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Abstract 18 

Long-term studies are essential to understand the impacts of global changes on the multiple facets 19 

of biological diversity. Here, we report that multiple environmental stressors, namely climate, land-20 

use and human population density jointly acted in conditioning assemblage composition and 21 

functionality over long time periods. By carefully reconstructing the temporal evolution of these 22 

stressors, we explicitly tested how environmental changes can determine the observed changes in 23 

taxonomic and functional diversity. We found that rapid changes in precipitation de-stabilize the 24 

assemblages and maximize colonization and extinction rates, especially when coupled with changes 25 

in human population density (for taxonomy) or temperature (for functionality). Higher 26 

microclimatic heterogeneity increases the stability of biodiversity, by reducing taxonomic and 27 

functional loss. Finally, changes in natural habitats increased colonization, influencing taxonomic 28 

nestedness and functional replacement. The integration of long-term datasets combining 29 

distribution, climate and traits may deepen our understanding of the processes underlying 30 

biodiversity responses to global-scale drivers.  31 
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Introduction 32 

Ongoing land-use and climate changes represent global threats to biological diversity1,2. The rapid 33 

growth of the human population, with the resulting increased exploitation of natural resources, has 34 

tremendously accelerated the modification of natural systems3,4. Rapid climate change, including 35 

temperature increases and alterations to precipitation patterns, is leading to multiple impacts on 36 

biodiversity5,6, and often interacts with other global-change stressors7,8. The biodiversity dynamics 37 

following such changes may have severe consequences on the functioning of ecosystems, including 38 

their ability to provide goods and services, and hence potentially leading to adverse impacts on 39 

human health, well-being and socio-economic development9,10. 40 

Biodiversity is a multifaceted concept and a full assessment of the consequences of global 41 

changes requires the understanding of impacts on taxonomic diversity (e.g. species richness), but 42 

also on evolutionary processes (e.g. phylogenetic diversity) and ecosystem functioning (e.g. 43 

functional diversity)11,12. Long-term studies are essential to achieve this task, as they allow relating 44 

biodiversity trajectories to climate and land-use shifts. However, the scarcity of long-term 45 

biodiversity data generally limits the possibility of such analyses, and most of the available studies 46 

focus on changes in species richness or phenology13,14,15.  47 

Temporal -diversity (i.e., the compositional dissimilarity over two or more time points for 48 

the same place) provides a partially unexplored but powerful tool to detect the effects of 49 

environmental changes on biological diversity16,17. Whereas -diversity is agnostic to species 50 

identity, -diversity takes explicitly into account assemblage composition, thus providing a more 51 

sensitive indicator of biotic changes induced by climate and land-use shifts17,18. In addition, -52 

diversity can be partitioned into turnover and nestedness components, allowing an in-depth analysis 53 

of the processes shaping assemblage composition. Temporal turnover reflects species replacement 54 

over time, and can be caused by neutral processes, such as chance colonization and ecological drift, 55 

or environmental sorting19. Temporal nestedness, on the other hand, is the tendency of two 56 
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assemblages to be subset of one another, indicating species loss or gain over time as a result of non-57 

random dynamics promoting the compositional depletion or enrichment of the assemblage16,19,20. 58 

Taxonomic and functional dissimilarities are different facets of biodiversity that can show different 59 

responses to environmental changes16, depending on the redundancy of single species’ functional 60 

traits within the assemblage: the more original are the traits of a species, the less replaceable will be 61 

its contribution to overall functioning11,21. 62 

Understanding the drivers of biodiversity change through time is pivotal to detect the impacts 63 

of global stressors at both the taxonomic and functional levels. Temporal changes in species 64 

richness and temporal -diversity may provide measures of directional shifts in community 65 

composition in response to e.g. (micro-)climate, landscape changes or changes in nitrogen 66 

deposition22,23,24. Positive relationships between the change in a given environmental parameter and 67 

-diversity may result from nestedness caused, for instance, by species loss (particularly the rarest 68 

ones) (Fig. 1a-b) or from high rates of compositional turnover with higher environmental change, 69 

for instance following temperature increase25 (Fig. 1c-d). Non-linear (e.g. quadratic) trends centred 70 

on zero could instead result from responses that are sensitive only to the magnitude of changes in 71 

the environmental driver, independent of its sign (e.g. both precipitation increase and decrease). In 72 

this case, the dissimilarity is at its minimum when the change is low and it increases with more 73 

profound changes, whatever their sign (Fig. 1e-h). Unfortunately, the scarcity of long-term data has 74 

limited our understanding of relationships between environmental change and biodiversity (but see 75 

e.g. 18).  76 

  77 
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 78 

Fig. 1: Potential effects of environmental changes on the α- and β-diversity of assemblages. The effects are exemplified 79 

for two assemblages sharing the same pool of species at t1, but experiencing different intensities of change. a) An 80 

environmental change leads to a modification in assemblage composition between t1 and t2, with stronger environmental 81 

change for the blue assemblage. b) These environmental changes affect biodiversity, leading to loss of α-diversity 82 

(strongest for the blue assemblage) and causing higher temporal β-diversity (sor) in blue, which is attributable to 83 

nestedness (sne). c) In this case, the environmental change causes assemblage modifications that, as shown in d), are 84 

reflected by higher temporal β-diversity (sor) in blue, attributable to turnover (sim). e and g) For many parameters, the 85 

environment can drive changes with different sign (e.g. precipitation can either increase and decrease through time; Fig. 86 

2b), both causing community changes. As shown in f and h), this leads to non-linear relationships between the strength 87 

of environmental change and the different components of β-diversity. 88 
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Terrestrial arthropods are the most ubiquitous animals on the Earth, exhibiting an astonishing 91 

diversity in species, adaptations and life forms and providing multiple ecosystem services26, 92 

notwithstanding they are undergoing dramatic biodiversity shifts and declines because of ongoing 93 

global changes26,27,28,29. Here we used a unique biodiversity dataset on the Italian fauna covering 94 

more than 150 years30 to unravel the processes determining long-term diversity dynamics of 95 

arthropod assemblages at both the taxonomic and functional levels. We integrated multiple 96 

information on environmental variations to estimate the relative role of changes in climate, land-use 97 

and human population, as well as the effects of microclimatic buffering. Temporal changes in 98 

assemblage composition and functionality were measured using the Sørensen dissimilarity, which 99 

accounts for both species replacement and differences in -diversity between spatially or 100 

temporally disjoint assemblages19,31. To represent the opposite processes of species replacement and 101 

loss/gain through time, we partitioned total dissimilarity into the additive components of turnover 102 

and nestedness16,19 and of Dgain and Dloss
32. Temporal variations are directional processes (i.e., we 103 

study the changes of a given assemblage from t0 to t1) and this allows to explicitly link species gains 104 

and losses to the fundamental mechanisms (i.e., colonization and extinction) underlying the 105 

observed functional and compositional changes. We related the rate of change of dissimilarity and 106 

its components to environmental variation, in order to identify the overall response of biological 107 

communities to environmental changes and the underlying processes. We expected smaller changes 108 

in -diversity for microclimatically heterogeneous landscapes, due to the stabilizing effect of 109 

microclimatic buffering resulting in the reduction of both turnover and / or nestedness33. On the 110 

other hand, higher rates of climate and land-use changes, promoting more rapid extinction / 111 

colonization dynamics due to the coupled effects of human pressure and niche displacement1, may 112 

increase species turnover and / or nestedness, ultimately resulting in local increases of -diversity.  113 
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Results 116 

Climate, land-use and human population changes  117 

After our rigorous cleansing procedure, we obtained high-quality biodiversity data for multiple time 118 

periods in 109 cells covering the whole Italian area (Fig. 2). In these cells, the analysis of 119 

environmental changes over the entire time series (Supplementary Table 1) clearly showed an 120 

increase of mean annual temperature, which became particularly evident in the last five decades 121 

(Fig. 2a), and a decrease in annual precipitation (Fig. 2b). The surface covered by natural and semi-122 

natural habitats experienced a decline during the period 1860-1950, followed by a significant 123 

rebound during recent decades (Fig. 2c), while human population increased until reaching a plateau 124 

after 1980 (Fig. 2d). The mapping of random intercepts identified complex spatial patterns for the 125 

environmental variables, with lower temperatures, higher precipitation and more natural habitat in 126 

mountain areas (Fig. 2e-g, respectively), and higher human population density in lowlands and 127 

nearby the main cities (Fig. 2h). 128 

 129 

 130 



8 

 

 131 

Fig. 2: Temporal evolution of climate, land-use and human population density over the entire time series (1859-2003 132 

CE). Cell identity was introduced as random intercept to take into account the cell-specific conditions influencing 133 

climate (e.g., elevation, latitude ...), land-use and human population density (percentage of natural areas or human 134 

population density at the beginning of the series). a-d: reconstructed temporal trends (Nakagawa & Schielzeth92 135 

conditional R2: 0.99; 0.96; 0.97; 0.99 - marginal R2: 0.02, 0.01, 0.03, 0.02); grey area represents the 95% confidence 136 

interval for the average estimate. Precipitation and human population density are cube-root transformed. e-h: spatial 137 

distribution of the random intercepts; purple squares mark negative values (i.e. lower than the average), green squares 138 

positive ones. The square size is proportional to the value of the random intercept. 139 

 140 

 141 

Temporal β-diversity 142 

To identify the processes underlying biodiversity change, average rates of change of 143 

dissimilarity and its components were related to the annual rates of change in climate, land-use and 144 

human population, and to the average microclimatic heterogeneity within the intervals. We 145 

measured -diversity, nestedness, turnover and scaled gain and loss components between 169 pairs 146 

of temporally disjunct assemblages (Chilopoda = 43; Histeridae = 36; Orthoptera = 28; Dytiscidae = 147 

17; Ephemeroptera = 18; Odonata = 27). We accounted for the differences in interval duration by 148 
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dividing dissimilarity measures by the interval duration over which they were accumulated. This 149 

approach allowed the minimization of the effects that a natural baseline turnover may exert on the 150 

overall dissimilarity over long time intervals34, which conceal the impact of changes in climate or 151 

land-use. We also assessed the possibility of non-linear relationships and interactions using the 152 

Watanabe-Akaike information criterion (WAIC35; see Methods for further details). 153 

The rate of change of taxonomic -diversity was higher in cells experiencing faster changes in 154 

natural habitat, faster (positive or negative) changes in precipitation, slower changes in human 155 

population density and lower microclimatic heterogeneity (Fig. 3a). Additionally, we found a strong 156 

interaction between precipitation and human population density. The effect of precipitation change 157 

was particularly evident in cells where human population increased more rapidly (Fig. 4a-c). 158 

Similarly, the rate of change of taxonomic turnover was higher for cells with lower microclimatic 159 

heterogeneity, with strong (positive or negative) precipitation changes and with slower changes in 160 

human population densities. Also in this case, we found a strong interaction between precipitation 161 

and human population changes (Fig. 3b; Supplementary Fig. 1a-c). Conversely, the rate of change 162 

of the nestedness component of dissimilarity was highest in cells experiencing rapid increase of 163 

natural habitats and small changes in human population density and precipitation. Also in this case, 164 

we detected a positive interaction between precipitation and human population change (Fig. 3c; 165 

Supplementary Fig. 1d-f), although this effect was weaker than that observed for β-diversity and 166 

turnover. 167 

Since functional diversity is known to be sensitive to species richness36,37, we used P-values 168 

based on null models to obtain estimates of functional diversity (both - and its components) 169 

independent of the patterns of richness37 (see Methods). With this approach, values of functional -170 

diversity e.g. > 0.5 indicate assemblages that are functionally more dissimilar than expected given 171 

their taxonomic dissimilarity. The same holds for the nestedness and turnover components of 172 

dissimilarity, as well as for scaled gain and loss components of dissimilarity. The analysis of 173 
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changes in functional diversity returned patterns comparable to the changes in taxonomic diversity 174 

for -diversity, turnover and nestedness (Fig. 3d-f). The change in functional -diversity was more 175 

rapid in cells experiencing faster (positive or negative) changes in precipitation, faster temperature 176 

changes and lower microclimatic heterogeneity (Fig. 3d). We also found a strong interactive effect 177 

between precipitation and temperature. Faster changes in temperature were linked to particularly 178 

strong changes in functional -diversity when precipitation increased (Fig. 4d- f). The change in 179 

functional turnover was faster in cells experiencing rapid increase of natural habitat, and rapid 180 

(positive or negative) changes in precipitation (Fig. 3e). The interaction between temperature and 181 

precipitation changes had a very weak effect on functional turnover (Supplementary Fig. 2a-c). 182 

Conversely, the rate of change in functional nestedness was higher in cells with, again, faster 183 

(positive or negative) changes in precipitation and temperature (Fig. 3f). In addition, the strong 184 

interaction between precipitation and temperature showed that the positive effects of changes in 185 

temperature are particularly strong when precipitation rate increased (Supplementary Fig. 2e and f).  186 

 187 

 188 

 189 
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Fig. 3: Density plots of the posterior distribution for the relationships between the rates of change of -diversity, 190 

turnover and nestedness and the candidate environmental drivers. Taxonomy (a-c) vs. functionality (d-f); Sørensen 191 

dissimilarity (a and d), temporal turnover (b and e), and temporal nestedness (c and f). The figure represents median 192 

values for regression coefficients (vertical lines), and 80 (colours), 95 (pale colours) and 99 % (outlines) credible 193 

intervals. Quadratic terms and interactions were only included if supported for Sor by the Watanabe-Akaike 194 

Information Criterion35. Interactions: Prec = Annual precipitation; H pop = Human population density; Temp = mean 195 

annual temperature.  196 

 197 

 198 

 199 

Fig. 4: Relationships between -diversity and the environmental drivers returning significant interactions. In each plot, 200 

the thick red line represents the average predicted relationship on the link scale, while the grey lines represent 500 201 

samples of the posterior distribution. a-c show the effect of precipitation change (mm/year) on taxonomic -diversity in 202 

cells with negative (-0.45), medium (0.72) and rapid (1.82) changes of the human population density (cube-root 203 

transformed; (inhabitants/km2/year)1/3). d-f show the effect of temperature change (°C/year) on functional -diversity 204 

with negative (-10.06), stable (-1.96) and positive (5.4) rates of change in precipitation (mm/year). 205 
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To understand the effect of species extinction and colonization on temporal -diversity and its 208 

components (i.e., nestedness and turnover), we further decomposed the Sørensen dissimilarity into 209 

scaled gain and loss components (Dgain and Dloss
32). Functional losses and gains were estimated by 210 

comparing the functional diversity associated to shared, "colonizing" (i.e., newly detected) and 211 

"extinct" species (i.e., species not anymore detected), to that expected under a random assignment 212 

of traits to species (see Methods). Species gain was faster in cells experiencing rapid increase in 213 

natural habitat and fast (positive or negative) precipitation change (Fig. 5a), while increasing human 214 

population slowed down species gain. Additionally, the interaction between precipitation and 215 

human population changes showed that the effect of precipitation change is particularly strong in 216 

cells experiencing rapid increases in human population density (Supplementary Fig. 1h-i). Species 217 

loss was faster in cells with low microclimatic heterogeneity, slow change in human population and 218 

fast (positive or negative) precipitation changes (Fig. 5b), with the interaction showing the same 219 

pattern detected for species gain (Supplementary Fig. 1j-l). The change in functional gain was 220 

highest in areas experiencing fast increase of natural habitat, and rapid (positive or negative) 221 

precipitation changes. Functional gain was not affected by the interaction between precipitation and 222 

temperature (Supplementary Fig. 2g-i). Functional loss was faster in areas experiencing rapid 223 

precipitation changes, and characterized by low microclimatic heterogeneity (Fig. 5c and d); as 224 

above, no clear interactive effects were identified (Supplementary Fig. 2j-l).  225 

 226 

 227 



13 

 

 228 

Fig. 5: Density plots of the posterior distribution for the relationships between the rates of change in the scaled gain 229 

(Dgain) and loss (Dloss) components of -diversity and candidate environmental drivers. Taxonomy (a-b) vs. functionality 230 

(c-d); Dgain (a and b) and Dloss (c and d). The figure represents median values for regression coefficients (vertical lines), 231 

and 80 (colours), 95 (pale colours) and 99 % (outlines) credible intervals. Interactions: Prec = Annual precipitation; H 232 

pop = Human population density; Temp = mean annual temperature. 233 

 234 

 235 

 236 

 237 

Discussion 238 

In recent decades, we have experienced dramatic changes in multiple components of the Earth’s 239 

systems, ranging from climate to the distribution of habitats and species9. These changes are evident 240 

in almost all the areas of the world, and understanding their consequences on the different 241 

components of biological diversity is a necessary prerequisite for effective management. Our 242 
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analyses showed that changes in precipitation, temperature, natural habitats and human population 243 

density, together with microclimatic heterogeneity, jointly acted as major drivers of temporal -244 

diversity and its components, at both the taxonomic and functional levels (Fig. 3 and 4). 245 

The rapid increase in mean annual temperature and the changes in annual precipitation are 246 

inducing remarkable transformations in many environments. This is particularly evident in the 247 

Mediterranean area, a region identified as a hot spot of climate change, where the strong 248 

temperature rise observed in the past decades is expected to continue in the future38. In Italy, a 249 

country with a long record of environmental investigations and weather observations, the data 250 

indicate a stronger-than-average temperature rise and a long-term precipitation decline39. These 251 

changes have multiple consequences, such as the decrease of mountain snow cover and glaciers40,41, 252 

increase in the intensity of summer heat waves42, the expected increase of wildfires43, and 253 

multifaceted impacts on species population dynamics44,45 and protected areas46.  254 

Given the limited direct records for croplands and pasturelands for the period preceding 1960 255 

CE, we retrieved information about natural habitats from analyses integrating data on human 256 

population and per-capita land use47. Still, the marked land-use changes detected here for the whole 257 

period (Fig. 2c and d) are in line with observations from other European countries, where extensive 258 

re-expansion of forests following the abandonment of traditional agricultural areas occurred widely 259 

in the late XX century48. In Mediterranean countries, such process started earlier and had stronger 260 

effects in mountains and other areas where agriculture and pastoralism are less economically-261 

profitable49. In the last decades, the human population reached a plateau in most European 262 

countries50, mainly because of a decrease in fertility rate linked to increased welfare levels51. The 263 

overall scenario of environmental change recorded in the study area during the last 150 years was 264 

extremely complex, as it combined periods of strong anthropization with stable periods and even 265 

rewilding, coupled with substantial increases in temperature and complex changes in precipitation 266 

patterns. Though difficult to disentangle, analysing assemblage responses following these changes 267 

may provide a relatively complete picture of the effects of environmental change on biodiversity. 268 
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Taxonomic and functional dissimilarities showed coherent responses to climate changes, in 269 

terms of both -diversity and its components (Figs. 3, 4 and 5). Several studies on the impact of 270 

climate change on biodiversity have focused on the effects of global warming. Surprisingly, we 271 

found limited effects of temperature change alone on -diversities and their components. Rather, 272 

temperature change increased functional turnover when coupled with increased precipitation (Fig. 273 

3e, 4d-f; Supplementary Fig. 2a-c), and determined functional restructuring of the assemblages. 274 

Precipitation changes showed the strongest and most consistent contribution to biodiversity change, 275 

and frequently interplayed with other parameters. Faster precipitation changes promoted both 276 

taxonomic and functional dissimilarity, turnover and, to a lesser extent, nestedness (Fig. 3), with 277 

species losses being slightly greater than gains at medium and higher human population densities, 278 

possibly as a result of increasing human disturbance4,7. Precipitation changes alter water balance, 279 

local water availability and nutrient cycling, directly affecting ecosystem productivity and food 280 

availability for primary consumers, especially in arid and semi-arid regions52. Precipitation changes 281 

and water stress may directly or indirectly affect eco-physiological responses of herbivores53 and 282 

some analyses suggest that precipitation changes can have stronger effect on population dynamics54 283 

or species optimum elevation55 than temperature changes alone. The effects of precipitation changes 284 

and increased drought may be even more pronounced when these changes act synergistically with 285 

temperature increases, ultimately leading to widespread tree mortality and vegetation shifts with 286 

cascading effects on animal communities and ecosystem functioning56. Additionally, precipitation 287 

changes frequently interact with other climate57 or land-use stressors7,58, shaping the composition 288 

and functioning of biological assemblages2. Since spatially and temporally explicit projections of 289 

precipitation can be difficult to produce, there is a fundamental uncertainty in one of the most 290 

important drivers of future ecosystem and population responses, which calls for innovative 291 

approaches such as decision-scaling methods59 that can greatly improve our estimates of ecological 292 

responses. 293 



16 

 

Microclimate heterogeneity buffered the rates of change of -diversities, taxonomic turnover 294 

and functional nestedness (Fig. 3a, b, d and f), owing to a significant decrease of taxonomic and 295 

functional losses with increasing heterogeneity (Fig. 5b and d). Heterogeneous microclimates thus 296 

stabilized local assemblages by decreasing extinction rate, resulting in a reduction of species 297 

replacement over time. This finding stresses the importance of microclimatic complexity for the 298 

persistence of biological assemblages under climate changes occurring over broad spatial scales33. 299 

We detected no clear effects of human population changes on functional -diversity. Finally, 300 

assemblages showed contrasting responses to changes in natural habitats. The biological 301 

consequences of the increase in wild areas and forests are controversial48, especially when re-302 

wilding is unmanaged, human population density is high and there is a long history of intensive 303 

land-use, as often happens in European countries60,61. We found fast changes in taxonomic -304 

diversity and nestedness, and a fast functional turnover with increasing rates of re-wilding (Fig. 3a, 305 

c and e). This process mainly occurred by addition of species or functionality, rather than by species 306 

loss (Fig. 5a and c), confirming that the increase of resources availability in increasingly natural 307 

habitats can have profound effects on biodiversity, promoting the broad-scale recovery of functional 308 

diversity in a few decades62. 309 

The thorough quantification of temporal -diversity at macroecological scales is generally 310 

hampered by the lack of data on assemblage composition, even on short time scales17. However, 311 

herbaria and zoological collections represent fundamental archives of biodiversity information63 and 312 

historical data, spanning over the period of accelerated anthropogenic impact on ecosystems, allow 313 

the identification of the baseline levels of biodiversity and biodiversity trajectories. Ad-hoc 314 

assembled long-term distribution, climatic and trait datasets can allow the understanding of the 315 

complex processes shaping functional and taxonomic diversity following long-term environmental 316 

changes. In this way, we will be able to shed light into the mechanisms underlying the observed 317 
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functional and compositional changes, identifying the relative contributions of colonization and 318 

extinction in the biodiversity response to global scale drivers. 319 

 320 

 321 

Methods 322 

Biological models and data collection  323 

Assemblage data were retrieved from a recently developed distribution dataset for the Italian 324 

fauna30. The initial dataset included 268,997 occurrence records from 8,445 species, dating between 325 

1680 and 2006 CE. We considered a subset of this dataset, focusing on taxonomic groups and 326 

periods for which sample size is large enough to ensure robustness of analyses. We retained groups 327 

with: i) average number of records > 40 per each species; ii) > 25 species and iii) a high taxonomic 328 

coverage (> 85%) with respect to the updated checklist of the Italian fauna 329 

(http://www.faunaitalia.it/checklist/; accessed on 25 January 2019). We initially retained 18 330 

taxonomic groups (122,438 dated records). Subsequently, we adopted a strict protocol to retain only 331 

the cells and periods that received a consistently high sampling effort. Within each taxonomic group 332 

we collapsed occurrence data using a spatio-temporal grid structure with 20 × 20 km cells and 10-333 

year timeframes (hereafter assemblages), discarding all cells with fewer than 10 records. The 334 

number of observed species in a cell will likely be lower than the actual number of species because 335 

some species may remain undetected. To address this issue, several estimators of species richness 336 

have been developed64. These estimators use information on the number of rare species (i.e., species 337 

found only once or twice) in the assemblage. They assume that the greater the number of locally 338 

rare species is, the more likely it is that other species were missed, and hence they correct the 339 

observed richness based on the frequency of rare species64,65. For each assemblage, we built a 340 

matrix with occurrence records in rows and species in columns. We then estimated the species 341 

richness of the assemblage using the first-order jackknife estimation with the specpool function in 342 

vegan66. The first order jackknife is among the best performing approaches to estimate the 343 
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completeness of biodiversity inventories; simulations and analyses of real datasets of completely 344 

surveyed areas confirmed that it can provide robust estimates of the actual species richness 67. In 345 

order to identify the assemblages where the majority of present species have been detected, we 346 

calculated the ratio between observed and estimated number of species for each assemblage. We 347 

retained for analyses only those assemblages with completeness (observed / estimated) > 0.6, i.e. 348 

assemblages where biodiversity data most likely represent > 60% of species that were actually 349 

present in a given period. To take into account the possibility that a proportion of the species pool 350 

may remain undetected within each assemblage, we included the estimates of completeness as 351 

model weights in later analyses, using the average value between each pair of assemblages. 352 

Including completeness as model weights gives more importance in regression analyses to the best-353 

sampled assemblages, thus reducing the risk of incorrect or misleading model outputs. The 354 

completeness was rather homogeneous across assemblages (mean = 0.69; 5%-95% quantiles = 355 

0.62-0.82) and assemblages surveyed in different periods generally showed consistent completeness 356 

(average within-pair difference = 0.07). We finally excluded all taxonomic groups with fewer than 357 

5 cells × timeframes remaining, or with highly clustered distribution data (i.e., occupying only a 358 

small portion of the study area). After this cleansing, we retained three taxa of strictly terrestrial 359 

arthropods [Chilopoda (centipedes); Histeridae (clown beetles); and Orthoptera (grasshoppers and 360 

crickets)] and three taxa of amphibious insects [(Dytiscidae (water beetles); Ephemeroptera 361 

(mayflies); and Odonata (dragonflies)]. The final dataset comprised 169 pairs of assemblages, 362 

representing 631 species and 9,009 dated records spanning between 1859 and 2003. Each pair 363 

comprised two assemblages where the same taxonomic group was sampled in the same cell in 364 

different time frames with high sampling intensity; 34% of pairs had at least one assemblage dating 365 

before 1960 CE. The duration of the interval between sampling occasions varied from 10 to 110 366 

years. Differences in the spatial representativeness between samples from the same assemblage may 367 

potentially bias the measurement of biodiversity changes16
. Following Marta et al.30, we used 368 

Voronoi cells to evaluate the spatial grain of observation for each sampling locality (and the 369 
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associated records). For each record in each assemblage, we measured the distance between the 370 

centroid and the vertices of the respective Voronoi cell, and then calculated the standard variation of 371 

this distance between all the records of each assemblage. For 90% of assemblages, this standard 372 

deviation was ≤ 618 m, with a within-cell range of deviations between timeframes < 563 m, 373 

suggesting that the grain of records is homogeneous and much finer than the size of cells. 374 

For each species, we searched for traits covering the major features of organismal biology68: i) 375 

morphology (adult body size); ii) feeding (feeding guild and foraging strategies); iii) life history 376 

(life style, life span, age at maturity); iv) behaviour (daily activity, dispersal mode and annual 377 

activity) and v) ecology (specialization). Several sources were consulted (see Supplementary Note 1 378 

and Supplementary Table 2 for further details), but we were unable to collect satisfactory 379 

information for all traits. We thus retained six traits: adult size (continuous), feeding guild and 380 

foraging strategies (categorical; 9 and 4 levels, respectively), life style (categorical; amphibian or 381 

not), dispersal mode (categorical; 3 levels) and habitat specialization (continuous; N habitats used 382 

by each species / N habitats used by the whole taxonomic group) (Supplementary Note 1 and 383 

Supplementary Table 2). Categorical variables with more than two levels where then expressed as 384 

trait carried / not carried by the ith species. The resulting dataset showed a high completeness 385 

(98.54%; 264 NAs); missing data were imputed using recursive partitioning in mice69; given the 386 

lack of sequence-based phylogenies, we included phylogenetic information in the form of 387 

taxonomic hierarchy (taxonomic group + genus + subgenus, if any) to obtain more robust trait 388 

predictions. 389 

 390 

Climate, land-use and human population changes 391 

The climate information provided by widely used global datasets of centennial meteorological 392 

series often lack representativeness at local scales. This issue is particularly relevant in 393 

orographically complex regions. For this reason, we reconstructed the climate information for each 394 

cell in a more accurate way by exploiting the instrumental data available for Italy beginning in the 395 
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18th century39. This guarantees a level of data availability that is one to two orders of magnitude 396 

larger than the number of stations usually considered in the global datasets70. 397 

For each assemblage, we reconstructed mean monthly temperature and total monthly 398 

precipitation of the cell centroid, using the average cell elevation and applying the anomaly 399 

method71 to the time series of meteorological variables, as described in Brunetti et al.72. A time 400 

series of a meteorological variable can be described as the superposition of the climatology (i.e., the 401 

climate normals over a given reference period, which is assumed to be constant through time), and 402 

the deviations from them (i.e., the anomalies with respect to the same period, which define how 403 

much a given month deviates from its typical value). The anomaly approach consists of the 404 

independent reconstruction of these two components. Climatologies can show remarkable spatial 405 

gradients, reflecting the geographical features of the area, such as elevation or topography. 406 

Consequently, the spatial interpolation of climate normals requires a weather station network with 407 

high spatial density. For each cell, we reconstructed the climate normals referred to the period 408 

1961-1990 CE (the period with the highest data availability) based on the most representative 409 

nearby stations (a minimum of 15 and a maximum of 35 stations were retained). This was obtained 410 

through a weighted linear regression of the meteorological variable versus elevation, by assigning 411 

larger weights to the stations with elevation and topographic parameters similar to those of the cell 412 

of interest, as derived from a 30 arc-second resolution digital elevation model73,74. Anomalies are 413 

linked to climate variability and climate change through time, and show higher spatial coherence. 414 

Therefore, a limited number of weather stations can be sufficient to capture the spatial patterns, but 415 

a long temporal coverage and an accurate homogenization of the time series are essential75. 416 

Consequently, we i) removed non-climatic signals due to the history of the stations (e.g. instrument 417 

relocation or changes in measurement practices); ii) calculated the monthly anomalies with respect 418 

to 1961-1990 CE and iii) linearly interpolated on the coordinate of the cell of interest through a 419 

weighted average of the anomalies of nearby stations . Quantitative monthly temperature and 420 

precipitation series for each location were then estimated by superposing climatologies and 421 
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anomalies. Finally, mean annual temperature and total annual precipitation were calculated for each 422 

year and aggregated over the 10-year timeframe of interest. All validation analyses returned a high 423 

accuracy of this approach72,73,74. 424 

Land-use and human population density data were retrieved from the HYDE 3.2.1 dataset at 5 425 

arc-minutes resolution47. For each assemblage, we extracted estimates of human population density 426 

(inhabitants / km2) and natural habitats. The percent of natural habitat in each cell was obtained as 427 

the area not covered by croplands, grazing and built-up areas, divided by the total available land 428 

area. Note that this also includes semi-natural habitats such as managed forests. Precipitation and 429 

human population data were cube-root transformed to increase normality and the independent 430 

variable (i.e. year) was scaled to zero mean and unit variance before modelling. We used linear 431 

mixed models (LMMs) to explore the pattern of environmental change through time. We built 432 

LMMs with temperature, precipitation, natural habitat and human population as dependent variables 433 

and year as the independent variable. Models were fitted in lme476, with a random intercept on grid 434 

cell identity. For each dependent variable, models with linear, quadratic and exponential 435 

relationships between the variable and year were compared, and the model with the lowest value of 436 

the Akaike information criterion (AIC) was selected77.  437 

 438 

Calculating temporal β-diversity 439 

Temporal changes in assemblage composition and functionality were estimated using the Sørensen 440 

dissimilarity between pairs of temporally disjunct assemblages from the same taxonomic group and 441 

cell (sor
𝑏+𝑐

2𝑎+𝑏+𝑐
, where a is the number of species that persisted between t0 and t1, b is the 442 

number of species that colonized and c the number of species that went locally extinct. Temporal -443 

diversities were also partitioned in their additive nestedness and turnover components19. Temporal 444 

turnover (sim
min⁡(𝑏,𝑐)

𝑎+min⁡(𝑏,𝑐)
) reflects species replacement over time, while temporal nestedness 445 
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(sne
max⁡(b,c)−min⁡(𝑏,𝑐)

2𝑎+𝑏+𝑐
×

𝑎

𝑎+min⁡(𝑏,𝑐)
 = sor-sim) is the tendency of two assemblages to be subset of 446 

one another19,20. 447 

We further decomposed the Sørensen dissimilarity into scaled gain and loss components 448 

(Dgain and Dloss
32). These terms correspond to the 

𝑏

2𝑎+𝑏+𝑐
 and 

𝑐

2𝑎+𝑏+𝑐
 components of Sørensen, 449 

respectively, so that they sum up to . In a temporal perspective, loss and gain components can be 450 

directly linked to extinction and colonization, given that b and c represent the number of species 451 

occupying the same site in t0 but not in t1 and vice versa, respectively. In the case of cells with 452 

assemblage data for more than two time periods for a taxonomic group (e.g. t0, t1 and t2), we 453 

calculated dissimilarity indices sequentially (e.g., t0 to t1 and then t1 to t2) and treated each measure 454 

as a distinct value. For taxonomic dissimilarity we used the number of shared, colonizing and 455 

extinct species between t0 and t1. For functional dissimilarity, we replaced the number of species 456 

with the functional diversity associated to shared, colonizing and extinct species, when calculating 457 

functional indices16. The functional trait space occupied by each assemblage was calculated using 458 

hypervolumes with Gaussian kernel density estimation in hypervolume78. Components entering the 459 

hypervolume calculation must be centred, scaled, continuous and uncorrelated, and should not 460 

exceed 5-8 to avoid disjunct hypervolumes (i.e., a great number of holes)79. When dealing with 461 

possibly correlated and / or categorical traits, principal coordinates analysis (PCoA) based on 462 

pairwise trait dissimilarities allows one to reduce dimensionality and obtain orthogonal, centred and 463 

scaled components80. Trait dissimilarities were calculated using Gower distances in FD81, with 464 

equal weights to each trait (i.e., down-weighting categorical traits based on their number of levels); 465 

Gower distances are indeed appropriate to handle both quantitative and qualitative variables81. We 466 

computed PCoAs separately for each taxonomic group and retained the number of axes explaining 467 

at least 90% of the variance within each group (Chilopoda: 4 axes; Histeridae: 4; Orthoptera: 5; 468 

Dytiscidae: 5; Ephemeroptera: 4; Odonata: 3). Factor scores from the retained axes were then 469 

treated as the new trait values, and used to build hypervolumes for each assemblage. Within each 470 
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pair of assemblages (same cell and taxonomic group, but different timeframes), functional 471 

diversities associated to shared, colonizing and extinct species were obtained by calculating the 472 

intersection (shared) and the unique components (colonizing and extinct) of the two hypervolumes. 473 

Since functional diversity is highly sensitive to species richness, we used null models to obtain 474 

estimates of functional diversity uncorrelated to species richness36,37. Within each taxonomic group, 475 

we shuffled the species names 500 times in the PCoA-based trait matrix, and recalculated all 476 

functional indices (sorsim, sneDgain and Dloss; 5 indices × 169 pairs of assemblages). Name 477 

shuffling is preferred to the ‘independent swap’ (i.e., a constrained randomization of the community 478 

matrix) when dealing with diversity, as it allows the maintaining of the overall spatial pattern of 479 

richness and trait covariance37. Standardized effect size (SES) is a commonly applied method to 480 

measure the departures of the observed index from the null distribution37, but SES comparisons can 481 

produce biased inferences if null indices have a non-normal or asymmetric distribution82. None of 482 

the null indices showed a normal distribution (Shapiro-Wilk test: all P < 0.05) and the Skew test in 483 

DescTools83 (500 bootstrap replicates per index) showed that 97% of the null distributions were 484 

skewed. Consequently, we estimated P-values using quantile scores for each null distribution, and 485 

used these values as measures of effect size37,82. This approach is known to partially underestimate 486 

the size of the effect when the observed index is completely outside the null distribution (i.e., P = 0 487 

or 1), however this issue did not affect our analysis as just 2.6% of our measures returned values of 488 

0 or 1. 489 

Average rates of change for diversity, turnover, nestedness and scaled components of 490 

diversity were obtained by dividing the indices by the length of the interval over which they were 491 

measured. For taxonomic diversity, this allowed maintaining the additive properties for both 492 

nestedness and turnover (sor’ = sne’ + sim’) and Dgain and Dloss (sor’ = Dgain’ + Dloss’). 493 

 494 

Modelling diversity change over time 495 
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To measure changes of climate, land-use and human population density for each pair of 496 

assemblages, we used the difference in the value of variables; for pairs of assemblages with 497 

sampling occasions at intervals >10 years (i.e. interval duration 20 years or more), we used the 498 

difference between the values from the last and the first decade. As above, annual rates of change 499 

for climate, land-use and human population density were obtained by dividing the overall change by 500 

the duration of the interval. Suggitt et al.33 proposed that microclimatically heterogeneous 501 

landscapes may buffer local assemblages against extinction; we therefore calculated microclimatic 502 

heterogeneity as the standard deviation in the solar index over the decade of interest for each 20 km 503 

cell using the solarindex function84. We generated the slope and aspect data needed to calculate the 504 

solar index from the SRTM digital elevation model, aggregated at the 9 arc-second resolution. The 505 

mean value between the two time points of each interval was taken as the average microclimatic 506 

heterogeneity over the cell and the timeframe of interest. The rate of change of human population 507 

density and the average microclimatic heterogeneity data were cube-root transformed to increase 508 

normality and all variables were scaled to zero mean and unit variance before analyses. Correlation 509 

between pairs of environmental variables was weak (in all pairwise correlations, |r| ≤ 0.45), 510 

indicating that multicollinearity did not pose problems to our models. Consequently, for each pair of 511 

assemblages (same cell and taxonomic group, different timeframes), we had 10 measures of β-512 

diversity (five taxonomic and five functional), and five predictors: annual rates of change of 513 

temperature, precipitation, population density and % natural habitat, and the average microclimatic 514 

heterogeneity. 515 

We used Bayesian generalized linear mixed models (GLMMs) to identify the processes 516 

shaping -diversity and its components, while taking into account the complex spatial structure of 517 

the dataset. For both taxonomic and functional diversity, we considered five dependent variables 518 

describing temporal changes in diversity: -diversity, nestedness, turnover, Dgain and Dloss. The 519 

dependent variables were related to the five independent variables. In GLMMs, taxonomic group 520 

was used as random intercept. We then used a conditional autoregressive term to account for spatial 521 



25 

 

autocorrelation. Spatial autocorrelation occurs when nearby localities have similar values for a given 522 

parameter, and ignoring the dependence structure arising from spatially autocorrelated data may 523 

result in biased estimates of the model parameters85. We thus introduced a spatial random effect 524 

using the Besag spatial model86 to take into account the non-independence between nearby cells. 525 

We measured spatial dependence through a binary neighbourhood matrix, calculated in spdep87; all 526 

the cells within 90 km from each other were treated as neighbours. The different cells received 527 

uneven sampling efforts, and the available data have variable completeness. Therefore, in mixed 528 

models we also included as weights the average taxonomic completeness of the pair of assemblages 529 

for which we calculated dissimilarity. We fitted Bayesian GLMMs using integrated nested Laplace 530 

approximation with default priors, as implemented in INLA88,89. INLA allows reliably 531 

approximating posterior marginals in models with complex spatial structures, while considerably 532 

reducing computational load and solving convergence issues88. The responses were bounded on the 533 

closed interval [0,1], thus we first removed fixed zeros and ones by taking 𝑦′ =⁡
𝑦×(𝑁−1)+0.5

𝑁
 , where 534 

N is the sample size90, and then fit GLMMs with beta family. To take into account the possibility of 535 

non-linear relationships, we ran five models for both taxonomic and functional -diversity (sor), 536 

either including or excluding quadratic terms for changes in climate, land-use and human 537 

population density. We also tested the possibility of interactions between parameters representing 538 

climate change (temperature × precipitation) and between climate and land-use change (temperature 539 

or precipitation × human population or natural habitat). In the final models for taxonomic and 540 

functional sor, we included all the linear terms, and all those quadratic terms and interactions that 541 

reduced the Watanabe-Akaike information criterion (WAIC35). The retained terms were then 542 

applied to all the components of diversity (sne, sim, Dgain and Dloss ). All the analyses were 543 

performed with R v.4.0.391.  544 
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Figure Legends 761 

Fig. 1: Potential effects of environmental changes on the α- and β-diversity of assemblages. The 762 

effects are exemplified for two assemblages sharing the same pool of species at t1, but experiencing 763 

different intensities of change. a) An environmental change leads to a modification in assemblage 764 

composition between t1 and t2, with stronger environmental change for the blue assemblage. b): 765 

These environmental changes affect biodiversity, leading to loss of α-diversity (strongest for the 766 

blue assemblage) and causing higher temporal β-diversity (sor) in blue, which is attributable to 767 

nestedness (sne). c) In this case, the environmental change causes assemblage modifications that, as 768 

shown in d), are reflected by higher temporal β-diversity (sor) in blue, attributable to turnover 769 

(sim). e-g): For many parameters, the environment can drive changes with different sign (e.g. 770 

precipitation can either increase and decrease through time; Fig. 2b), both causing community 771 
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changes. As shown in f-h), this leads to non-linear relationships between the strength of 772 

environmental change and the different components of β-diversity. 773 

 774 

Fig. 2: Temporal evolution of climate, land-use and human population density over the entire time 775 

series (1859-2003 CE). Cell identity was introduced as random intercept to take into account the 776 

cell-specific conditions influencing climate (e.g., elevation, latitude ...), land-use and human 777 

population density (percentage of natural areas or human population density at the beginning of the 778 

series). a-d: reconstructed temporal trends (Nakagawa & Schielzeth92 conditional R2: 0.99; 0.96; 779 

0.97; 0.99 - marginal R2: 0.02, 0.01, 0.03, 0.02); grey area represents the 95% confidence interval 780 

for the average estimate. Precipitation and human population density are cube-root transformed. e-781 

h: spatial distribution of the random intercepts; purple squares mark negative values (i.e. lower than 782 

the average), green squares positive ones. The square size is proportional to the value of the random 783 

intercept. 784 

 785 

Fig. 3: Density plots of the posterior distribution for the relationships between the rates of change of 786 

-diversity, turnover and nestedness and the candidate environmental drivers. Taxonomy (a-c) vs. 787 

functionality (d-f); Sørensen dissimilarity (a and d), temporal turnover (b and e), and temporal 788 

nestedness (c and f). The figure represents median values for regression coefficients (vertical lines), 789 

and 80 (colours), 95 (pale colours) and 99 % (outlines) credible intervals. Quadratic terms and 790 

interactions were only included if supported for Sor by the Watanabe-Akaike Information 791 

Criterion35. Interactions: Prec = Annual precipitation; H pop = Human population density; Temp = 792 

mean annual temperature.  793 

 794 

Fig. 4: Relationships between -diversity and the environmental drivers returning significant 795 

interactions. In each plot, the thick red line represents the average predicted relationship on the link 796 
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scale, while the grey lines represent 500 samples of the posterior distribution. a-c show the effect of 797 

precipitation change (mm/year) on taxonomic -diversity in cells with negative (-0.45), medium 798 

(0.72) and rapid (1.82) changes of the human population density (cube-root transformed; 799 

(inhabitants/km2/year)1/3). d-f show the effect of temperature change (°C/year) on functional -800 

diversity with negative (-10.06), stable (-1.96) and positive (5.4) rates of change in precipitation 801 

(mm/year). 802 

 803 

Fig. 5: Density plots of the posterior distribution for the relationships between the rates of change in 804 

the scaled gain (Dgain) and loss (Dloss) components of -diversity and candidate environmental 805 

drivers. Taxonomy (a-b) vs. functionality (c-d); Dgain (a and b) and Dloss (c and d). The figure 806 

represents median values for regression coefficients (vertical lines), and 80 (colours), 95 (pale 807 

colours) and 99 % (outlines) credible intervals. Interactions: Prec = Annual precipitation; H pop = 808 

Human population density; Temp = mean annual temperature. 809 

 810 
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