUE	
Central/Peripheral	0.03(0.02-0.04)	0.24(0.21-0.27)	<.0001	0.36(0.32-0.4)	0.05(0-0.2)	0.0001	
Anterior/posterior	0.03(0.02-0.04)	0.23(0.2-0.26)	<.0001	0.35(0.3-0.39)	0.06(0-0.2)	0.0001	
RETICULATIONS							
Presence	0.25(0.23-0.26)	0.71(0.67-0.75) **	<.0001	0.75(0.69-0.81)**	0.58(0.39-0.76)*	0.0714	
Bilateral/Simmetrical	0.16(0.15-0.17)	0.66(0.62-0.69)**	<.0001	0.70(0.65-0.76)**	0.52(0.37-0.67)*	0.0208	
Central/Peripheral	0.14(0.13-0.15)	0.51(0.48-0.54)*	<.0001	0.54(0.5-0.58)*	0.53(0.36-0.7)*	0.8719	
Anterior/posterior	0.13(0.12-0.14)	0.51(0.48-0.54)*	<.0001	0.55(0.51-0.6)*	0.39(0.25-0.53)	0.0288	
Fibrosis	-	0.51(0.48-0.54)*	•	0.74(0.69-0.8)**	0.39(0.25-0.53)	<.0001	
HONEY COMBING					· · · · · ·		
Presence	0.36(0.34-0.37)	0.52(0.48-0.56)*	<.0001	0.57(0.51-0.63)*	0.46(0.27-0.64)*	0.2403	
Bilateral/Simmetrical	0.21(0.2-0.22)	0.44(0.41-0.47)*	<.0001	0.46(0.41-0.51)*	0.41(0.26-0.56)*	0.5279	
Central/Peripheral	0.19(0.18-0.21)	0.45(0.41-0.48)*	<.0001	0.47(0.42-0.52)*	0.40(0.22-0.58)	0.4397	
Anterior/Posterior	0.18(0.17-0.19)	0.38(0.35-0.41)	<.0001	0.41(0.37-0.46)*	0.28(0.14-0.42)	0.0769	
VESSEL TICKENING	-	0.06(0.02-0.11)		0.24(0.18-0.3)	0.55(0.36-0.74)*	0.0023	
SUBPLEURAL LINES	-	0.26(0.22-0.31)		0.41(0.34-0.47)*	0.09(0-0.28)	0.0018	
	Р	LEURAL AND MEDIAS	TINAL INVOL	VMENT	· · · ·		
Pleural thickening	0.04(0.03-0.06)	0.12(0.08-0.16)	0.0007	0.21(0.14-0.27)	0.33(0.14-0.52)	0.2165	
Pleural retraction	-	0.20(0.16-0.24)		0.44(0.38-0.5)*	0.12(0-0.31)	0.0013	
Pleural effusion	0.19(0.18-0.2)	0.56(0.53-0.59)*	<.0001	0.65(0.6-0.7)**	0.44(0.3-0.58)*	0.0060	
Pericardial effusion	0.06(0.05-0.07)	0.25(0.21-0.29)	<.0001	0.26(0.2-0.32)	0.23(0.06-0.41)	0.7935	
Dilated oesophagus	0.27(0.25-0.28)	0.60(0.56-0.64)**	<.0001	0.59(0.53-0.65)*	0.55(0.36-0.74)*	0.6974	
Lymphoadenopathy	0.04(0.03-0.06)	0.34(0.3-0.39)	<.0001	0.40(0.34-0.46)	0.04(0-0.23)	0.0003	
		SCOI	RES	•	•		

Rheumatology

CT PARAMETER	nRAD COHEN'S K (LCL95%-UCL95%)	RAD COHEN'S K (LCL95%-UCL95%)	nRAD VS RAD p-VALUE	Chest RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD COHEN'S K (LCL95%-UCL95%)	n-chest-RAD VS chest-RAD p-VALUE
COVID-19 (RSNA)	-	0.33(0.3-0.36)		0.41(0.37-0.45)*	0.31(0.18-0.43)	0.1293
CO-RADS	-	0.30(0.28-0.32)	•	0.36(0.33-0.4)	0.26(0.16-0.37)	0.0729

Legend: Total detailed results of inter-reader agreement.

*Discrete inter-readers agreement; ** Good inter-readers agreement

nRAD: non radiologist clinicians; RAD: radiologists; Chest-RAD: chest radiologists, with at least more than 5 years of experience; n-chest-RAD: radiologists without chest experience.

Rheumatology

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

CT PARAMETER	VARIABLE	COVID-19	SSC-ILD	OR (95%CL)	p-VALUE	AURC (95%CL)	PREDICTIVE CAPABILITY
			WHOLE	LUNG PARENCHYMA	i		
PATTERN	Monofocal	2(3.92%)	0(0%)	0.36 (0.01 - 15.48)	0.5929	0.82 (0.75 - 0.89)	Good
	Multifocal	13(25.49%)	0(0%)	0.07 (0 - 1.32)	0.0753		
	Diffuse	7(13.73%)	29(60.42%)	7.03 (2.55 - 19.42)	0.0002*		
	(Multi)focal and diffuse	29(56.86%)	16(33.33%)				
	White lung	0(0%)	3(6.25%)	12.52 (0.39 - 404.37)	0.1541		
SIDE	Unilateral	5(9.8%)	1(2.08%)	0.19 (0.03 - 1.4)	0.1021	0.66 (0.57 - 0.74)	Scarse
	Bilateral, asymmetric	18(35.29%)	6(12.5%)	0.24 (0.09 - 0.68)	0.0069*		
	Bilateral, symmetric	28(54.9%)	41(85.42%)				
RIGHT LOBES INVOLVEMENT	No involvement	1(1.96%)	1(2.08%)	0.79 (0.05 - 13.15)	0.8715		
	Upper and lower	6(11.76%)	0(0%)	0.06 (0 - 1.41)	0.0808		
	Lower	4(7.84%)	2(4.17%)	0.44 (0.08 - 2.48)	0.3530		
	Medium	1(1.96%)	0(0%)	0.24 (0 - 25.35)	0.5507		
	Medium and upper	2(3.92%)	0(0%)	0.16 (0 - 6.72)	0.3353		
	Medium and lower lobes	2(3.92%)	2(4.17%)	0.79 (0.11 - 5.92)	0.8715		
	All lobes	34(66.67%)	43(89.58%)				
LEFT LOBES INVOLVEMENT	No involvement	1(1.96%)	0(0%)	0.28 (0 - 29.13)	0.5913		
	Upper	2(3.92%)	0(0%)	0.18 (0 - 7.71)	0.3734		
	Lower	6(11.76%)	2(4.17%)	0.35 (0.07 - 1.75)	0.2011		
	Both	42(82.35%)	46(95.83%)				
LOCALIZATION	Upper	6(11.76%)	0(0%)	0.05 (0 - 1.16)	0.0615	0.67 (0.58 - 0.76)	Scarse

Supplementary Table S2. CT parameters predictive capability

	Lower	25(49.02%)	39(81.25%)				
	No predominance	20(39.22%)	9(18.75%)	0.3 (0.12 - 0.76)	0.0109*		
ANTERIOR/POSTERI	Anterior	3(5.88%)	1(2.08%)	0.73 (0.08 - 6.63)	0.7825	0.67 (0.58 - 0.76)	Scarse
OR DISTRIBUTION	Posterior	38(74.51%)	22(45.83%)				
	No predominance	9 (17.65%)	24(50%)	4.41 (1.75-11.11)	0.0016		
CENTRAL/PERIPHER	Central	0(0%)	1(2.08%)	2.3 (0.02 - 243.92)	0.7264		
AL DISTRIBUTION	Peripheral	25(49.02%)	36(75%)				
	No predominance	11(21.57%)	11(22.92%)	0.7 (0.26 - 1.86)	0.4728		
	Patchy	15(29.41%)	0(0%)	0.02 (0 - 0.43)	0.0118*		
				UPPER ZONE			
CONSOLIDA	TION						
PRESENCE	No	24(47.06%)	42(87.5%)				
	Yes	27(52.94%)	6(12.5%)	0.14 (0.05 - 0.37)	<.0001*	0.7 (0.62 - 0.79)	Discreta
SIDE	Absence	24(47.06%)	42(87.5%)				
	Unilateral	4(7.84%)	1(2.08%)	0.19 (0.02 - 1.55)	0.1210	0.7 (0.62 - 0.79)	Discreta
	Bilateral, asymmetric	15(29.41%)	3(6.25%)	0.13 (0.04 - 0.47)	0.0020*		
	Bilateral, simmetric	8(15.69%)	2(4.17%)	0.17 (0.04 - 0.81)	0.0259*		
CENTRAL/PERIPHER	Absence	24(47.06%)	42(87.5%)				
AL DISTRIBUTION	Central	1(1.96%)	0(0%)	0.17 (0.00 - 18.64)	0.4615	0.71 (0.63 - 0.79)	Discrete
	Peripheral	11(21.57%)	4(8.33%)	0.23 (0.07 - 0.77)	0.0178*		
	No predominance	4(7.84%)	0(0%)	0.06 (0.00 - 1.74)	0.1031		
	Patchy	11(21.57%)	2(4.17%)	0.12 (0.03 - 0.56)	0.0068*		
ANTERIOR/POSTERI	Absence	24(47.06%)	42(87.5%)				
OR DISTRIBUTION	Anterior	2(3.92%)	3(6.25%)	0.81 (0.13 - 5.12)	0.8202	0.72 (0.64 - 0.80)	Discrete
	Posterior	17(33.33%)	1(2.08%)	0.05 (0.00 - 0.29)	0.0010*		
	No predominance	8(15.69%)	2(4.17%)	0.17 (0.04 - 0.81)	0.0259*		

Page 40 of 49

AIR BRONCHOGRAM	Absence	24(47.06%)	42(87.5%)				
	Always present	1(1.96%)	2(4.17%)	0.96 (0.09 - 10.50)	0.9740	0.72 (0.64 - 0.80)	Discrete
	Not always present	14(27.45%)	4(8.33%)	0.18 (0.05 - 0.59)	0.0048*		
	Never present	12(23.53%)	0(0%)	0.023 (0.00 - 0.46)	0.0133*		
ORGANISING	Absence	24(47.06%)	42(87.5%)				
PENUMONIA	No	14(27.45%)	5(10.42%)	0.22 (0.07 - 0.67)	0.0081*	0.71 (0.63 - 0.8)	Discreta
	Yes	13(25.49%)	1(2.08%)	0.06 (0.01 - 0.39)	0.0030*		
FIBROSIS	No consolidations	24(47.06%)	42(87.5%)				
	No	24(47.06%)	2(4.17%)	0.06 (0.01 - 0.24)	<.0001*	0.72 (0.64 - 0.80)	Discrete
	Yes	3(5.88%)	4(8.33%)	0.74 (0.15 - 3.58)	0.7092		
GGO				·	····		
PRESENCE	No	8(15.69%)	12(25%)				
	Yes	43(84.31%)	36(75%)	0.57 (0.21 - 1.55)	0.2698		
SIDE	Absence	8(15.69%)	12(25%)				
	Unilateral	6(11.76%)	3(6.25%)	0.37 (0.07 - 1.88)	0.2285	0.64 (0.54 - 0.75)	Scarce
	Bilateral, asymmetric	20(39.22%)	8(16.67%)	0.28 (0.08 - 0.94)	0.0400*		
	Bilateral, symmetric	17(33.33%)	25(52.08%)	0.99 (0.33 - 2.93)	0.9868		
PATTERN	Absence	8(15.69%)	12(25%)	2.23 (0.72 - 6.93)	0.1646	0.78 (0.69 - 0.87)	Discreta
	(Multi)focal	17(33.33%)	1(2.08%)	0.13 (0.02 - 0.83)	0.0307*		
	Diffuse	6(11.76%)	22(45.83%)	5.26 (1.7 - 16.26)	0.0040*		
	Both	20(39.22%)	13(27.08%)				
ANTERIOR/POSTERI	Absence	8(15.69%)	12(25%)				
OR DISTRIBUTION	Anterior	3(5.88%)	4(8.33%)	0.87 (0.15 - 4.98)	0.8796		
	Posterior	19(37.25%)	11(22.92%)	0.40 (0.13 - 1.28)	0.1227		
	No predominance	21(41.18%)	21(43.75%)	0.68 (0.23 - 2.00)	0.4834		
ROUNDED	Absence	8(15.69%)	12(25%)	4.41 (1.44 - 13.51)	0.0093*	0.74 (0.64 - 0.83)	Discreta

	Rounded	34(66.67%)	11(22.92%)				
	Not rounded	9(17.65%)	25(52.08%)	8.05 (2.92 - 22.18)	<.0001*		
FIBROSIS IN FOCAL	Absence	14(27.45%)	34(70.83%)				
LESIONS	No	37(72.55%)	6(12.5%)	0.07 (0.03 - 0.21)	<.0001*	0.82 (0.75 - 0.90)	Good
	Yes	0(0%)	8(16.67%)	7.15 (0.33 - 156.76)	0.2120		
FIBROSIS	No GGO	8(15.69%)	12(25%)				
	No	39(76.47%)	19(39.58%)	0.336 (0.118 - 0.957)	0.0410	0.702 (0.61 - 0.795)	Discreta
	Yes	4(7.84%)	17(35.42%)	2.644 (0.661 - 10.575)	0.1692		
CRAZY PAVI	NG						
PRESENCE	No	40(78.43%)	45(93.75%)				
	Yes	11(21.57%)	3(6.25%)	0.27 (0.07 - 1.00)	0.0507		
SIDE	Absence	40(78.43%)	45(93.75%)				
	Unilateral	1(1.96%)	0(0%)	0.27 (0.00 - 28.38)	0.5837		
	Bilateral, asymmetric	8(15.69%)	1(2.08%)	0.16 (0.02 - 1.03)	0.0535		
	Bilateral, symmetric	2(3.92%)	2(4.17%)	0.89 (0.12 - 6.61)	0.9094		
CENTRAL/PERIPHER	Absence	40(78.43%)	45(93.75%)				
AL CP DISTRIBUTION	Mostly peripheral	3(5.88%)	1(2.08%)	0.38 (0.04 - 3.38)	0.3864		
	No predominance	5(9.8%)	1(2.08%)	0.243 (0.033 - 1.79)	0.1645		
	Patchy	3(5.88%)	1(2.08%)	0.382 (0.04 - 3.38)	0.3864		
	central	0(0%)	0(0%)				
ANTERIOR/POSTERI	Absence	40(78.43%)	45(93.75%)				
OR DISTRIBUTION	Anterior	1(1.96%)	1(2.08%)	0.89 (0.05 - 14.71)	0.9354		
	Posterior	3(5.88%)	0(0%)	0.13 (0.00 -4.00)	0.2411		
	No predominance	7(13.73%)	2(4.17%)	0.30 (0.06 - 1.42)	0.1288		
RETICULATI	ONS						
PRESENCE	No	48(94.12%)	19(39.58%)				

	Yes	3(5.88%)	29(60.42%)	20.97 (6.05 - 72.73)	<.0001*	0.77 (0.70 - 0.85)	Discrete
SIDE	Absence	48(94.12%)	19(39.58%)				
	Bilateral, asymmetric	2(3.92%)	5(10.42%)	5.47 (1.02 - 29.45)	0.0479*	0.78 (0.70 - 0.86)	Discrete
	bilateral, symmetric	1(1.96%)	24(50%)	40.62 (6.97 - 236.73)	<.0001*		
CENTRAL/PERIPHER	Absence	48(94.12%)	19(39.58%)				
AL DISTRIBUTION	Central	0(0%)	1(2.08%)	8.06 (0.08 - 841.59)	0.3787	0.77 (0.69 - 0.85)	Discrete
	Peripheral	3(5.88%)	26(54.17%)	18.83 (5.39 - 65.81)	<.0001*		
	No predominance	0(0%)	2(4.17%)	12.44 (0.29 - 532.11)	0.1884		
	patchy	0(0%)	0(0%)				
ANTERIOR/POSTERI	Absence	48(94.12%)	19(39.58%)				
OR DISTRIBUTION	Anterior	0(0%)	7(14.58%)	37.31 (1.67 - 833.35)	0.0224*	0.78 (0.71 - 0.86)	Discrete
	Posterior	3(5.88%)	9(18.75%)	6.75 (1.70 - 26.86)	0.0067*		
	No predominance	0(0%)	13(27.08%)	67.14 (3.42 - 1317.13)	0.0056*		
SIGNS OF FIBROSIS	Absence	48(94.12%)	20(41.67%)				
INSIDE RET	No	2(3.92%)	3(6.25%)	3.31 (0.52 - 21.12)	0.2051	0.77 (0.69 - 0.85)	Discrete
	Yes	1(1.96%)	25(52.08%)	40.22 (6.94 - 233.02)	<.0001*		
HONEY COM	IBING		·		·	· ·	·
PRESENCE	No	50(98.04%)	42(87.5%)				
	Yes	1(1.96%)	6(12.5%)	5.15 (0.74 - 35.86)	0.0982		
SIDE	Absence	50(98.04%)	43(89.58%)				
	Bilateral, symmetric	1(1.96%)	5(10.42%)	4.26 (0.58 - 31.20)	0.1542		
	Bilateral asymmetric	0(0%)	0(0%)				
CENTRAL/PERIPHER AL DISTRIBUTION	Absence	50(98.04%)	42(87.5%)				
AL DISTRIBUTION	Peripheral	1(1.96%)	5(10.42%)	4.36 (0.59 - 31.96)	0.1477		
	Central	0(0%)	0(0%)				
	No predominance	0(0%)	1(2.08%)	3.77 (0.04 - 379.86)	0.5723		

ANTERIOR/POSTERI	Absence	50(98.04%)	42(87.5%)				
OR DISTRIBUTION	Anterior	0(0%)	2(4.17%)	5.94 (0.14 - 250.44)	0.3506		
	Posterior	0(0%)	1(2.08%)	3.85 (0.04 - 396.50)	0.5687		
	No predominance	1(1.96%)	3(6.25%)	2.77 (0.31 - 24.46)	0.3587		
	Patchy	0(0%)	0(0%)				
VESSEL TICKENING	Absence	7(13.73%)	5(10.42%)	0.49 (0.14 - 1.7)	0.2623	0.68 (0.6 - 0.76)	Scarse
	No	28(54.9%)	42(87.5%)				
	Yes	16(31.37%)	1(2.08%)	0.06 (0.01 - 0.36)	0.0021*		
SUBPLEURAL LINES	No	38(74.51%)	42(87.5%)				
	Yes	13(25.49%)	6(12.5%)	0.44 (0.15 - 1.25)	0.1235		
				LOWER ZONE			
CONSOLIDA	TION						
PRESENCE	No	8(15.69%)	44(91.67%)				
	Yes	43(84.31%)	4(8.33%)	0.02 (0.00 - 0.07)	<.0001*	0.88 (0.82 - 0.94)	Good
SIDE	Absence	8(15.69%)	44(91.67%)				
	Unilateral	10(19.61%)	3(6.25%)	0.06 (0.01 - 0.27)	0.0002*	0.90 (0.84 - 0.96)	Exellent
	Bilateral, asymmetrical	16(31.37%)	0(0%)	0.01 (0 - 0.11)	0.0007*		
	Bilateral, simmetric	17(33.33%)	1(2.08%)	0.02(0.00 - 0.11)	<.0001*		
CENTRAL/PERIPHER	Absence	8(15.69%)	44(91.67%)				
AL DISTRIBUTION	mostly central	1(1.96%)	0(0%)	0.06 (0.00 - 6.24)	0.2402	0.89 (0.82 - 0.95)	Good
	Peripheral	32(62.75%)	3(6.25%)	0.02 (0.00 - 0.08)	<.0001*		
	No predominance	5(9.8%)	0(0%)	0.02 (0.00 - 0.45)	0.0147*		
	Patchy	5(9.8%)	1(2.08%)	0.05 (0.01 - 0.42)	0.0055*		
ANTERIOR/POSTERI	Absence	8(15.69%)	44(91.67%)				
OR DISTRIBUTION	Anterior	4(7.84%)	0(0%)	0.02 (0.00 - 0.60)	0.0242*	0.88 (0.82 - 0.95)	Good

	Posterior	33(64.71%)	3(6.25%)	0.02 (0.00 - 0.08)	<.0001*		
	No predominance	6(11.76%)	1(2.08%)	0.04 (0.01 - 0.34)	0.0027*		
AIR BRONCHOGRAM	Absence	8(15.69%)	44(91.67%)	REF		0.89 (0.82 - 0.95)	Good
	Not always present	18(35.29%)	1(2.08%)	0.015 (0.00 - 0.1)	<.0001*		
	Always present	0(0%)	0(0%)				
	Never present	25(49.02%)	3(6.25%)	0.03 (0.01 - 0.10)	<.0001*		
ORGANISING	Absence	8(15.69%)	44(91.67%)				
PNEUMONIA	No	18(35.29%)	2(4.17%)	0.026 (0.01 - 0.12)	<.0001*	0.88 (0.82 - 0.95)	good
	Yes	25(49.02%)	2(4.17%)	0.02 (0.00 - 0.08)	<.0001*		
FIBROSIS	Absence	8(15.69%)	44(91.67%)				
	No	34(66.67%)	1(2.08%)	0.1(0.00 - 0.05)	<.0001*	0.90 (0.84 - 0.96)	good
	Yes	9(17.65%)	3(6.25%)	0.07 (0.02 - 0.31)	0.0004*		
GGO				·		·	
PRESENCE OF GGO	No	5(9.8%)	4(8.33%)				
	Yes	46(90.2%)	44(91.67%)	1.17 (0.29 - 4.63)	0.8233		
SIDE	Absence	5(9.8%)	4(8.33%)				
	Unilateral	4(7.84%)	0(0%)	0.13 (0.00 - 4.59)	0.2664		
	bilateral, asymmetric	26(50.98%)	5(10.42%)	0.25 (0.05 - 1.27)	0.0951		
	bilateral, symmetric	16(31.37%)	39(81.25%)	2.93 (0.70 - 12.29)	0.1427		
PATTERN	Absence	5(9.8%)	4(8.33%)				
	(Multi)focal	13(25.49%)	1(2.08%)	0.14 (0.01 - 1.21)	0.0733	0.84 (0.76 - 0.91)	good
	diffuse	4(7.84%)	32(66.67%)	8.83 (1.69 - 45.97)	0.0097*		
	Both	29(56.86%)	11(22.92%)	0.48 (0.11 - 2.1)	0.3273		
ANTERIOR/POSTERI	Absence	5(9.8%)	4(8.33%)				
OR DISTRIBUTION	Anterior	3(5.88%)	0(0%)	0.17 (0.00 - 6.82)	0.3506		
	Posterior	26(50.98%)	20(41.67%)	0.94 (0.22 - 3.98)	0.9391		

	No predominance	17(33.33%)	24(50%)	1.71 (0.4 - 7.31)	0.4686		
ROUNDED GGO	Absence	5(9.8%)	4(8.33%)	3.32 (0.74 - 14.81)	0.1165	0.81 (0.73 - 0.89)	Good
	Rounded	38(74.51%)	9(18.75%)				
	Non rounded	8(15.69%)	35(72.92%)	16.93 (5.96 - 48.04)	<.0001*		
FIBROSIS INSIDE	No GGO	5(9.8%)	4(8.33%)	7.73 (1.5 - 39.83)	0.0145*	0.91 (0.85 - 0.97)	Exellent
FOCAL ALTERATIONS	No	42(82.35%)	4(8.33%)				
	Yes	4(7.84%)	40(83.33%)	85.01 (21.15 - 341.6)	<.0001*		
FIBROSIS	Absence	5(9.8%)	4(8.33%)				
	No	42(82.35%)	4(8.33%)	0.129 (0.025 - 0.667)	0.0145	0.908 (0.849 - 0.967)	Exellent
	Yes	4(7.84%)	40(83.33%)	11 (2.131 - 56.794)	0.0042		
CRAZY PAVI	NG	·					
PRESENCE	No	38(74.51%)	43(89.58%)				
	Yes	13(25.49%)	5(10.42%)	0.36 (0.12 - 1.09)	0.0712		
SIDE	Absence	38(74.51%)	43(89.58%)				
	Unilateral	3(5.88%)	0(0%)	0.13 (0.00 - 3.98)	0.2399		
	Bilateral, asymmetric	3(5.88%)	0(0%)	0.13 (0.00 - 3.98)	0.2399		
	bilateral, symmetric	7(13.73%)	5(10.42%)	0.65 (0.19 - 2.21)	0.4894		
CENTRAL/PERIPHER	Absence	38(74.51%)	43(89.58%)				
AL CP DISTRIBUTION	Central	1(1.96%)	1(2.08%)	0.88 (0.05 - 14.64)	0.9320		
	Peripheral	6(11.76%)	4(8.33%)	0.613 (0.16 - 2.33)	0.4717		
	No predominance	4(7.84%)	0(0%)	0.10 (0.00 - 2.65)	0.1678		
	Patchy	2(3.92%)	0(0%)	0.18 (0.00 - 7.48)	0.3648		
ANTERIOR/POSTERI	Absence	38(74.51%)	43(89.58%)				
OR DISTRIBUTION	Anterior	1(1.96%)	1(2.08%)	0.89 (0.05 - 14.65)	0.9323		
	Posterior	7(13.73%)	2(4.17%)	0.3 (0.06 - 1.42)	0.1277		
	No predomiannce	5(9.8%)	2(4.17%)	0.4 (0.08 - 2.11)	0.2814		

Page 46 of 49

RETICULAT	IONS						
PRESENCE	No	49(96.08%)	7(14.58%)				
	Yes	2(3.92%)	41(85.42%)	109.59 (24.31 - 494.08)	<.0001*	0.91 (0.85 - 0.96)	Exellent
SIDE	Absence	49(96.08%)	7(14.58%)				
	bilateral asymmetric	0(0%)	2(4.17%)	33.02 (0.74 - 1474.71)	0.0712	0.91 (0.85 - 0.96)	Exellent
	Monolateral	0(0%)	0(0%)				
	bilateral symmetric	2(3.92%)	39(81.25%)	104.28 (23.08 - 471.10)	<.0001*		
CENTRAL/PERIPHER	Absence	49(96.08%)	7(14.58%)				
AL RET DISTRIBUTION	Central	0(0%)	4(8.33%)	59.37 (2.07 - 1703.46)	0.0171*	0.91 (0.85 - 0.96)	Exellent
	Peripheral	2(3.92%)	30(62.5%)	80.52 (17.58 - 368.69)	<.0001*		
	No predominance	0(0%)	7(14.58%)	99.02 (4.21 - 2327.31)	0.0043*		
ANTERIOR/POSTERI OR DISTRIBUTION	Absence	49(96.08%)	7(14.58%)				
	Anterior	0(0%)	1(2.08%)	21.77 (0.20 - 2400.98)	0.1992	0.92 (0.86 - 0.97)	Exellent
	Posterior	2(3.92%)	19(39.58%)	51.48 (10.88 - 243.64)	<.0001*		
	No predominance	0(0%)	21(43.75%)	283.80 (14.52 - 5546.13)	0.0002*		
FIBROSIS	Absence	49(96.08%)	7(14.58%)				
	No	1(1.96%)	2(4.17%)	11 (0.94 - 129.11)	0.0563	0.92 (0.86 - 0.97)	Exellent
	Yes	1(1.96%)	39(81.25%)	173.8 (28.06 - 1076.39)	<.0001*		
HONEYCOM	BING						
PRESENCE	No	51(100%)	34(70.83%)				
	Yes	0(0%)	14(29.17%)	43.28 (2.26 - 826.89)	0.0123*	0.65 (0.58 - 0.71)	Scarce
SIDE	Absence	51(100%)	34(70.83%)				
	Unilateral	0(0%)	1(2.08%)	4.83 (0.05 - 498.51)	0.5054	0.65 (0.58 - 0.71)	Scarce
	Bilateral, asymmetric	0(0%)	3(6.25%)	10.45 (0.33 - 328.82)	0.1824		
	Bilateral, symmetric	0(0%)	10(20.83%)	31.35 (1.55 - 634.03)	0.0247*		
CENTRAL/PERIPHER	Absence	51(100%)	34(70.83%)				

AL DISTRIBUTION	Central	0(0%)	0(0%)				
	Peripheral	0(0%)	11(22.92%)	34.33 (1.73 - 682.05)	0.0204*	0.646 (0.58 - 0.71)	Scarce
	No predominance	0(0%)	3(6.25%)	10.45 (0.33 - 328.57)	0.1824		
ANTERIOR/POSTERI	Absence	51(100%)	34(70.83%)				
OR DISTRIBUTION	Anterior	0(0%)	0(0%)				
	Posterior	0(0%)	10(20.83%)	31.35 (1.55 - 633.95)	0.0247*	0.65 (0.58 - 0.71)	Scarce
	No predominance	0(0%)	4(8.33%)	13.43 (0.50 - 362.13)	0.1223		
VESSEL TICKENING	Absence	5(9.8%)	0(0%)	0.05 (0 - 1.33)	0.0740	0.72 (0.64 - 0.79)	Discreta
	No	27(52.94%)	46(95.83%)				
	Yes	19(37.25%)	2(4.17%)	0.08 (0.02 - 0.32)	0.0004*		
SUBPLEURAL LINES	No	33(64.71%)	37(77.08%)				
	Yes	18(35.29%)	11(22.92%)	0.55 (0.23 - 1.34)	0.1921		
			PLEURAL A	AND MEDIASTINAL INVOI	LVMENT		
PERICARDIAL EFFUSION	No	47(92.16%)	38(79.17%)				
	Yes	4(7.84%)	10(20.83%)	2.88 (0.85 - 9.76)	0.0895		
PLEURAL EFFUSION	No	39(76.47%)	45(93.75%)				
	Yes, unilateral	6(11.76%)	2(4.17%)	0.33 (0.07 - 1.66)	0.1805		
	Yes, bilateral	6(11.76%)	1(2.08%)	0.2 (0.03 - 1.40)	0.1053		
PLEURAL	No	51(100%)	38(79.17%)				
RETRACTION	Yes	0(0%)	10(20.83%)	28.11 (1.39 - 567.79)	0.0296*	0.60 (0.55 - 0.66)	Scarse
PLEURAL	No	26(50.98%)	34(70.83%)				
THIKENING	Yes	25(49.02%)	14(29.17%)	0.44 (0.19 - 1)	0.0501		
LYNPHADENOPATHY	No	36(70.59%)	29(60.42%)				
	Yes	15(29.41%)	19(39.58%)	1.56 (0.67 - 3.59)	0.2992		
DILATED	No	43(84.31%)	8(16.67%)				
ESOPHAGOUS	Yes	8(15.69%)	40(83.33%)	24.38 (8.51 - 69.90)	<.0001*	0.84 (0.76 - 0.91)	Good

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

			1		1		1
				SCORES			
CO-RADS	0	0(0%)	1(2.08%)				
	1	3(5.88%)	33(68.75%)	3.19 (0.03 - 337.71)	0.6260		
	2	14(27.45%)	2(4.17%)	0.06 (0.00 - 6.53)	0.2368		
	3	11(21.57%)	8(16.67%)	0.25 (0.00 - 24.93)	0.5519		
	4	14(27.45%)	4(8.33%)	0.10 (0.00 - 10.87)	0.3394		
	5	9(17.65%)	0(0%)	0.02 (0 -4.00)	0.1444		
COVID-19 (RSNA)	typical	28(54.9%)	2(4.17%)				
	indeterminate	17(33.33%)	7(14.58%)	4.89 (1.01 - 23.67)	0.0488	0.88 (0.81 - 0.95)	good
	atypical	6(11.76%)	39(81.25%)	69.28 (14.57 - 329.41)	<.0001		

Legend:

*P<0.05

GGO: Ground glass opacities; Absence: absence of the alteration for which the subanalysis should have been performed

Supplementary Data S1. Background of the readers.

6							
7	RAD	Practice	Number	Radiological	Training specific	Training for COVI	D-19
8		location	of years	Specialization	for Imaging in	infection	
9			in		Rheumatic		
10 11			practice		Disease		D
12	1	Treviso (Italy)	7	Chest-RAD	MDT	Real-life cases	nwo
13	2	Florence (Italy)	20	Chest-RAD	Real life cases	Real-life cases	oad
14	3	Florence (Italy)	10	n-chest-RAD	Real life cases	Real-life cases	ed f
15	4	Catania (Italy)	10	Chest-RAD	Real life cases	Real-life cases	rom
16	5	Milan (Italy)	20	n-chest-RAD	Real life cases	Real-life cases	http
17	6	Siena (Italy)	15	Chest-RAD	Real life cases	Real-life cases	s://a
18 19	7	Vercelli (Italy)	15	n-chest-RAD	Real life cases	Real-life cases	асас
20							lemi
21							ic.ol
22	nRAD			Medical	Training in		lp.cc
23				Specialization	Imaging in		om/r
24					Rheumatic disease		heu.
25 26	1	Florence (Italy)	5-10	Rheumatologist	Real life -cases	scientific literature	mat
20	2	Florence (Italy)	10-15	Rheumatologist	Real-life cases	scientific literature	golc
28	3	Florence (Italy)	10-15	Rheumatologist	Real-life cases	scientific literature	y/ac
29	4	London (UK)	20	Rheumatologist	Real-life cases	scientific literature	lvan
30	5	Sheffield (UK)	14	Rheumatologist	Real-life cases	Real-life cases	Ce-2
31	6	Trieste (Italy)	10	Rheumatologist	Real life cases	Real life cases	artic
32 33	7	Florence (Italy)	5-10	Infectious and	scientific literature	Real-life cases	le/d
33 34				Tropical Diseases			oi/10
35	8	Florence (Italy)	5-10	Infectious and	scientific literature	Real-life cases	0.10
36				Tropical Diseases			93/r
37	9	Catania (Italy)	5-10	Immunologist	Real-life cases	Real-life cases	heu
38	10	Naples (Italy)	20	Immunologist	Real-life cases	scientific literature	mato
39	11	Milan (Italy)	5-10	Rheumatologist	Real-life cases	Real-life cases	golc
40	12	Catania (Italy)	20	Pulmonologist	MDT	Real-life cases	Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847
41 42	13	Milan (Italy)	20	Pulmonologist	MDT	Real-life cases	ab6
43	14	Florence (Italy)	15	Pulmonologist	MDT	Real-life cases	15/6
44	15	Milan (Italy)	20	Pulmonologist	MDT	Real-life cases	3329
45)847

Legend.

MDT: multidisciplinary team; RAD: radiologist group; nRad: non-radiologist group; Chest-RAD: chest radiologists, with at least more than 5 years of experience; n-chest-RAD: radiologists without chest experience.

Downloaded from https://academic.oup.com/rheumatology/advance-article/doi/10.1093/rheumatology/keab615/6329847 by guest on 29 July 2021

Supplementary Data S2. Definition of all CT lesions and anatomical references.

The following lesions were defined in according to the radiological guideline of the Fleischer Society [1]:

- **Consolidation (CONS)** is defined as homogeneous increase in pulmonary parenchymal attenuation that obscures the margins of vessels and airway walls;
- Organizing Pneumonia (OP) is defined as airspace consolidation, typically subpleural, sometimes broncho-centric;
- **Ground glass opacity (GGO)** is represented by hazy increased opacity of lung, with preservation of bronchial and vascular margins;
- **Reticulations (RET)** are septal thickenings that, by summation, produce an appearance resembling a net;
- Crazy paving (CP) is defined as thickened interlobular septa and intralobular lines superimposed on a background of ground-glass opacity;
- Honey combing (HC) is defined as clustered cystic air spaces, typically of comparable diameters, on the order of 3–10, mm but occasionally as large as 2.5 cm;
- subpleural lines are curvilinear opacity, 1–3 mm in thickness, lying less than 1 cm from and parallel to the pleural surface; lymphadenopathy is mediastinal nodes with short-axis diameter > 1 cm;
- architectural distortion are abnormal displacement of bronchi, vessels, fissures or septa;
- **Bronchiectasis** are identified by bronchial dilatation with respect to the accompanying pulmonary artery, lack of tapering of bronchi and identification of bronchi within 1 cm of the pleural surface.

Moreover, we defined a **dilated esophagus** when the inner air-filled diameter was > 1cm [2]; **vessel thickening inside alterations** as vessel diameter larger than in comparable regions of non-diseased lung, or focal dilation or non-tapering of vessels as they course toward the lung periphery [3]; **pleural thickening** as increase in soft tissue at the lung-pleural interface [4].

The carina was adopted as anatomical landmark for upper and lower zones as well as for anterior and posterior location. We defined "peripheral lung" as two or three rows of secondary pulmonary lobules, forming a layer of three to four centimetres in thickness at the lung periphery, the central lung accounts for the remaining parts, adopting the definition reported by Nishino et al. [5]

Patterns were defined as follows:

- Focal pattern: presence of nodule(s) or mass(es), following the definitions of the Fleischner society [1]. However, a lung mass needs to show well defined shape, namely rounded or oval, to be considered as focal lesion.

- **Diffuse pattern**: presence of alterations that don't meet the definition of neither nodule nor mass, following the definitions of the Fleischner society [1]. However, masses with polygonal shapes were considered as manifestation of diffuse disease.

- (Multi)Focal and diffuse pattern: coexistence of both patterns (Figure 1)

For disease pattern, that consider the whole lungs field, we also adopt the term white lung, when the sum of all alterations covered almost the totality of lung parenchyma (>90%), making impossible to define if the global aspect was due to the coalescence of multifocal lesions, to an extended diffuse disease, or both.

1. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697-722.

2. Schraufnagel DE, Michel JC, Sheppard TJ, Saffold PC, Kondos GT. CT of the normal esophagus to define the normal air column and its extent and distribution. AJR Am J Roentgenol. 2008 Sep;191(3):748-52. doi: 10.2214/AJR.07.3455. PMID: 18716104.

3. Min Lang, Avik Som, Denston Carey, et al. Pulmonary Vascular Manifestations of COVID-19 Pneumonia. Little Radiology: Cardiothoracic Imaging 2020 2:3.

4. Hallifax RJ, Talwar A, Wrightson JM, et al. State-of-the-art: Radiological investigation of pleural disease. Respir Med. 2017 Mar;124:88-99.

5. Nishino M, Itoh H, Hatabu H. A practical approach to high-resolution CT of diffuse lung disease. *Eur J Radiol.* 2014;83(1):6-19.