
Developing Accessible Mobile Applications with Cross-Platform
Development Frameworks

Sergio Mascetti
sergio.mascetti@unimi.it

Università degli Studi di Milano

Mattia Ducci
mattia.ducci@studenti.unimi.it
Università degli Studi di Milano

Niccoló Cantù
niccolo.cantu@studenti.unimi.it
Università degli Studi di Milano

Paolo Pecis
paolo.pecis@studenti.unimi.it
Università degli Studi di Milano

Dragan Ahmetovic
dragan.ahmetovic@unimi.it

Università degli Studi di Milano

ABSTRACT
We illustrate our experience, gained over years of involvement in
multiple research and commercial projects, in developing accessible
mobile apps with cross-platform development frameworks (CPDF).
These frameworks allow the developers to write the app code only
once and run it on both iOS and Android. However, they have
limited support for accessibility features, in particular for what
concerns the interaction with the system screen reader.

To study the coverage of accessibility features in CPDFs, we first
systematically analyze screen reader APIs available in native iOS
and Android, and we examine whether and at what level the same
functionalities are available in two popular CPDF: Xamarin and Re-
act Native. This analysis unveils that there are many functionalities
shared between native iOS and Android APIs, but most of them are
not available neither in React Native nor in Xamarin. In particular,
not even all basic APIs are exposed by the examined CPDF. Access-
ing the unavailable APIs is still possible, but it requires additional
effort by the developers who need to write platform-specific code
in native APIs, hence partially negating the advantages of CPDF.
To address this problem, we consider a representative set of na-
tive APIs that cannot be directly accessed from React Native and
Xamarin and we report challenges encountered in accessing them.

CCS CONCEPTS
• Human-centered computing → UI toolkits; Accessibility.

KEYWORDS
Cross platform development, accessibility, mobile applications.

ACM Reference Format:
Sergio Mascetti, Mattia Ducci, Niccoló Cantù, Paolo Pecis, and Dragan
Ahmetovic. 2021. Developing Accessible Mobile Applications with Cross-
Platform Development Frameworks. In The 23rd International ACM SIGAC-
CESS Conference on Computers and Accessibility (ASSETS ’21), October 18–
22, 2021, Virtual Event, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3441852.3476469

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASSETS ’21, October 18–22, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8306-6/21/10. . . $15.00
https://doi.org/10.1145/3441852.3476469

1 INTRODUCTION
When mobile developers write native code, they interact with
the operating system (OS) through application program interfaces
(APIs) exposed by the OS itself or by additional platform-specific
development frameworks (which we label together as system APIs).
Normally, each platform has its own set of system APIs, accessed
through platform-specific programming languages. Therefore, ap-
plications intended for multiple platforms generally need to be
developed separately for each different platform. Cross-platform
development frameworks (CPDF) address this problem by wrapping
system APIs for different platforms into their own APIs, which are
consistent among different platforms and can be accessed through a
single programming language. Thus, using CPDFs, developers can
write their code only once and have working apps for both major
mobile platforms (iOS and Android). Since CPDF wrap many of
the commonly used system APIs, they have been shown to reduce
projects’ development and maintenance costs [1].

Our team (EveryWare Lab, University of Milan) has been de-
veloping mobile assistive technologies since 2010 and we recently
started using cross-platform developing platforms to provide appli-
cations for iOs and Android. However, we soon realized that many
native accessibility APIs (in particular related to screen reader)
are not available through CPDFs APIs [3, 10], as confirmed by
prior literature [15]. The developers can still access them, but they
need to write platform-specific code, which means that the same
function needs to be written separately for each target platform.
Platform-specific implementations may differ in functionalities and
user experience, which impacts the resulting app accessibility [6].
Furthermore, developing platform-specific code is time-consuming
and requires the developers to know the native APIs, hence limiting
the advantages of CPDFs themselves. As a result, prior works pro-
pose new mobile CPDFs, designed with accessibility in mind [9, 11]
as previously done for desktop CPDFs [4, 7]. However, such ap-
proaches are not widespread and do not address the accessibility of
apps developed with mainstream mobile CPDFs.

We first report a detailed comparison of mobile screen reader
APIs, showing that iOS and Android screen reader APIs are func-
tionally equivalent1 . Then, we analyze how state-of-the-art mobile
CPDFs wrap these native APIs. We show that React Native and
Xamarin, two of the most adopted mobile CPDFs, only wrap about
half and one third of the screen reader-related APIs shared by iOS
and Android, respectively.

1i.e., they expose the same (or very similar) functionality.

https://doi.org/10.1145/3441852.3476469
https://doi.org/10.1145/3441852.3476469
https://doi.org/10.1145/3441852.3476469
mailto:dragan.ahmetovic@unimi.it
mailto:permissions@acm.org
mailto:paolo.pecis@studenti.unimi.it
mailto:niccolo.cantu@studenti.unimi.it
mailto:mattia.ducci@studenti.unimi.it
mailto:sergio.mascetti@unimi.it

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Kwon and Ahmetovic, et al.

Even worse, the two considered CPDFs do not even expose all
the basic accessibility APIs (a definition of basic accessibility API
is provided in the following). Finally, we report our experience,
discussing how we managed to access the APIs that are not wrapped
by mobile CPDFs. Considering a representative set of APIs, we show
examples for accessing them in Xamarin and React Native, with
platform-specific code and we report how much effort this required.

2 BACKGROUND
2.1 Mobile Accessibility and Screen Readers
Mobile devices are accessed by people with disabilities through
accessibility services that run in background and allow users to per-
sonalize how they interact with the device, for example providing
a magnifier to people with low vision. In this experience report we
focus on the challenges in developing mobile apps for people who
are blind or have a severe visual impairment and use screen reader
to interact with the device. Screen readers are accessibility services,
available on both Android and iOS, that verbally describe elements
accessed on the touch screen [8]. On iOS, Voice Over screen reader
is part of the OS itself and third party solutions cannot be used.
Android, instead, exposes APIs that enable third parties to develop
screen readers. In practice, however, Talk Back screen reader, pro-
vided by Google, is most commonly used2 . Hence, we only take
into account Talk Back and Voice Over.

Screen readers can be used to access OS functionalities and apps,
including those developed by a third party. In some cases an app
can be (at least partially) accessible through a screen reader even
though the app developers did not take explicit actions to enable
screen reader accessibility. However, creating fully accessible apps
often requires intervention from the developers. For example the
developers have to specify the alternative text for images so that
the screen reader can read them aloud. This form of intervention
can be achieved though screen reader APIs that developers can use
to interact with the screen reader or to personalize its behaviour.
VoiceOver and TalkBack expose a number functionally equivalent
APIs, which characterize fundamental non-visual interaction, but
they also differ for a number of system-specific features, for example
VoiceOver enables the use of a rotor gesture which is unavailable
on TalkBack.

2.2 Cross-Platform Development Frameworks
Cross-platform development can be achieved with four approaches:
web apps, hybrid apps, interpreted apps, and generated apps [14].
The first two approaches are based on web technologies and there-
fore may suffer from an overhead during interaction. Instead, in the
latter two approaches, native code is automatically generated to
create the user interface, presenting native views3 to the user. Using
native interfaces, these approaches yield better performance [13],
thus improving user experience. Indeed they are the ones adopted
by React Native and Xamarin, the two most popular mobile CPDF
according to a survey conducted by StackOverflow4 , which we
consider in the following.

2Talk Back is often pre-installed on Android, but it is not part of the OS.
3A view is an object shown on the screen with which the user can possibly interact.
4https://insights.stackoverflow.com/survey/2019#technology-_-other-frameworks-
libraries-and-tools

3 NATIVE SCREEN READER API
We conducted an analysis of screen reader APIs, considering our
prior experience as well as the development documentation for iOS
and Android. We created a taxonomy of the identified APIs based
on the exposed functionality. Table 1 lists the 25 identified API func-
tionalities and their availability in the four considered platforms
(native iOS, native Android, React Native, Xamarin). Table 1 also indi-
cates which APIs implement basic screen reader functionalities. To
identify basic functionalities we took into account the accessibility
principles and best practices presented in introductory accessibility
documentation by Apple and Google [2, 5]. We considered the APIs
mentioned in these resources as the basic ones.

The APIs are organized into the following five categories:

• Accessibility focus. A basic principle in mobile screen reader
interaction is that the user can select a view, hear its descrip-
tion and then possibly activate it. When a view is selected,
we say it receives the accessibility focus; at most one view
can have the accessibility focus at the same time.

• Text-to-announce. When a view receives the accessibil-
ity focus, the screen reader reads aloud the textual descrip-
tion associated to it. This description, which we call text-to-
announce, can be defined by the developers.

• Explicit text-to-speech. The text-to-announce is read aloud
by text-to-speech (TTS) software. TTS can also be used by
the developers to programmatically read a text aloud.

• Accessibility tree. Mobile screen readers define a logical
tree structure to organize accessibility elements. The devel-
opers can access and edit this structure.

• Miscellaneous.

4 CPDF SCREEN READER API AVAILABILITY
The last two columns of Table 1 report whether each functionality
is available in React Native or Xamarin, respectively. We denote
that the functionality is available (Y symbol) if: (i) both iOS and
Android expose a functionally equivalent API that is wrapped by
the CPDF producing the same behaviour on both platforms, or (ii)
an API is available in either iOS or Android and the CPDF wraps
the API for that native platform, producing the expected behaviour
in it and not in the other native platform. We indicate that a API
is not exposed by a CPDF with the N symbol, while we use the L
symbol to denote that the API is exposed by the CPDFs, but with a
possibly different behaviour in the two native platforms.

In most cases (14 out of 25), iOS and Android implement func-
tionally equivalent APIs (see Table 1). In all of these, it would be
possible for CPDF to wrap native APIs into a single cross-platform
API. In practice, however, this is not the case in both the examined
CPDFs and, in particular in Xamarin. Indeed, out of the 14 function-
alities shared by iOS and Android, only 8 and 5 are wrapped into
React Native and Xamarin APIs, respectively. For the APIs that are
exposed by only one native platform, it could still be possible for
CPDF to wrap the API for that platform. Again, this is only rarely
the case. Indeed, out of 11 API exposed by iOS or Android (but
not both), only 5 and 2 are wrapped by React Native and Xamarin,
respectively. The situation is only slightly better considering basic
functionalities. Indeed, out of 8, only 6 and 5 are available in React
Native and Xamarin, respectively.

https://insights.stackoverflow.com/survey/2019#technology-_-other-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2019#technology-_-other-frameworks-libraries-and-tools

Developing Accessible Mobile Applications with Cross-Platform Development Frameworks ASSETS ’21, October 18–22, 2021, Virtual Event, USA

Table 1: Screen reader API functionalities and their availability in development platforms.
Notation: Y available; N not available; L available with limitations; basic according to Android (A) or iOS (I) documentation.

C
at
eg

or
y

ID
B
as
ic

 in

API functionality iO
S

A
nd

ro
id

R
ea
ct

 N
.

X
am

ar
in

A
cc
. f
oc
us

 #1 A Specify which views should receive the accessibility focus Y Y Y Y
#2 I Specify the accessibility focus order Y Y N Y
#3 Assign the accessibility focus to a view Y Y Y N
#4 Specify actions associated to accessibility focus-related events (e.g., toggle view focus) Y Y N N
#5 Determine whether and which view has the accessibility focus Y Y N N

Te
xt

 to
 a
nn

. #6 A I Specify attributes that contribute to form the text-to-announce Y Y L L
#7 Programmatically define the text-to-announce N Y N N
#8 A Use one view to describe another one N Y N Y
#9 Specify that a view should be announced when changed, even without user interaction N Y Y N
#10 Specify in which language the text-to-announce should be read Y Y N N

Ex
pl
ic
it
TT

S

#11 I Read a text with the screen reader TTS Y Y Y N
#12 Be informed when the screen reader finishes reading an explicitly provided text Y N Y N
#13 Customize screen reader TTS speech features, like pitch, speed, etc... Y N N N
#14 Read a text with non-screen reader TTS (also works when screen reader is not active) Y Y Y Y
#15 Detect whether the non-screen reader TTS is reading Y Y Y N
#16 Pause the non-screen reader TTS Y N N N
#17 Customize non-screen reader TTS speech features, like pitch, speed, etc... Y Y Y Y

A
cc
. t
re
e #18 A Aggregate multiple views into a single accessible element N Y Y Y

#19 Decompose a view into multiple accessibility elements Y Y N N
#20 Get the parent accessible element Y Y N N

M
is
ce
lla
ne
ou

s #21 Detect whether screen reader is active Y Y Y N
#22 A Support navigation by specifying which views are headers or panes N Y Y N
#23 I Define how to respond to screen reader user actions Y N Y N
#24 Perform actions on user behalf N Y N N
#25 Associate arbitrary accessibility-related information to a view N Y N N

5 IMPLEMENTATION
We describe technical challenges in accessing native APIs not
wrapped by CPDFs. For this, we implemented sample apps showcas-
ing a subset of the APIs from Table 1, including all basic ones. The
apps were developed in native code (iOS and Android) and in the
considered CPDFs, deployed for both iOS and Android. The source
code is available online5 , and the apps developed in Xamarin and
ReactNative are published on Google Play Store and App Store6 .

Figure 1a shows the sample app for API #1, implemented in na-
tive iOS. The app shows three buttons that initially can receive the
accessibility focus. Activating the first button results in the third
button to become unfocusable. Figure 1b shows the sample app for
API #2 implemented in native Android. Initially the accessibility
focus order for the four presented buttons is the same as the visual
order but when the first button is activated the accessibility focus
order is changed. Figure 1c) shows the sample app for API #3 im-
plemented in React Native and deployed to Android. The app shows
three buttons: when the first one is activated, the accessibility focus
is assigned to Button 3. Figure 1d shows the sample app for API
#4 implemented in Xamarin and deployed to iOS. The app shows
two buttons: when the second one receives the accessibility focus,
it changes its color and label.

5https://ewserver.di.unimi.it/gitlab/public_accessibility_software/
mobilescreenreadersapi
6https://everywarelab.di.unimi.it/index.php/15-research-projects/211-at-in-
programming-languages

In Table 2, we classify the sample apps depending on how the
accessibility functionality is implemented:

• Direct API use: the functionality is available as a platform
API (D symbol);

• Semi-direct API use: the functionality is not available as a
platform API, but a similar behaviour can be implemented
using other platform APIs (S symbol);

• Native API use (for applications developed in CPDF only):
the functionality is not available as a platform API and the
implementation requires to access native APIs (N symbol).

For example, functionality #1 can be implemented with direct
API use in all four platforms, as they all expose API for this. Instead,
iOS does not expose an API for functionality #8, but it still can
be implemented with semi-direct API use, using a combination of
API #1 and #6 (both available in iOS). An example of native API
use is functionality #4 in React Native: no API is available and it is
not possible to implement the functionality using a combination
other APIs available in the platform, hence it is necessary to use the
native APIs available in iOS and Android. If an API is not available
in a native platform, it also cannot be implemented in CPDF for
that platform (denoted with an empty cell). For example, API #22
is not available in iOS, hence it cannot be implemented in React
Native or Xamarin when deploying to iOS.

To give an idea of how challenging the development of accessible
applications with CPDFs can be, in the following we report our

https://ewserver.di.unimi.it/gitlab/public_accessibility_software/mobilescreenreadersapi
https://ewserver.di.unimi.it/gitlab/public_accessibility_software/mobilescreenreadersapi
https://everywarelab.di.unimi.it/index.php/15-research-projects/211-at-in-programming-languages
https://everywarelab.di.unimi.it/index.php/15-research-projects/211-at-in-programming-languages

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Kwon and Ahmetovic, et al.

(a) API #1 (Native iOS) (b) API #2 (native Android) (c) API #3 (React Native on Android) (d) API #4 (Xamarin on iOS)

Figure 1: Examples of the samples applications

Table 2: Sample applications and how they are implemented
(D = direct, S = semi-direct, N = native)

Native React Native Xamarin
ID iOS Android iOS Android iOS Android
#1 D D D D D D
#2 D D N N D D
#3 D D D D N N
#4 D D N N N N
#5 D D N N N
#6 D D D D D D
#8 S D S S S D
#11 D D D D N N
#14 D D S D D
#17 D D S D D
#18 S D D D S D
#21 D D D N N
#22 D D N
#23 D D N

experience during the development of the sample apps. Considering
the Xamarin implementation, as described in Table 2, we developed
six sample apps based on native API use: #3, #4, #8, #11, #22, #23. All
of them have been implemented using dependency services, except
for the sample app developed for API #4, for which it was necessary
to use custom renderers7 .

In both cases (dependency services and custom renderers) the
greatest challenge for the developers is that they need to have the
knowledge of both Android and iOS native APIs, their (sometimes

7Dependency services and custom renderers are two technologies defined in Xamarin to
access native APIs.

subtle) differences, and how they are wrapped into the Xamarin C#
platform-specific APIs. This typically requires the developers to deal
with the documentation for native iOS, native Android, Xamarin.iOS
and Xamarin.Android. An additional challenge when using custom
renderers is that the developers also needs to know how Xamarin
Forms renderers work, and to be aware of all the classes involved in
this part of the code.

To convey the amount of effort required for the development
of accessible applications in Xamarin, we report, as an example,
our own experience in developing the sample apps. The apps were
implemented by a novice Xamarin developer (a co-author of this
paper) supported by two professional developers, with 1 and 3 years
of experience in Xamarin development, respectively, and a team
of experts in mobile accessibility, with prior expertise in develop-
ment of mobile assistive technologies on native platforms. For each
sample app with direct API use about one hour of development
time was needed, requiring limited support. The development time
was similar for the applications based on semi-direct API use, but
in some cases some support was needed by the team of experts
in mobile accessibility to define how to combine exposed API to
implement the expected behaviour.

Instead, sample apps with native API use required a much higher
effort. In particular, those created using dependency services required
about 2 hours of development each, and the intervention of the
professional developers. Sample app for API #4, which required to
use custom renderers required several weeks of investigation and
despite the involvement of both supervising developers we were
still unable to solve the problem. Eventually, we succeeded after
receiving help from the official Xamarin support provided by a
Microsoft developer.

Developing Accessible Mobile Applications with Cross-Platform Development Frameworks ASSETS ’21, October 18–22, 2021, Virtual Event, USA

Considering the implementation in React Native, sample apps for
API #2 and #4 were developed with native API use. This required,
for each sample app, to develop a native component, which is com-
posed of a few classes in native Android and iOS, hence written in
Java and ObjectiveC, respectively. Each native component imple-
ments the accessibility functionalities by accessing native APIs and
exposing them to the remaining of the React Native code. Similarly
to what happens with Xamarin, the developers need to know the
native accessibility APIs. However, in the case of React Native the
developers also need to know how to code in native programming
languages (Java and ObjectivC) and how the React Native native
libraries work, and this is particularly challenging due to the fact
that they are poorly documented.

Also in this case we report out experience with the development
of the sample apps, created by one of the co-authors of this paper
who is a professional developer with more than 3 years of experi-
ence in development with React Native and no previous experience
in the development of native components. On average, he required
less than one hour for each of the sample apps requiring direct
or semi-direct API use. Instead, he required more than 10 days to
complete sample app for API #4 on Android and he also needed to
be supported by another experienced iOS developer to complete
the iOS native component.

6 CONCLUSIONS AND FUTURE WORK
It is well known that many applications, including those for mobile
devices, have accessibility issues [12]. In some cases, this is due to
a lack of knowledge by the developers, who are not aware of the
needs of people with disabilities, or do not know how to address
these needs with the existing technology.

This paper uncovers a different problem: while native develop-
ment platforms offer a broad range of APIs to develop accessible
applications, many of these APIs are not wrapped by CPDFs. This
means, for example, that a developer who is aware of the needs of
people with visual impairments and who knows the native APIs
to guarantee accessibility, will still struggle to implement acces-
sibility functionalities in React Native and Xamarin. As we show
in this paper, the developers can still implement these functionali-
ties, but this require a higher development effort; in a commercial
project this implies higher costs, hence it lowers the chances that
the functionality is actually implemented.

Another relevant contribution of this paper is that it lists the
accessibility functionalities exposed by iOS and Android. We do not
have formal guarantees that this list is complete, but it represents a
starting point for a discussion in the scientific and technical com-
munity. We believe that the list of accessibility APIs represents a
valid technical reference documentation. It can be used by devel-
opers interested in creating accessible applications, including in
particular mobile assistive technologies. Also, developers of new
CPDFs and mobile OSs can refer to this paper to quickly understand
which accessibility functions they need to implement.

This paper analyses an involved technical scenario and identifies
a new relevant problem, hence paving the way for a number of
follow-up research directions and technical interventions. On one
side, this paper suggests that CPDFs can contribute to the develop-
ment of applications presenting accessibility issues. This hypothesis

can be verified in the future, for example with large scale studies,
like the one conducted by Ross et al. [12]. The same methodology
presented in this paper can be adapted to analyze the accessibility of
other systems, for example traditional devices (desktop computers)
and pervasive ones, or to address the accessibility to mobile devices
by people with other forms of disabilities, like low vision. On the
technical side, this paper identifies an intervention checklist for the
development community to implement new functionalities in React
Native and Xamarin. Both platforms are open source and hence it
is possible to contribute in the development of new functionalities,
which we intend to do. In the future we also intend to consider
other CPDFs, including Flutter.

REFERENCES
[1] Paulo Roberto Martins de Andrade, Otavio Frota, Fátima Silva, Adriano Albu-

querque, and Robson Silveira. 2015. Cross Platform App: A Comparative Study.
Journal of Computer Science and Technology (02 2015). https://doi.org/10.5121/
ijcsit.2015.7104

[2] Apple. 2020. Apple Human Interface Guidelines. Accessibility section. https:
//apple.co/2VsZP37. Accessed: 2020-04-27.

[3] Niccolò Cantù, Mattia Ducci, Dragan Ahmetovic, Cristian Bernareggi, and Sergio
Mascetti. 2018. MathMelodies 2: a Mobile Assistive Application for People with
Visual Impairments Developed with React Native. In ACM SIGACCESS Conference
on Computers and Accessibility (ASSETS). ACM.

[4] Andres Gonzalez and Loretta Guarino Reid. 2005. Platform-independent ac-
cessibility api: Accessible document object model. In Proceedings of the 2005
International Cross-Disciplinary Workshop on Web Accessibility (W4A). 63–71.

[5] Google. 2020. Android Developers Documentation. Principles for improving app
accessibility. https://bit.ly/2K4gsg8. Accessed: 2020-04-27.

[6] Naomi Harrington, Yanyan Zhuang, Yağız Onat Yazır, Jennifer Baldwin, Yvonne
Coady, and Sudhakar Ganti. 2013. Beyond user interfaces in mobile accessibility:
Not just skin deep. In 2013 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM). IEEE, 322–329.

[7] Michael Heron, Vicki L Hanson, and Ian W Ricketts. 2013. ACCESS: a technical
framework for adaptive accessibility support. In Proceedings of the 5th ACM
SIGCHI symposium on Engineering interactive computing systems. 33–42.

[8] Shaun K Kane, Jeffrey P Bigham, and Jacob O Wobbrock. 2008. Slide rule: making
mobile touch screens accessible to blind people using multi-touch interaction
techniques. In Proceedings of the 10th international ACM SIGACCESS conference
on Computers and accessibility. 73–80.

[9] Peter Korn, Evangelos Bekiaris, and Maria Gemou. 2009. Towards open ac-
cess accessibility everywhere: The ÆGIS concept. In International Conference on
Universal Access in Human-Computer Interaction. Springer, 535–543.

[10] Sergio Mascetti, Giovanni Leontini, Cristian Bernareggi, and Dragan Ahmetovic.
2019. WordMelodies: supporting children with visual impairment in learning
literacy. In ACM SIGACCESS Conference on Computers and Accessibility. ACM.

[11] Christoph Rieger, Daniel Lucrédio, Renata Pontin M Fortes, Herbert Kuchen,
Felipe Dias, and Lianna Duarte. 2020. A model-driven approach to cross-platform
development of accessible business apps. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing. 984–993.

[12] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.
Epidemiology as a framework for large-scale mobile application accessibility
assessment. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility. 2–11.

[13] Michiel Willocx, Jan Vossaert, and Vincent Naessens. 2015. A quantitative assess-
ment of performance in mobile app development tools. In 2015 IEEE International
Conference on Mobile Services. IEEE, 454–461.

[14] Spyros Xanthopoulos and Stelios Xinogalos. 2013. A comparative analysis of
cross-platform development approaches for mobile applications. In Proceedings
of the 6th Balkan Conference in Informatics. 213–220.

[15] Yanyan Zhuang, Jennifer Baldwin, Laura Antunna, Yagiz Onat Yazir, Sudhakar
Ganti, and Yvonne Coady. 2013. Tradeoffs in cross platform solutions for mobile
assistive technology. In 2013 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM). IEEE, 330–335.

https://doi.org/10.5121/ijcsit.2015.7104
https://doi.org/10.5121/ijcsit.2015.7104
https://apple.co/2VsZP37
https://apple.co/2VsZP37
https://bit.ly/2K4gsg8

	Developing Accessible Mobile Applications with Cross-Platform Development Frameworks
	ABSTRACT
	CCS CONCEPTS
	KEYWORDS
	ACM Reference Format:

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Mobile Accessibility and Screen Readers
	2.2 Cross-Platform Development Frameworks
	3 NATIVE SCREEN READER API

	4 CPDF SCREEN READER API AVAILABILITY
	5 IMPLEMENTATION
	6 CONCLUSIONS AND FUTURE WORK
	REFERENCES

